AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Self-targeting visualizable hyaluronate nanogel for synchronized intracellular release of doxorubicin and cisplatin in combating multidrug-resistant breast cancer

Wen Ma1,§Qiling Chen1,§Weiguo Xu2,§Meng Yu1Yuanyuan Yang1Binhua Zou1Yu Shrike Zhang3( )Jianxun Ding2( )Zhiqiang Yu1 ( )
Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge MA 02139, USA

§ Wen Ma, Qiling Chen, and Weiguo Xu contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Multidrug-resistance (MDR) featuring complicated and poorly defined mechanisms is a major obstacle to the success of cancer chemotherapy in the clinic. Compound nanoparticles comprising multiple cytostatics with different mechanisms of action are commonly developed to tackle the multifaceted nature of clinical MDR. However, the different pharmacokinetics and release profiles of various drugs result in inconsistent drug internalization and suboptimal drug synergy at the tumor sites. In the present study, a type of self-targeting hyaluronate (HA) nanogels (CDDPHANG/DOX) to reverse drug resistance through the synchronized pharmacokinetics, intratumoral distribution, and intracellular release of topoisomerase II inhibitor doxorubicin (DOX) and DNA- crosslinking agent cisplatin (CDDP) is developed. With prolonged circulation time and enhanced intratumoral accumulation in vivo, CDDPHANG/DOX shows efficient drug delivery into the drug-resistant MCF-7/ADR breast cancer cells and enhanced antitumor activity. Besides, fluorescence imaging of DOX combined with the micro-computed tomography (micro-CT) imaging of CDDP facilitates the visualization of this combination tumor chemotherapy. With visualizable synchronized drug delivery, the self-targeting in situ crosslinked nanoplatform may hold good potential in future clinical therapy of advanced cancers.

