Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Graphene foam (GF)—a three-dimensional network of hollow graphene branches—is a highly attractive material for diverse applications. However, to date, the heat dissipation characteristics of GFs have not been characterized. To fill this gap, we synthesized GF devices, subjected them to high temperatures, and investigated their thermal behavior by using infrared microthermography. We find that while the convective area of GF devices is comparable to that of bulk materials (such as metals), the coefficient of convection of these devices is several orders of magnitude higher than that of metals. In addition, the GF devices showed a reproducible thermal behavior, which we attribute to negligible temperature-induced morphological changes (as confirmed by Raman analysis). Taken together, our findings suggest GF as a promising candidate material for advanced cooling applications where efficient heat dissipation is needed, e.g., in electrical circuits.