AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Defects enriched hollow porous Co-N-doped carbons embedded with ultrafine CoFe/Co nanoparticles as bifunctional oxygen electrocatalyst for rechargeable flexible solid zinc-air batteries

Zhao Lei1,§Yangyang Tan1,§Zeyi Zhang1Wei Wu1Niancai Cheng1( )Runzhe Chen1Shichun Mu2( )Xueliang Sun3( )
College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 , China
Department of Mechanical and Materials Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada

§ Zhao Lei and Yangyang Tan contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The construction and design of highly efficient and inexpensive bifunctional oxygen electrocatalysts substitute for noble-metal- based catalysts is highly desirable for the development of rechargeable Zn-air battery (ZAB). In this work, a bifunctional oxygen electrocatalysts of based on ultrafine CoFe alloy (4-5 nm) dispersed in defects enriched hollow porous Co-N-doped carbons, made by annealing SiO2 coated zeolitic imidazolate framework-67 (ZIF-67) encapsulated Fe ions. The hollow porous structure not only exposed the active sites inside ZIF-67, but also provided efficient charge and mass transfer. The strong synergetic coupling among high-density CoFe alloys and Co-Nx sites in Co, N-doped carbon species ensures high oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activity. First-principles simulations reveal that the synergistic promotion effect between CoFe alloy and Co-N site effectively reduced the formation energy of from O* to OH*. The optimized CoFe-Co@PNC exhibits outstanding electrocatalytic stability and activity with the overpotential of only 320 mV for OER at 10 mA·cm−2 and the half-wave potential of 0.887 V for ORR, outperforming that of most recent reported bifunctional electrocatalysts. A rechargeable ZAB constructed with CoFe-Co@PNC as the air cathode displays long-term cyclability for over 200 h and high power density (152.8 mW·cm−2). Flexible solid-state ZAB with our CoFe-Co@PNC as the air cathode possesses a high open circuit potential (OCP) up to 1.46 V as well as good bending flexibility. This universal structure design provides an attractive and instructive model for the application of nanomaterials derived from MOF in the field of sustainable flexible energy applications device.

Electronic Supplementary Material

Download File(s)
12274_2020_3127_MOESM1_ESM.pdf (8 MB)