References

[1]
R. W. Robey,; K. M. Pluchino,; M. D. Hall,; A. T. Fojo,; S. E. Bates,; M. M. Gottesman, Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer 2018, 18, 452-464.
[2]
J. Liu,; T. Wei,; J. Zhao,; Y. Y. Huang,; H. Deng,; A. Kumar,; C. X. Wang,; Z. C. Liang,; X. W. Ma,; X. J. Liang, Multifunctional aptamer- based nanoparticles for targeted drug delivery to circumvent cancer resistance. Biomaterials 2016, 91, 44-56.
[3]
J. J. Shi,; P. W. Kantoff,; R. Wooster,; O. C. Farokhzad, Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 2016, 17, 20-37.
[4]
Y. W. Cong,; H. H. Xiao,; H. J. Xiong,; Z. G. Wang,; J. X. Ding,; C. Li,; X. S. Chen,; X. J. Liang,; D. F. Zhou,; Y. B. Huang, Dual drug backboned shattering polymeric theranostic nanomedicine for synergistic eradication of patient-derived lung cancer. Adv. Mater. 2018, 30, 1706220.
[5]
Q. Y. Hu,; W. J. Sun,; C. Wang,; Z. Gu, Recent advances of cocktail chemotherapy by combination drug delivery systems. Adv. Drug Deliv. Rev. 2016, 98, 19-34.
[6]
A. C. Palmer,; P. K. Sorger, Combination cancer therapy can confer benefit via patient-to-patient variability without drug additivity or synergy. Cell 2017, 171, 1678-1691.e13.
[7]
Y. Y. Yang,; O. Adebali,; G. Wu,; C. P. Selby,; Y. Y. Chiou,; N. Rashid,; J. C. Hu,; J. B. Hogenesch,; A. Sancar, Cisplatin-DNA adduct repair of transcribed genes is controlled by two circadian programs in mouse tissues. Proc. Natl. Acad. Sci. USA 2018, 115, E4777-E4785.
[8]
S. M. Lee,; T. V. O’Halloran,; S. B. T. Nguyen, Polymer-caged nanobins for synergistic cisplatin-doxorubicin combination chemotherapy. J. Am. Chem. Soc. 2010, 132, 17130-17138.
[9]
Y. Zhang,; F. Wang,; M. Q. Li,; Z. Q. Yu,; R. G. Qi,; J. X. Ding,; Z. Y. Zhang,; X. S. Chen, Self-stabilized hyaluronate nanogel for intracellular codelivery of doxorubicin and cisplatin to osteosarcoma. Adv. Sci. 2018, 5, 1700821.
[10]
E. Gazzano,; B. Rolando,; K. Chegaev,; I. C. Salaroglio,; J. Kopecka,; I. Pedrini,; S. Saponara,; M. Sorge,; I. Buondonno,; B. Stella, et al. Folate-targeted liposomal nitrooxy-doxorubicin: An effective tool against P-glycoprotein-positive and folate receptor-positive tumors. J. Control. Release 2018, 270, 37-52.
[11]
C. M. J. Hu,; L. F. Zhang, Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem. Pharmacol. 2012, 83, 1104-1111.
[12]
L. Sivak,; V. Subr,; J. Tomala,; B. Rihova,; J. Strohalm,; T. Etrych,; M. Kovar, Overcoming multidrug resistance via simultaneous delivery of cytostatic drug and P-glycoprotein inhibitor to cancer cells by HPMA copolymer conjugate. Biomaterials 2017, 115, 65-80.
[13]
K. Cohen,; R. Emmanuel,; E. Kisin-Finfer,; D. Shabat,; D. Peer, Modulation of drug resistance in ovarian adenocarcinoma using chemotherapy entrapped in hyaluronan-grafted nanoparticle clusters. ACS Nano 2014, 8, 2183-2195.
[14]
K. Hamaguchi,; A. K. Godwin,; M. Yakushiji,; P. J. O'Dwyer,; R. F. Ozols,; T. C. Hamilton, Cross-resistance to diverse drugs is associated with primary cisplatin resistance in ovarian cancer cell lines. Cancer Res. 1993, 53, 5225-5232.
[15]
X. Yang,; M. Pagé, P-glycoprotein expression in ovarian cancer cell line following treatment with cisplatin. Oncol. Res. 1995, 7, 619-624.
[16]
M. Z. Ye,; Y. X. Han,; J. B. Tang,; Y. Piao,; X. R. Liu,; Z. X. Zhou,; J. Q. Gao,; J. H. Rao,; Y. Q. Shen, A Tumor-specific cascade amplification drug release nanoparticle for overcoming multidrug resistance in cancers. Adv. Mater. 2017, 29, 1702342.
[17]
H. Kim,; H. Jeong,; S. Han,; S. Beack,; B. W. Hwang,; M. Shin,; S. S. Oh,; S. K. Hahn, Hyaluronate and its derivatives for customized biomedical applications. Biomaterials 2017, 123, 155-171.
[18]
M. Q. Li,; Z. H. Tang,; D. W. Zhang,; H. Sun,; H. Y. Liu,; Y. Zhang,; Y. Y. Zhang,; X. S. Chen, Doxorubicin-loaded polysaccharide nanoparticles suppress the growth of murine colorectal carcinoma and inhibit the metastasis of murine mammary carcinoma in rodent models. Biomaterials 2015, 51, 161-172.
[19]
H. S. S. Qhattal,; T. Hye,; A. Alali,; X. L. Liu, Hyaluronan polymer length, grafting density, and surface poly(ethylene glycol) coating influence in vivo circulation and tumor targeting of hyaluronan- grafted liposomes. ACS Nano 2014, 8, 5423-5440.
