AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Emerging low-dimensional materials for mid-infrared detection

Jiangbin Wu1( )Nan Wang2Xiaodong Yan1Han Wang1,2( )
Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
Mork Family Department of Chemical Engineering and Material Science, University of Southern California, Los Angeles, CA 90089, USA
Show Author Information

Graphical Abstract

Abstract

Mid-infrared (IR) detectors based on the emerging low-dimensional (two-dimensional and quasi one-dimensional) materials offer unique characteristics including large bandgap tunability, optical polarization sensitivity and integrability with typical silicon process, which are not available in the mid-IR detectors based on traditional compound semiconductors. Here, we review the recent progress in study of mid-IR detectors based on the low-dimensional materials, including black phosphorus, black arsenic phosphorus, tellurene and BaTiS3, from the perspectives of crystal structure, material synthesis, optical properties, and the detector characteristics. The detector gain and detectivity are benchmarked, and the unique properties, such as the polarization sensitivity, are discussed. We also provide our perspective about key future research directions in this field.

References

[1]
A. Rogalski, Infrared Detectors; CRC Press: Boca Raton, FL, USA, 2010.
[2]
R. Soref, Mid-infrared photonics in silicon and germanium. Nat. Photonics 2010, 4, 495-497.
[3]
Y. J. Kaufman,; L. A. Remer, Detection of forests using mid-IR reflectance: An application for aerosol studies. IEEE Trans. Geosci. Remote Sens. 1994, 32, 672-683.
[4]
R. W. Waynant,; I. K. Ilev,; I. Gannot, Mid-infrared laser applications in medicine and biology. Philos. Trans. Roy. Soc. London. Ser. A: Math., Phys. Eng. Sci. 2001, 359, 635-644.
[5]
M. W. Todd,; R. A. Provencal,; T. G. Owano,; B. A. Paldus,; A. Kachanov,; K. L. Vodopyanov,; M. Hunter,; S. L. Coy,; J. I. Steinfeld,; J. T. Arnold, Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6-8 μm) optical parametric oscillator. Appl. Phys. B 2002, 75, 367-376.
[6]
D. M. Sonnenfroh,; W. T. Rawlins,; M. G. Allen,; C. Gmachl,; F. Capasso,; A. L. Hutchinson,; D. L. Sivco,; J. N. Baillargeon,; A. Y. Cho, Application of balanced detection to absorption measurements of trace gases with room-temperature, quasi-cw quantum-cascade lasers. Appl. Opt. 2001, 40, 812-820.
[7]
B. B. Weng,; J. J. Qiu,; L. H. Zhao,; Z. J. Yuan,; C. Chang,; Z. S. Shi, Recent development on the uncooled mid-infrared PbSe detectors with high detectivity. In Proceedings of Quantum Sensing and Nanophotonic Devices XI, San Francisco, California, USA, 2014, p 899311.
[8]
M. Kopytko,; A. Kębłowski,; W. Gawron,; P. M. Martyniuk,; P. Madejczyk,; K. Jóźwikowski,; A. Kowalewski,; O. K. Markowska,; A. Rogalski, MOCVD grown HgCdTe barrier detectors for MWIR high-operating temperature operation. Opt. Eng. 2015, 54, 105105.
[9]
B. Matveev,; M. Aidaraliev,; G. Gavrilov,; N. Zotova,; S. Karandashov,; G. Sotnikova,; N. Stus’,; G. Talalakin,; N. Il’inskaya,; S. Aleksandrov, Room temperature InAs photodiode-InGaAs LED pairs for methane detection in the mid-IR. Sens. Actuators B: Chem. 1998, 51, 233-237.
[10]
F. Szmulowicz,; H. J. Haugan,; G. J. Brown,; K. Mahalingam,; B. Ullrich,; S. R. Munshi,; L. Grazulis, Interfaces as design tools for short-period InAs/GaSb type-II superlattices for mid-infrared detectors. Opto-Electron. Rev. 2006, 14, 69-75.