References

[1]
Y. G. Li,; H. J. Dai, Recent advances in zinc-air batteries. Chem. Soc. Rev. 2014, 43, 5257-5275.
[2]
F. L. Meng,; K. H. Liu,; Y. Zhang,; M. M. Shi,; X. B. Zhang,; J. M. Yan,; Q. Jiang, Recent advances toward the rational design of efficient bifunctional air electrodes for rechargeable Zn-air batteries. Small 2018, 14, 1703843.
[3]
M. J. Wu,; G. X. Zhang,; M. H. Wu,; J. Prakash,; S. H. Sun, Rational design of multifunctional air electrodes for rechargeable Zn-air batteries: Recent progress and future perspectives. Energy Storage Mater. 2019, 21, 253-286.
[4]
C. Y. Zhu,; Y. Y. Ma,; W. J. Zang,; C. Guan,; X. M. Liu,; S. J. Pennycook,; J. Wang,; W. Huang, Conformal dispersed cobalt nanoparticles in hollow carbon nanotube arrays for flexible Zn-air and Al-air batteries. Chem. Eng. J. 2019, 369, 988-995.
[5]
Y. Q. Fu,; Q. L. Wei,; G. X. Zhang,; X. M. Wang,; J. H. Zhang,; Y. F. Hu,; D. N. Wang,; L. Zuin,; T. Zhou,; Y. C. Wu, et al. High- performance reversible aqueous Zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon. Adv. Energy Mater. 2018, 8, 1801445.
[6]
S. H. Liu,; Z. Y. Wang,; S. Zhou,; F. J. Yu,; M. Z. Yu,; C. Y. Chiang,; W. Z. Zhou,; J. J. Zhao,; J. S. Qiu, Metal-organic-framework-derived hybrid carbon nanocages as a bifunctional electrocatalyst for oxygen reduction and evolution. Adv Mater. 2017, 29, 1700874.
[7]
H. H. Jin,; H. Zhou,; P. X. Ji,; C. T. Zhang,; J. H. Luo,; W. H. Zeng,; C. X. Hu,; D. P. He,; S. C. Mu, ZIF-8/LiFePO4 derived Fe-N-P Co-doped carbon nanotube encapsulated Fe2P nanoparticles for efficient oxygen reduction and Zn-air batteries. Nano Res. 2020, 13, 818-823.
[8]
J. Zhang,; Q. A. Huang,; J. Wang,; J. Wang,; J. J. Zhang,; Y. F. Zhao, Supported dual-atom catalysts: Preparation, characterization, and potential applications. Chin. J. Catal. 2020, 41, 783-798.
[9]
H. Cheng,; M. L. Li,; C. Y. Su,; N. Li,; Z. Q. Liu, Cu-Co bimetallic oxide quantum dot decorated nitrogen-doped carbon nanotubes: A high-efficiency bifunctional oxygen electrode for Zn-air batteries. Adv. Func. Mater. 2017, 27, 1701833.
[10]
L. Wang,; Y. Q. Wang,; M. G. Wu,; Z. X. Wei,; C. Y. Cui,; M. L. Mao,; J. T. Zhang,; X. P. Han,; Q. H. Liu,; J. M. Ma, Nitrogen, fluorine, and boron ternary doped carbon fibers as cathode electrocatalysts for zinc-air batteries. Small 2018, 14, 1800737.
[11]
Y. S. Xu,; L. P. Zhu,; X. X. Cui,; M. Y. Zhao,; Y. L. Li,; L. L. Chen,; W. C. Jiang,; T. Jiang,; S. G. Yang,; Y. Wang, Graphitizing N-doped mesoporous carbon nanospheres via facile single atom iron growth for highly efficient oxygen reduction reaction. Nano Res. 2020, 13, 752-758.
[12]
F. T. Kong,; Y. Qiao,; C. Q. Zhang,; X. H. Fan,; A. G. Kong,; Y. K. Shan, Unadulterated carbon as robust multifunctional electrocatalyst for overall water splitting and oxygen transformation. Nano Res. 2020, 13, 401-411.
[13]
H. L. Peng,; F. F. Liu,; X. J. Liu,; S. J. Liao,; C. H. You,; X. L. Tian,; H. X. Nan,; F. Luo,; H. Y. Song,; Z. Y. Fu, et al. Effect of transition metals on the structure and performance of the doped carbon catalysts derived from polyaniline and melamine for ORR application. ACS Catal. 2014, 4, 3797-3805.
[14]
Z. Wang, High-efficiency bifunctional oxygen electrocatalysis. Adv. Funct. Mater 2019, 29, 1902875.
[15]
Q. L. Wei,; G. X. Zhang,; X. H. Yang,; Y. Q. Fu,; G. H. Yang,; N. Chen,; W. F. Chen,; S. H. Sun, Litchi-like porous Fe/N/C spheres with atomically dispersed FeNx promoted by sulfur as highly efficient oxygen electrocatalysts for Zn-air batteries. J. Mater. Chem. A 2018, 6, 4605-4610.
[16]
Y. J. Wang,; H. B. Fan,; A. Ignaszak,; L. Zhang,; S. Q. Shao,; D. P. Wilkinson,; J. J. Zhang, Compositing doped-carbon with metals, non-metals, metal oxides, metal nitrides and other materials to form bifunctional electrocatalysts to enhance metal-air battery oxygen reduction and evolution reactions. Chem. Eng. J. 2018, 348, 416-437.