[20]
A. Matzke-Ogi,; K. Jannasch,; M. Shatirishvili,; B. Fuchs,; S. Chiblak,; J. Morton,; B. Tawk,; T. Lindner,; O. Sansom,; F. Alves, et al. Inhibition of tumor growth and metastasis in pancreatic cancer models by interference with CD44v6 signaling. Gastroenterology 2016, 150, 513-525.e10.
[21]
J. M. Wickens,; H. O. Alsaab,; P. Kesharwani,; K. Bhise,; M. C. I. M. Amin,; R. K. Tekade,; U. Gupta,; A. K. Iyer, Recent advances in hyaluronic acid-decorated nanocarriers for targeted cancer therapy. Drug Discov. Today 2017, 22, 665-680.
[22]
Y. Zhang,; F. Wang,; M. Q. Li,; Z. Q. Yu,; R. G. Qi,; J. X. Ding,; Z. Y. Zhang,; X. S. Chen, Self-stabilized hyaluronate nanogel for intracellular codelivery of doxorubicin and cisplatin to osteosarcoma. Adv. Sci. 2018, 5, 1700821.
[23]
X. R. Feng,; J. X. Ding,; R. Gref,; X. S. Chen, Poly(β-cyclodextrin)- mediated polylactide-cholesterol stereocomplex micelles for controlled drug delivery. Chin. J. Polym. Sci. 2017, 35, 693-699.
[24]
P. Padhye,; A. Alam,; S. Ghorai,; S. Chattopadhyay,; P. Poddar, Doxorubicin-conjugated β-NaYF4:Gd3+/Tb3+ multifunctional, phosphor nanorods: A multi-modal, luminescent, magnetic probe for simultaneous optical and magnetic resonance imaging and an excellent pH- triggered anti-cancer drug delivery nanovehicle. Nanoscale 2015, 7, 19501-19518.
[25]
M. Q. Li,; Z. H. Tang,; J. Lin,; Y. Zhang,; S. X. Lv,; W. T. Song,; Y. B. Huang,; X. S. Chen, Synergistic antitumor effects of doxorubicin-loaded carboxymethyl cellulose nanoparticle in combination with endostar for effective treatment of non-small-cell lung cancer. Adv. Health care. Mater. 2014, 3, 1877-1888.
[26]
P. S. Pramod,; R. Shah,; M. Jayakannan, Dual stimuli polysaccharide nanovesicles for conjugated and physically loaded doxorubicin delivery in breast cancer cells. Nanoscale 2015, 7, 6636-6652.
[27]
J. J. Chen,; J. X. Ding,; Y. C. Wang,; J. J. Cheng,; S. X. Ji,; X. L. Zhuang,; X. S. Chen, Sequentially responsive shell-stacked nanoparticles for deep penetration into solid tumors. Adv. Mater. 2017, 29, 1701170.
[28]
F. Wang,; Y. C. Wang,; S. Dou,; M. H. Xiong,; T. M. Sun,; J. Wang, Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano 2011, 5, 3679-3692.
[29]
F. M. Kievit,; F. Y. Wang,; C. Fang,; H. Mok,; K. Wang,; J. R. Silber,; R. G. Ellenbogen,; M. Q. Zhang, Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro. J. Control. Release 2011, 152, 76-83.
[30]
S. Z. Li,; Q. Zhao,; B. Wang,; S. Yuan,; X. Y. Wang,; K. Li, Quercetin reversed MDR in breast cancer cells through down-regulating P-gp expression and eliminating cancer stem cells mediated by YB-1 nuclear translocation. Phytother. Res. 2018, 32, 1530-1536.
[31]
T. Ishikawa,; F. Ali-Osman, Glutathione-associated cis- diamminedichloroplatinum(II) metabolism and ATP-dependent efflux from leukemia cells. Molecular characterization of glutathione- platinum complex and its biological significance. J. Biol. Chem. 1993, 268, 20116-20125.
[32]
M. Kartalou,; J. M. Essigmann, Mechanisms of resistance to cisplatin. Mutat. Res. 2001, 478, 23-43.
[33]
D. Huang,; Y. S. Chen,; I. D. Rupenthal, Hyaluronic acid coated albumin nanoparticles for targeted peptide delivery to the retina. Mol. Pharmaceutics 2017, 14, 533-545.
[34]
Y. Q. Lv,; C. R. Xu,; X. M. Zhao,; C. S. Lin,; X. Yang,; X. F. Xin,; L. Zhang,; C. Qin,; X. P. Han,; L. Yang, et al. Nanoplatform assembled from a CD44-targeted prodrug and smart liposomes for dual targeting of tumor microenvironment and cancer cells. ACS Nano 2018, 12, 1519-1536.
[35]
X. Y. Gu,; J. X. Ding,; Z. Y. Zhang,; Q. Li,; X. L. Zhuang,; X. S. Chen, Polymeric nanocarriers for drug delivery in osteosarcoma treatment. Curr. Pharm. Des. 2015, 21, 5187-5197.
[36]
L. Kastl,; D. Sasse,; V. Wulf,; R. Hartmann,; J. Mircheski,; C. Ranke,; S. Carregal-Romero,; J. A. Martínez-López,; R. Fernández-Chacón,; W. J. Parak, et al. Multiple internalization pathways of polyelectrolyte multilayer capsules into mammalian cells. ACS Nano 2013, 7, 6605-6618.