[11]
A. D. Stiff-Roberts, Quantum-dot infrared photodetectors: A review. J. Nanophotonics 2009, 3, 031607.
[12]
Y. J. Zhong,; S. D. Malagari,; T. Hamilton,; D. M. Wasserman, Review of mid-infrared plasmonic materials. J. Nanophotonics 2015, 9, 093791.
[13]
J. M. Fedeli,; S. Nicoletti, Mid-infrared (mid-IR) silicon-based photonics. Proc. IEEE 2018, 106, 2302-2312.
[14]
J. B. Wu,; H. Y. Chen,; N. Yang,; J. Cao,; X. D. Yan,; F. X. Liu,; Q. B. Sun,; X. Ling,; J. Guo,; H. Wang, High tunnelling electroresistance in a ferroelectric van der Waals heterojunction via giant barrier height modulation. Nat. Electron. 2020, 3, 466-472.
[15]
F. N. Xia,; H. Wang,; D. Xiao,; M. Dubey,; A. Ramasubramaniam, Two-dimensional material nanophotonics. Nat. Photonics 2014, 8, 899-907.
[16]
Q. S. Guo,; A. Pospischil,; M. Bhuiyan,; H. Jiang,; H. Tian,; D. Farmer,; B. C. Deng,; C. Li,; S. J. Han,; H. Wang, et al. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 2016, 16, 4648-4655.
[17]
S. F. Yuan,; C. F. Shen,; B. C. Deng,; X. L. Chen,; Q. S. Guo,; Y. Q. Ma,; A. Abbas,; B. L. Liu,; R. Haiges,; C. Ott, et al. Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures. Nano Lett. 2018, 18, 3172-3179.
[18]
C. F. Shen,; Y. H. Liu,; J. B. Wu,; C. Xu,; D. Z. Cui,; Z. Li,; Q. Z. Liu,; Y. R. Li,; Y. X. Wang,; X. Cao, et al. Tellurene photodetector with high gain and wide bandwidth. ACS Nano 2020, 14, 303-310.
[19]
F. N. Xia,; H. Wang,; J. C. M. Hwang,; A. H. C. Neto,; L. Yang, Black phosphorus and its isoelectronic materials. Nat. Rev. Phys. 2019, 1, 306-317.
[20]
H. G. Yan,; T. Low,; W. J. Zhu,; Y. Q. Wu,; M. Freitag,; X. S. Li,; F. Guinea,; P. Avouris,; F. N. Xia, Damping pathways of mid- infrared plasmons in graphene nanostructures. Nat. Photonics 2013, 7, 394-399.
[21]
X. L. Chen,; X. B. Lu,; B. C. Deng,; O. Sinai,; Y. C. Shao,; C. Li,; S. F. Yuan,; V. Tran,; K. Watanabe,; T. Taniguchi, et al. Widely tunable black phosphorus mid-infrared photodetector. Nat. Commun. 2017, 8, 1672.
[22]
M. Amani,; E. Regan,; J. Bullock,; G. H. Ahn,; A. Javey, Mid-wave infrared photoconductors based on black phosphorus-arsenic alloys. ACS Nano 2017, 11, 11724-11731.
[23]
M. S. Long,; Y. Wang,; P. Wang,; X. H. Zhou,; H. Xia,; C. Luo,; S. Y. Huang,; G. W. Zhang,; H. G. Yan,; Z. Y. Fan, et al. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability. ACS Nano 2019, 13, 2511-2519.
[24]
J. Bullock,; M. Amani,; J. Cho,; Y. Z. Chen,; G. H. Ahn,; V. Adinolfi,; V. R. Shrestha,; Y. Gao,; K. B. Crozier,; Y. L. Chueh, et al. Polarization-resolved black phosphorus/molybdenum disulfide mid- wave infrared photodiodes with high detectivity at room temperature. Nat. Photonics 2018, 12, 601-607.
[25]
M. S. Long,; A. Y. Gao,; P. Wang,; H. Xia,; C. Ott,; C. Pan,; Y. J. Fu,; E. F. Liu,; X. S. Chen,; W. Lu, et al. Room temperature high- detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 2017, 3, e1700589.
[26]
D. Spirito,; D. Coquillat,; S. L. De Bonis,; A. Lombardo,; M. Bruna,; A. C. Ferrari,; V. Pellegrini,; A. Tredicucci,; W. Knap,; M. S. Vitiello, High performance bilayer-graphene terahertz detectors. Appl. Phys. Lett. 2014, 104, 061111.
[27]
L. Vicarelli,; M. S. Vitiello,; D. Coquillat,; A. Lombardo,; A. C. Ferrari,; W. Knap,; M. Polini,; V. Pellegrini,; A. Tredicucci, Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 2012, 11, 865-871.
[28]
Y. Yao,; R. Shankar,; P. Rauter,; Y. Song,; J. Kong,; M. Loncar,; F. Capasso, High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection. Nano Lett. 2014, 14, 3749-3754.
[29]
X. M. Wang,; Z. Z. Cheng,; K. Xu,; H. K. Tsang,; J. B. Xu, High- responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat. Photonics 2013, 7, 888-891.
[30]
F. N. Xia,; T. Mueller,; Y. M. Lin,; A. Valdes-Garcia,; P. Avouris, Ultrafast graphene photodetector. Nat. Nanotechnol. 2009, 4, 839-843.
[31]
T. Mueller,; F. N. Xia,; P. Avouris, Graphene photodetectors for high-speed optical communications. Nat. Photonics 2010, 4, 297-301.
[32]
X. L. Li,; W. P. Han,; J. B. Wu,; X. F. Qiao,; J. Zhang,; P. H. Tan, Layer-number dependent optical properties of 2D materials and their application for thickness determination. Adv. Funct. Mater. 2017, 27, 1604468.
[33]
J. B. Wu,; Z. X. Hu,; X. Zhang,; W. P. Han,; Y. Lu,; W. Shi,; X. F. Qiao,; M. Ijiäs,; S. Milana,; W. Ji, et al. Interface coupling in twisted multilayer graphene by resonant Raman spectroscopy of layer breathing modes. ACS Nano 2015, 9, 7440-7449.
[34]
J. B. Wu,; M. L. Lin,; X. Cong,; H. N. Liu,; P. H. Tan, Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 2018, 47, 1822-1873.
[35]
J. B. Wu,; X. Zhang,; M. Ijäs,; W. P. Han,; X. F. Qiao,; X. L. Li,; D. S. Jiang,; A. C. Ferrari,; P. H. Tan, Resonant Raman spectroscopy of twisted multilayer graphene. Nat. Commun. 2014, 5, 5309.
[36]
Q. S. Guo,; R. W. Yu,; C. Li,; S. F. Yuan,; B. C. Deng,; F. J. G. De Abajo,; F. N. Xia, Efficient electrical detection of mid-infrared graphene plasmons at room temperature. Nat. Mater. 2018, 17, 986-992.
[37]
F. N. Xia,; H. Wang,; Y. C. Jia, Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.
[38]
X. Ling,; H. Wang,; S. X. Huang,; F. N. Xia,; M. S. Dresselhaus, The renaissance of black phosphorus. Proc. Natl. Acad. Sci. USA 2015, 112, 4523-4530.
[39]
Y. Abate,; D. Akinwande,; S. Gamage,; H. Wang,; M. Snure,; N. Poudel,; S. B. Cronin, Recent progress on stability and passivation of black phosphorus. Adv. Mater. 2018, 30, 1704749.
[40]
B. L. Liu,; M. Köpf,; A. N. Abbas,; X. M. Wang,; Q. S. Guo,; Y. C. Jia,; F. N. Xia,; R. Weihrich,; F. Bachhuber,; F. Pielnhofer, et al. Black arsenic-phosphorus: Layered anisotropic infrared semiconductors with highly tunable compositions and properties. Adv. Mater. 2015, 27, 4423-4429.
[41]
O. Osters,; T. Nilges,; F. Bachhuber,; F. Pielnhofer,; R. Weihrich,; M. Schöneich,; P. Schmidt, Synthesis and identification of metastable compounds: Black arsenic—Science or fiction? Angew. Chem., Int. Ed. 2012, 51, 2994-2997.
[42]
M. Pumera,; Z. Sofer, 2D monoelemental arsenene, antimonene, and bismuthene: Beyond black phosphorus. Adv. Mater. 2017, 29, 1605299.
[43]
Y. X. Wang,; G. Qiu,; R. X. Wang,; S. Y. Huang,; Q. X. Wang,; Y. Y. Liu,; Y. C. Du,; W. A. Goddard III,; M. J. Kim,; X. F. Xu, et al. Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 2018, 1, 228-236.
[44]
W. Z. Wu,; G. Qiu,; Y. X. Wang,; R. X. Wang,; P. D. Ye, Tellurene: Its physical properties, scalable nanomanufacturing, and device applications. Chem. Soc. Rev. 2018, 47, 7203-7212.
[45]
L. D. Xian,; A. P. Paz,; E. Bianco,; P. M. Ajayan,; A. Rubio, Square selenene and tellurene: Novel group VI elemental 2D materials with nontrivial topological properties. 2D Mater. 2017, 4, 041003.
[46]
S. Y. Niu,; G. Joe,; H. Zhao,; Y. C. Zhou,; T. Orvis,; H. X. Huyan,; J. Salman,; K. Mahalingam,; B. Urwin,; J. B. Wu, et al. Giant optical anisotropy in a quasi-one-dimensional crystal. Nat. Photonics 2018, 12, 392-396.
[47]
S. Y. Niu,; H. Zhao,; Y. C. Zhou,; H. X. Huyan,; B. Y. Zhao,; J. B. Wu,; S. B. Cronin,; H. Wang,; J. Ravichandran, Mid-wave and long-wave infrared linear dichroism in a hexagonal perovskite chalcogenide. Chem. Mater. 2018, 30, 4897-4901.
[48]
J. B. Wu,; X. Cong,; S. Y. Niu,; F. X. Liu,; H. Zhao,; Z. H. Du,; J. Ravichandran,; P. H. Tan,; H. Wang, Linear dichroism conversion in quasi-1D perovskite chalcogenide. Adv. Mater. 2019, 31, 1902118.
[49]
X. S. Li,; B. C. Deng,; X. M. Wang,; S. Z. Chen,; M. Vaisman,; S. I. Karato,; G. Pan,; M. L. Lee,; J. Cha,; H. Wang, et al. Synthesis of thin-film black phosphorus on a flexible substrate. 2D Mater. 2015, 2, 031002.
[50]
C. Li,; Y. Wu,; B. C. Deng,; Y. J. Xie,; Q. S. Guo,; S. F. Yuan,; X. L. Chen,; M. Bhuiyan,; Z. S. Wu,; K. Watanabe, et al. Synthesis of crystalline black phosphorus thin film on sapphire. Adv. Mater. 2018, 30, 1703748.
[51]
E. P. Young,; J. Park,; T. Y. Bai,; C. Choi,; R. H. DeBlock,; M. Lange,; S. Poust,; J. Tice,; C. Cheung,; B. S. Dunn, et al. Wafer-scale black arsenic-phosphorus thin-film synthesis validated with density functional perturbation theory predictions. ACS Appl. Nano Mater. 2018, 1, 4737-4745.
[52]
Y. B. Chen,; C. Y. Chen,; R. Kealhofer,; H. L. Liu,; Z. Q. Yuan,; L. L. Jiang,; J. Suh,; J. Park,; C. Ko,; H. S. Choe, et al. Black arsenic: A layered semiconductor with extreme in-plane anisotropy. Adv. Mater. 2018, 30, 1800754.
[53]
J. S. Qiao,; X. H. Kong,; Z. X. Hu,; F. Yang,; W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.
[54]
X. M. Wang,; A. M. Jones,; K. L. Seyler,; V. Tran,; Y. C. Jia,; H. Zhao,; H. Wang,; L. Yang,; X. D. Xu,; F. N. Xia, Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 2015, 10, 517-521.
[55]
V. Tran,; R. Soklaski,; Y. F. Liang,; L. Yang, Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 2014, 89, 235319.
[56]
J. Kim,; S. S. Baik,; S. H. Ryu,; Y. Sohn,; S. Park,; B. G. Park,; J. Denlinger,; Y. Yi,; H. J. Choi,; K. S. Kim, Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science 2015, 349, 723-726.
[57]
Z. Luo,; J. Maassen,; Y. X. Deng,; Y. C. Du,; R. P. Garrelts,; M. S. Lundstrom,; P. D. Ye,; X. F. Xu, Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun. 2015, 6, 8572.
[58]
H. Tian,; Q. S. Guo,; Y. J. Xie,; H. Zhao,; C. Li,; J. J. Cha,; F. N. Xia,; H. Wang, Anisotropic black phosphorus synaptic device for neuromorphic applications. Adv. Mater. 2016, 28, 4991-4997.
[59]
X. Ling,; S. X. Huang,; E. H. Hasdeo,; L. B. Liang,; W. M. Parkin,; Y. Tatsumi,; A. R. T. Nugraha,; A. A. Puretzky,; P. M. Das,; B. G. Sumpter, et al. Anisotropic electron-photon and electron-phonon interactions in black phosphorus. Nano Lett. 2016, 16, 2260-2267.
[60]
S. Jung,; J. H. Park,; H. Choi,; B. Lee, Wide-viewing integral three- dimensional imaging by use of orthogonal polarization switching. Appl. Opt. 2003, 42, 2513-2520.
[61]
T. Nomura,; B. Javidi,; S. Murata,; E. Nitanai,; T. Numata, Polarization imaging of a 3D object by use of on-axis phase-shifting digital holography. Opt. Lett. 2007, 32, 481-483.
[62]
Y. W. Zhou,; Z. F. Li,; J. Zhou,; N. Li,; X. H. Zhou,; P. P. Chen,; Y. L. Zheng,; X. S. Chen,; W. Lu, High extinction ratio super pixel for long wavelength infrared polarization imaging detection based on plasmonic microcavity quantum well infrared photodetectors. Sci. Rep. 2018, 8, 15070.
[63]
Q. Li,; Z. F. Li,; N. Li,; X. S. Chen,; P. P. Chen,; X. C. Shen,; W. Lu, High-polarization-discriminating infrared detection using a single quantum well sandwiched in plasmonic micro-cavity. Sci. Rep. 2014, 4, 6332.
[64]
B. C. Deng,; V. Tran,; Y. J. Xie,; H. Jiang,; C. Li,; Q. S. Guo,; X. M. Wang,; H. Tian,; S. J. Koester,; H. Wang, et al. Efficient electrical control of thin-film black phosphorus bandgap. Nat. Commun. 2017, 8, 14474.
[65]
E. van Veen,; A. Nemilentsau,; A. Kumar,; R. Roldán,; M. I. Katsnelson,; T. Low,; S. J. Yuan, Tuning two-dimensional hyperbolic plasmons in black phosphorus. Phys. Rev. Appl. 2019, 12, 014011.
[66]
T. Wang,; Y. Liu,; Q. Guo,; B. Zhang,; K. Sheng,; C. Li,; Y. Yin, Tunable bandgap of monolayer black phosphorus by using vertical electric field: A DFT study. J. Korean Phys. Soc. 2015, 66, 1031-1034.
[67]
X. L. Chen,; Z. S. Zhou,; B. C. Deng,; Z. F. Wu,; F. N. Xia,; Y. Cao,; L. Zhang,; W. Huang,; N. Wang,; L. Wang, Electrically tunable physical properties of two-dimensional materials. Nano Today 2019, 27, 99-119.
[68]
C. Chen,; X. B. Lu,; B. C. Deng,; X. L. Chen,; Q. S. Guo,; C. Li,; C. Ma,; S. F. Yuan,; E. Sung,; K. Watanabe, et al. Widely tunable mid-infrared light emission in thin-film black phosphorus. Sci. Adv. 2020, 6, eaay6134.
[69]
C. Chen,; F. Chen,; X. L. Chen,; B. C. Deng,; B. Eng,; D. Jung,; Q. S. Guo,; S. F. Yuan,; K. Watanabe,; T. Taniguchi, et al. Bright mid-infrared photoluminescence from thin-film black phosphorus. Nano Lett. 2019, 19, 1488-1493.
[70]
V. Eswaraiah,; Q. S. Zeng,; Y. Long,; Z. Liu, Black phosphorus nanosheets: Synthesis, characterization and applications. Small 2016, 12, 3480-3502.
[71]
A. Morita, Semiconducting black phosphorus. Appl. Phys. A 1986, 39, 227-242.
[72]
J. Wittig,; B. T. Matthias, Superconducting phosphorus. Science 1968, 160, 994-995.
[73]
Y. Maruyama,; S. Suzuki,; K. Kobayashi,; S. Tanuma, Synthesis and some properties of black phosphorus single crystals. Phys. B+C 1981, 105, 99-102.
[74]
L. K. Li,; Y. J. Yu,; G. J. Ye,; Q. Q. Ge,; X. D. Ou,; H. Wu,; D. L. Feng,; X. H. Chen,; Y. B. Zhang, Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372-377.
[75]
L. K. Li,; J. Kim,; C. H. Jin,; G. J. Ye,; D. Y. Qiu,; F. H. Da Jornada,; Z. W. Shi,; L. Chen,; Z. C. Zhang,; F. Y. Yang, et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nat. Nanotechnol. 2017, 12, 21-25.
[76]
H. Liu,; A. T. Neal,; Z. Zhu,; Z. Luo,; X. F. Xu,; D. Tománek,; P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033-4041.
[77]
T. Low,; R. Roldán,; H. Wang,; F. N. Xia,; P. Avouris,; L. M. Moreno,; F. Guinea, Plasmons and screening in monolayer and multilayer black phosphorus. Physical Rev. Lett. 2014, 113, 106802.
[78]
A. Favron,; E. Gaufrès,; F. Fossard,; A. L. Phaneuf-L’Heureux,; N. Y. W. Tang,; P. L. Lévesque,; A. Loiseau,; R. Leonelli,; S. Francoeur,; R. Martel, Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 2015, 14, 826-832.
[79]
Y. L. Du,; C. Y. Ouyang,; S. Q. Shi,; M. S. Lei, Ab initio studies on atomic and electronic structures of black phosphorus. J. Appl. Phys. 2010, 107, 093718.
[80]
L. L. Li,; C. Bacaksiz,; M. Nakhaee,; R. Pentcheva,; F. M. Peeters,; M. Yagmurcukardes, Single-layer Janus black arsenic-phosphorus (b-AsP): Optical dichroism, anisotropic vibrational, thermal, and elastic properties. Phys. Rev. B 2020, 101, 134102.
[81]
P. W. Bridgman, Two new modifications of phosphorus. J. Am. Chem. Soc. 1914, 36, 1344-1363.
[82]
A. Brown,; S. Rundqvist, Refinement of the crystal structure of black phosphorus. Acta Crystallogr. 1965, 19, 684-685.
[83]
M. Baba,; F. Izumida,; Y. Takeda,; A. Morita, Preparation of black phosphorus single crystals by a completely closed bismuth-flux method and their crystal morphology. Jpn. J. Appl. Phys. 1989, 28, 1019-1022.
[84]
I. Shirotani,; R. Maniwa,; H. Sato,; A. Fukizawa,; N. Sato,; Y. Maruyama,; T. Kajiwara,; H. Inokuchi,; S. I. Akimoto, Preparation, growth of large single crystals, and physicochemical properties of black phosphorus at high pressures and temperatures. Nippon Kagaku Kaishi 1981, 1604-1609.
[85]
S. Lange,; P. Schmidt,; T. Nilges, Au3SnP7@black phosphorus: An easy access to black phosphorus. Inorg. Chem. 2007, 46, 4028-4035.
[86]
T. Nilges,; M. Kersting,; T. Pfeifer, A fast low-pressure transport route to large black phosphorus single crystals. J. Solid State Chem. 2008, 181, 1707-1711.
[87]
M. Köpf,; N. Eckstein,; D. Pfister,; C. Grotz,; I. Krüger,; M. Greiwe,; T. Hansen,; H. Kohlmann,; T. Nilges, Access and in situ growth of phosphorene-precursor black phosphorus. J. