AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Heat dissipation in graphene foams

Yaniv CohenSiva K. ReddyAssaf Ya'akobovitz( )
Department of Mechanical Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
Show Author Information

Graphical Abstract

Abstract

Graphene foam (GF)—a three-dimensional network of hollow graphene branches—is a highly attractive material for diverse applications. However, to date, the heat dissipation characteristics of GFs have not been characterized. To fill this gap, we synthesized GF devices, subjected them to high temperatures, and investigated their thermal behavior by using infrared microthermography. We find that while the convective area of GF devices is comparable to that of bulk materials (such as metals), the coefficient of convection of these devices is several orders of magnitude higher than that of metals. In addition, the GF devices showed a reproducible thermal behavior, which we attribute to negligible temperature-induced morphological changes (as confirmed by Raman analysis). Taken together, our findings suggest GF as a promising candidate material for advanced cooling applications where efficient heat dissipation is needed, e.g., in electrical circuits.

Electronic Supplementary Material

Download File(s)
12274_2020_3120_MOESM1_ESM.pdf (1.6 MB)

References

[1]
B. Dang,; M. S. Bakir,; D. C. Sekar,; C. R., King, Jr.; J. D. Meindl, Integrated microfluidic cooling and interconnects for 2D and 3D chips. IEEE Trans. Adv. Packag. 2010, 33, 79-87.
[2]
K. A. Cook-Chennault,; N. Thambi,; A. M. Sastry, Powering MEMS portable devices—A review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater. Struct. 2008, 17, 043001.
[3]
H. S. Kim,; J. H. Kim,; J. Kim, A review of piezoelectric energy harvesting based on vibration. Int. J. Precis. Eng. Manuf. 2011, 12, 1129-1141.
[4]
M. F. El-Kady,; R. B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 2013, 4, 1475.
[5]
G. P. Wang,; L. Zhang,; J. J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797-828.
[6]
R. Mahajan,; C. P. Chiu,; G. Chrysler, Cooling a microprocessor chip. Proc. IEEE 2006, 94, 1476-1486.
[7]
W. M. Yim,; F. D. Rosi, Compound tellurides and their alloys for peltier cooling-A review. Solid State Electron. 1972, 15, 1121-1140.
[8]
S. B. Riffat,; X. L. Ma, Thermoelectrics: A review of present and potential applications. Appl. Therm. Eng. 2003, 23, 913-935.
[9]
C. J. L. Hermes,; J. R., Barbosa, Jr. Thermodynamic comparison of Peltier, Stirling, and vapor compression portable coolers. Appl. Energy 2012, 91, 51-58.
[10]
J. M. Koo,; S. Im,; L. Jiang,; K. E. Goodson, Integrated microchannel cooling for three-dimensional electronic circuit architectures. J. Heat Transfer 2005, 127, 49-58.
[11]
W. L. Qu,; A. Siu-Ho, Liquid single-phase flow in an array of micro-pin-fins—Part I: Heat transfer characteristics. J. Heat Transfer 2008, 130, 122402.
[12]
M. H. Liu,; D. Liu,; S. Xu,; Y. L. Chen, Experimental study on liquid flow and heat transfer in micro square pin fin heat sink. Int. J. Heat Mass Transfer 2011, 54, 5602-5611.
[13]
J. F. Tullius,; T. K. Tullius,; Y. Bayazitoglu, Optimization of short micro pin fins in minichannels. Int. J. Heat Mass Transfer 2012, 55, 3921-3932.
[14]
X. S. Du,; H. Y. Liu,; Y. W. Mai, Ultrafast synthesis of multifunctional N-doped graphene foam in an ethanol flame. ACS Nano 2016, 10, 453-462.
[15]
Z. P. Chen,; W. C. Ren,; L. B. Gao,; B. L. Liu,; S. F. Pei,; H. M. Cheng, Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424-428.
[16]
S. K. Reddy,; D. B. Ferry,; A. Misra, Highly compressible behavior of polymer mediated three-dimensional network of graphene foam. RSC Adv. 2014, 4, 50074-50080.
[17]
D. A. C. Brownson,; L. C. S. Figueiredo-Filho,; X. B. Ji,; M. Gómez- Mingot,; J. Iniesta,; O. Fatibello-Filho,; D. K. Kampouris,; C. E. Banks, Freestanding three-dimensional graphene foam gives rise to beneficial electrochemical signatures within non-aqueous media. J. Mater. Chem. A 2013, 1, 5962-5972.
[18]
Z. P. Chen,; C. Xu,; C. Q. Ma,; W. C. Ren,; H. M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 2013, 25, 1296-1300.
[19]
H. M. Fang,; Y. H. Zhao,; Y. F. Zhang,; Y. J. Ren,; S. L. Bai, Three- dimensional graphene foam-filled elastomer composites with high thermal and mechanical properties. ACS Appl. Mater. Interfaces 2017, 9, 26447-26459.
[20]
R. Q. Xu,; Y. Q. Lu,; C. H. Jiang,; J. Chen,; P. Mao,; G. H. Gao,; L. B. Zhang,; S. Wu, Facile fabrication of three-dimensional graphene foam/poly(dimethylsiloxane) composites and their potential application as strain sensor. ACS Appl. Mater. Interfaces 2014, 6, 13455-13460.
[21]
H. Y. Ren,; M. Tang,; B. L. Guan,; K. X. Wang,; J. W. Yang,; F. F. Wang,; M. Z. Wang,; J. Y. Shan,; Z. L. Chen,; D. Wei, et al. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Adv. Mater. 2017, 29, 1702590.
[22]
S. K. Reddy,; A. Ya’akobovitz, Electromechanical behavior of graphene foams. Appl. Phys. Lett. 2019, 115, 211902.
[23]
M. T. Pettes,; H. X. Ji,; R. S. Ruoff,; L. Shi, Thermal transport in three-dimensional foam architectures of few-layer graphene and ultrathin graphite. Nano Lett. 2012, 12, 2959-2964.
[24]
M. Zhou,; T. Q. Lin,; F. Q. Huang,; Y. J. Zhong,; Z. Wang,; Y. F. Tang,; H. Bi,; D. Y. Wan,; J. H. Lin, Highly conductive porous graphene/ceramic composites for heat transfer and thermal energy storage. Adv. Funct. Mater. 2013, 23, 2263-2269.
[25]
X. F. Zhang; K. K. Yeung,; Z. L. Gao,; J. K. Li,; H. Y. Sun,; H. S. Xu,; K. Zhang; M. Zhang,; Z. B. Chen,; M. M. F. Yuen, et al. Exceptional thermal interface properties of a three-dimensional graphene foam. Carbon 2014, 66, 201-209.
[26]
Y. Cohen,; S. K. Reddy,; Y. Ben-Shimon,; A. Ya’akobovitz, Height and morphology dependent heat dissipation of vertically aligned carbon nanotubes. Nanotechnology 2019, 30, 505905.
[27]
A. Ya’akobovitz, Multiple thermal transitions and anisotropic thermal expansions of vertically aligned carbon nanotubes. J. Appl. Phys. 2016, 120, 165110.
Nano Research
Pages 829-833
Cite this article:
Cohen Y, Reddy SK, Ya'akobovitz A. Heat dissipation in graphene foams. Nano Research, 2021, 14(3): 829-833. https://doi.org/10.1007/s12274-020-3120-2
Topics:

763

Views

6

Crossref

0

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 09 May 2020
Revised: 29 July 2020
Accepted: 15 September 2020
Published: 01 March 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return