[17]
T. T. Sun,; L. B. Xu,; D. S. Wang,; Y. D. Li, Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067-2080.
[18]
C. Tang,; B. Wang,; H. F. Wang,; Q. Zhang, Defect engineering toward atomic Co-Nx-C in hierarchical graphene for rechargeable flexible solid Zn-air batteries. Adv. Mater. 2017, 29, 1703185.
[19]
H. F. Wang,; C. Tang,; Q. Zhang, A review of precious-metal-free bifunctional oxygen electrocatalysts: Rational design and applications in Zn-air batteries. Adv. Funct. Mater 2018, 28, 1803329.
[20]
D. X. Liu,; B. Wang,; H. G. Li,; S. F. Huang,; M. M. Liu,; J. Wang,; Q. J. Wang,; J. J. Zhang,; Y. F. Zhao, Distinguished Zn, Co-Nx-C-Sy active sites confined in dentric carbon for highly efficient oxygen reduction reaction and flexible Zn-air batteries. Nano Energy 2019, 58, 277-283.
[21]
Z. Y. Lu,; B. Wang,; Y. F. Hu,; W. Liu,; Y. F. Zhao,; R. O Yang,; Z. P. Li,; J. Luo,; B. Chi,; Z. Jiang, et al. An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction. Angew. Chem., Int. Ed. 2019, 58, 2622-2626.
[22]
S. Li,; C. Cheng,; X. J. Zhao,; J. Schmidt,; A. Thomas, Active salt/silica-templated 2D mesoporous FeCo-Nx-carbon as bifunctional oxygen electrodes for zinc-air batteries. Angew. Chem., Int. Ed. 2018, 57, 1856-1862.
[23]
Y. Fu,; H. Y. Yu,; C. Jiang,; T. H. Zhang,; R. Zhan,; X. W. Li,; J. F. Li,; J. H. Tian,; R. Yang, NiCo alloy nanoparticles decorated on N-doped carbon nanofibers as highly active and durable oxygen electrocatalyst. Adv. Funct. Mater. 2018, 28, 1705094.
[24]
W. J. Wan,; X. J. Liu,; H. Y. Li,; X. Y. Peng,; D. S. Xi,; J. Luo, 3D carbon framework-supported CoNi nanoparticles as bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Appl. Catal. B Environ. 2019, 240, 193-200.
[25]
K. L. Wu,; X. Chen,; S. J. Liu,; Y. Pan,; W. C. Cheong,; W. Zhu,; X. Cao,; R. G. Shen,; W. X. Chen,; J. Luo, et al. Porphyrin-like Fe-N4 sites with sulfur adjustment on hierarchical porous carbon for different rate-determining steps in oxygen reduction reaction. Nano Res. 2018, 11, 6260-6269.
[26]
Y. Y. Wang,; A. Kumar,; M. Ma,; Y. Jia,; Y. Wang,; Y. Zhang,; G. X. Zhang,; X. M. Sun,; Z. F. Yan, Hierarchical peony-like FeCo-NC with conductive network and highly active sites as efficient electrocatalyst for rechargeable Zn-air battery. Nano Res. 2020, 13, 1090-1099.
[27]
Y. L. Sun,; J. Wang,; Q. Liu,; M. R. Xia,; Y. F. Tang,; F. M. Gao,; Y. L. Hou,; J. Tse,; Y. F. Zhao, Itinerant ferromagnetic half metallic cobalt-iron couples: Promising bifunctional electrocatalysts for ORR and OER. J. Mater. Chem. A 2019, 7, 27175-27185.
[28]
X. W. Zhong,; W. D. Yi,; Y. J. Qu,; L. Z. Zhang,; H. Y. Bai,; Y. M. Zhu,; J. Wan,; S. Chen,; M. Yang,; L. Huang, et al. Co single-atom anchored on Co3O4 and nitrogen-doped active carbon toward bifunctional catalyst for zinc-air batteries. Appl. Catal. B Environ. 2020, 260, 118188.
[29]
L. Tao,; C. Y. Lin,; S. Dou,; S. Feng,; D. W. Chen,; D. D. Liu,; J. Huo,; Z. H. Xia,; S. Y. Wang, Creating coordinatively unsaturated metal sites in metal-organic-frameworks as efficient electrocatalysts for the oxygen evolution reaction: Insights into the active centers. Nano Energy 2017, 41, 417-425.
[30]
Z. Q. Liu,; H. Cheng,; N. Li,; T. Y. Ma,; Y. Z. Su, ZnCo2O4 quantum dots anchored on nitrogen-doped carbon nanotubes as reversible oxygen reduction/evolution electrocatalysts. Adv. Mater. 2016, 28, 3777-3784.
[31]
N. Y. Cheng,; L. Ren,; X. Xu,; Y. Du,; S. X. Dou, Recent development of zeolitic imidazolate frameworks (ZIFs) derived porous carbon based materials as electrocatalysts. Adv. Energy Mater. 2018, 8, 1801257.
[32]
Y. L. Li,; B. M. Jia,; Y. Z. Fan,; K. L. Zhu,; G. Q. Li,; C. Y. Su, Bimetallic zeolitic imidazolite framework derived carbon nanotubes embedded with Co nanoparticles for efficient bifunctional oxygen electrocatalyst. Adv. Energy Mater. 2018, 8, 1702048.
[33]
S. Sultan,; J. N. Tiwari,; J. H. Jang,; A. M. Harzandi,; F. Salehnia,; S. J. Yoo,; K. S. Kim, Highly efficient oxygen reduction reaction activity of graphitic tube encapsulating nitrided CoxFey alloy. Adv. Energy Mater. 2018, 8, 1801002.
[34]
L. Shang,; H. J. Yu,; X. Huang,; T. Bian,; R. Shi,; Y. F. Zhao,; G. I. N. Waterhouse,; L. Z. Wu,; C. H. Tung,; T. R. Zhang, Well- dispersed ZIF-derived Co, N-Co-doped carbon nanoframes through mesoporous-silica-protected calcination as efficient oxygen reduction electrocatalysts. Adv. Mater. 2016, 28, 1668-1674.
[35]
W. Xia,; R. Q. Zou,; L. An,; D. G. Xia,; S. J. Guo, A metal-organic framework route to in situ encapsulation of Co@Co3O4@C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction. Energy Environ. Sci. 2015, 8, 568-576.
[36]
C. H. Wang,; J. Kim,; J. Tang,; M. Kim,; H. Lim,; V. Malgras,; J. You,; Q. Xu,; J. S. Li,; Y. Yamauchi, New strategies for novel MOF- derived carbon materials based on nanoarchitectures. Chem 2020, 6, 19-40.
[37]
H. Zhou,; D. P. He,; A. I. Saana,; J. L. Yang,; Z. Wang,; J. Zhang,; Q. R. Liang,; S. Yuan,; J. W. Zhu,; S. C. Mu, Mesoporous-silica induced doped carbon nanotube growth from metal-organic frameworks. Nanoscale 2018, 10, 6147-6154.
[38]
Y. J. Sa,; D. J. Seo,; J. Woo,; J. T. Lim,; J. Y. Cheon,; S. Y. Yang,; J. M. Lee,; D. Kang,; T. J. Shin,; H. S. Shin, et al. A general approach to preferential formation of active Fe-Nx sites in Fe-N/C electrocatalysts for efficient oxygen reduction reaction. J. Am. Chem. Soc. 2016, 138, 15046-15056.
[39]
B. C. Hu,; Z. Y. Wu,; S. Q. Chu,; H. W. Zhu,; H. W. Liang,; J. Zhang,; S. H. Yu, SiO2-protected shell mediated templating synthesis of Fe-N-doped carbon nanofibers and their enhanced oxygen reduction reaction performance. Energy Environ. Sci. 2018, 11, 2208-2215.
[40]
C. B. Gao,; Q. Zhang,; Z. D. Lu,; Y. D. Yin, Templated synthesis of metal nanorods in silica nanotubes. J. Am. Chem. Soc. 2011, 133, 19706-19709.
[41]
C. Liu,; X. D., Wang, J, Huang,; H. Song,; Y. N. Yang,; Y. Liu,; J. S. Li,; L. J. Wang,; C. Z. Yu, Hollow mesoporous carbon nanocubes: Rigid-interface-induced outward contraction of metal-organic frameworks. Adv. Funct. Mater. 2017, 28, 1705253.
[42]
C. Tang,; H. F. Wang,; X. Chen,; B. Q. Li,; T. Z. Hou,; B. S. Zhang,; Q. Zhang,; M. M. Titirici,; F. Wei, Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Adv. Mater. 2016, 28, 6845-6851.
[43]
Y. Ito,; W. T. Cong,; T. Fujita,; Z. Tang,; M. W. Chen, High catalytic activity of nitrogen and sulfur co-doped nanoporous graphene in the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2015, 54, 2131-2136.
[44]
L. L. Chen,; Y. L. Zhang,; X. J. Liu,; L. Long,; S. Y. Wang,; X. L. Xu,; M. C. Liu,; W. X. Yang,; J. B. Jia, Bifunctional oxygen electrodes of homogeneous Co4N nanocrystals@N-doped carbon hybrids for rechargeable Zn-air batteries. Carbon 2019, 151, 10-17.
[45]
C. Y. Su,; H. Cheng,; W. Li,; Z. Q. Liu,; N. Li,; Z. F. Hou,; F. Q. Bai,; H. X. Zhang,; T. Y. Ma, Atomic modulation of FeCo-nitrogen- carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc-air battery. Adv. Energy Mater. 2017, 7, 1602420.
[46]
W. G. Fang,; H. B. Hu,; T. T. Jiang,; G. Li,; M. Z. Wu, N- and S-doped porous carbon decorated with in-situ synthesized Co-Ni bimetallic sulfides particles: A cathode catalyst of rechargeable Zn-air batteries. Carbon 2019, 146, 476-485.
[47]
H. Ali-Löytty,; M. W. Louie,; M. R. Singh,; L. Li,; H. G. S. Casalongue,; H. Ogasawara,; E. J. Crumlin,; Z. Liu,; A. T. Bell,; A. Nilsson, et al. Ambient-pressure XPS study of a Ni-Fe electrocatalyst for the oxygen evolution reaction. J. Phys. Chem. C 2016, 120, 2247-2253.
[48]
W. T. Wu,; Q. G. Zhang,; X. K. Wang,; C. C. Han,; X. D. Shao,; Y. X. Wang,; J. L. Liu,; Z. T. Li,; X. Q. Lu,; M. B. Wu, Enhancing selective photooxidation through Co-Nx-doped carbon materials as singlet oxygen photosensitizers. ACS Catal. 2017, 7, 7267-7273.
[49]
E. G. Luo,; H. Zhang,; X. Wang,; L. Q. Gao,; L. Y. Gong,; T. Zhao,; Z. Jin,; J. J. Ge,; Z. Jiang,; C. P. Liu, et al. Single-atom Cr-N4 sites designed for durable oxygen reduction catalysis in acid media. Angew. Chem., Int. Ed. 2019, 58, 12469-12475.
[50]
K. M. Liao,; P. Mao,; N. Li,; M. Han,; J. Yi,; P. He,; Y. Sun,; H. S. Zhou, Stabilization of polysulfides via lithium bonds for Li-S batteries. J. Mater. Chem. A 2016, 4, 5406-5409.
[51]
Q. Lu,; J. Yu,; X. H. Zou,; K. M. Liao,; P. Tan,; W. Zhou,; M. Ni,; Z. P. Shao, Self-catalyzed growth of Co, N-codoped CNTs on carbon- encased CoSx surface: A noble-metal-free bifunctional oxygen electrocatalyst for flexible solid Zn-air batteries. Adv. Funct. Mater. 2019, 29, 1904481.
[52]
D. H. Guo,; R. Shibuya,; C. Akiba,; S. Saji,; T. Kondo,; J. Nakamura, Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361-365.
[53]
M. Zhou,; H. L. Wang,; S. J. Guo, Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials. Chem. Soc. Rev. 2016, 45, 1273-1307.
[54]
S. G. Wang,; J. W. Qin,; T. Meng,; M. H. Cao, Metal-organic framework-induced construction of actiniae-like carbon nanotube assembly as advanced multifunctional electrocatalysts for overall water splitting and Zn-air batteries. Nano Energy 2017, 39, 626-638.
[55]
R. F. Zhou,; Y. Zheng,; M. Jaroniec,; S. Z. Qiao, Determination of the electron transfer number for the oxygen reduction reaction: From theory to experiment. ACS Catal. 2016, 6, 4720-4728.
[56]
J. Wang,; H. L. Xin,; J. Zhu,; S. F. Liu,; Z. X. Wu,; D. L. Wang, 3D hollow structured Co2FeO4/MWCNT as an efficient non-precious metal electrocatalyst for oxygen reduction reaction. J. Mater. Chem. A 2015, 3, 1601-1608.
[57]
J. Suntivich,; H. A. Gasteiger,; N. Yabuuchi,; H. Nakanishi,; J. B. Goodenough,; Y. Shao-Horn, Design principles for oxygen- reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 2011, 3, 546-550.
[58]
T. Ling,; D. Y. Yan,; Y. Jiao,; H. Wang,; Y. Zheng,; X. L. Zheng,; J. Mao,; X. W. Du,; Z. P. Hu,; M. Jaroniec,; S. Z. Qiao, Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis. Nat. Commun. 2016, 7, 12876.
[59]
X. R. Wang,; J. Y. Liu,; Z. W. Liu,; W. C. Wang,; J. Luo,; X. P. Han,; X. W. Du,; S. Z. Qiao,; J. Yang, Identifying the key role of pyridinic-N-Co bonding in synergistic electrocatalysis for reversible ORR/OER. Adv. Mater. 2018, 30, 1800005.
[60]
X. C. Chen,; Z. Zhou,; H. E. Karahan,; Q. Shao,; L. Wei,; Y. Chen, Recent advances in materials and design of electrochemically rechargeable zinc-air batteries. Small 2018, 14, 1801929.
[61]
D. Yang,; H. T. Tan,; X. H. Rui,; Y. Yu, Electrode materials for rechargeable zinc-ion and zinc-air batteries: Current status and future perspectives. Electrochem. Energy Rev. 2019, 2, 395-427.
Nano Research
Pages 868-878
Cite this article:
Lei Z, Tan Y, Zhang Z, et al. Defects enriched hollow porous Co-N-doped carbons embedded with ultrafine CoFe/Co nanoparticles as bifunctional oxygen electrocatalyst for rechargeable flexible solid zinc-air batteries. Nano Research, 2021, 14(3): 868-878. https://doi.org/10.1007/s12274-020-3127-8
Topics:

1291

Views

124

Crossref

0

Web of Science

128

Scopus

16

CSCD

Altmetrics

Received: 17 June 2020
Revised: 10 September 2020
Accepted: 16 September 2020
Published: 01 March 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return