[37]
L. A. Mulcahy,; R. C. Pink,; D. R. F. Carter, Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles 2014, 3, 24641.
[38]
K. J. Zhou,; Y. G. Wang,; X. N. Huang,; K. Luby-Phelps,; B. D. Sumer,; J. M. Gao, Tunable, ultrasensitive pH-responsive nanoparticles targeting specific endocytic organelles in living cells. Angew. Chem., Int. Ed. 2011, 50, 6109-6114.
[39]
J. J. Chen,; J. X. Ding,; W. G. Xu,; T. M. Sun,; H. H. Xiao,; X. L. Zhuang,; X. S. Chen, Receptor and microenvironment dual-recognizable nanogel for targeted chemotherapy of highly metastatic malignancy. Nano Lett. 2017, 17, 4526-4533.
[40]
A. O. Elzoghby,; S. K. Mostafa,; M. W. Helmy,; M. A. ElDemellawy,; S. A. Sheweita, Superiority of aromatase inhibitor and cyclooxygenase-2 inhibitor combined delivery: Hyaluronate-targeted versus PEGylated protamine nanocapsules for breast cancer therapy. Int. J. Pharm. 2017, 529, 178-192.
[41]
S. Wilhelm,; A. J. Tavares,; Q. Dai,; S. Ohta,; J. Audet,; H. F. Dvorak,; W. C. W. Chan, Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016, 1, 16014.
[42]
J. H. Schiller,; D. Harrington,; C. P. Belani,; C. Langer,; A. Sandler,; J. Krook,; J. M. Zhu,; D. H. Johnson, Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N. Engl. J. Med. 2002, 346, 92-98.
[43]
S. Mura,; J. Nicolas,; P. Couvreur, Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991-1003.
[44]
D. K. Sun,; J. X. Ding,; C. S. Xiao,; J. J. Chen,; X. L. Zhuang,; X. S. Chen, Preclinical evaluation of antitumor activity of acid- sensitive PEGylated doxorubicin. ACS Appl. Mater. Interfaces 2014, 6, 21202-21214.
[45]
J. X. Ding,; W. G. Xu,; Y. Zhang,; D. K. Sun,; C. S. Xiao,; D. H. Liu,; X. J. Zhu,; X. S. Chen, Self-reinforced endocytoses of smart polypeptide nanogels for “on-demand” drug delivery. J. Control. Release 2013, 172, 444-455.
[46]
H. H. Xiao,; L. S. Yan,; E. M. Dempsey,; W. T. Song,; R. G. Qi,; W. L. Li,; Y. B. Huang,; X. B. Jing,; D. F. Zhou,; J. X. Ding, et al. Recent progress in polymer-based platinum drug delivery systems. Prog. Polym. Sci. 2018, 87, 70-106.
[47]
W. G. Xu,; J. X. Ding,; C. S. Xiao,; L. Y. Li,; X. L. Zhuang,; X. S. Chen, Versatile preparation of intracellular-acidity-sensitive oxime- linked polysaccharide-doxorubicin conjugate for malignancy therapeutic. Biomaterials 2015, 54, 72-86.
[48]
A. Banzato,; S. Bobisse,; M. Rondina,; D. Renier,; F. Bettella,; G. Esposito,; L. Quintieri,; L. Meléndez-Alafort,; U. Mazzi,; P. Zanovello, et al. A paclitaxel-hyaluronan bioconjugate targeting ovarian cancer affords a potent in vivo therapeutic activity. Clin. Cancer Res. 2008, 14, 3598-3606.
[49]
R. Sales Gil,; P. Vagnarelli, Ki-67: More hidden behind a ‘classic proliferation marker’. Trends Biochem. Sci. 2018, 43, 747-748.
[50]
M. Elser,; L. Borsig,; P. O. Hassa,; S. Erener,; S. Messner,; T. Valovka,; S. Keller,; M. Gassmann,; M. O. Hottiger, Poly(ADP-ribose) polymerase 1 promotes tumor cell survival by coactivating hypoxia- inducible factor-1-dependent gene expression. Mol. Cancer Res. 2008, 6, 282-290.
[51]
D. Martin-Oliva,; R. Aguilar-Quesada,; F. O'Valle,; J. A. Muñoz-Gámez,; R. Martínez-Romero,; R. García del Moral,; J. M. Ruiz de Almodóvar,; R. Villuendas,; M. A. Piris,; F. J. Oliver, Inhibition of poly(ADP-ribose) polymerase modulates tumor-related gene expression, including hypoxia-inducible factor-1 activation, during skin carcinogenesis. Cancer Res. 2006, 66, 5744-5756.
[52]
E. L. Ritman, Molecular imaging in small animalsroles for micro-CT. J. Cell. Biochem. 2002, 87, 116-124.
Nano Research
Pages 846-857
Cite this article:
Ma W, Chen Q, Xu W, et al. Self-targeting visualizable hyaluronate nanogel for synchronized intracellular release of doxorubicin and cisplatin in combating multidrug-resistant breast cancer. Nano Research, 2021, 14(3): 846-857. https://doi.org/10.1007/s12274-020-3124-y
Topics:

1413

Views

127

Crossref

0

Web of Science

131

Scopus

5

CSCD

Altmetrics

Received: 19 July 2020
Revised: 09 September 2020
Accepted: 12 September 2020
Published: 01 March 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return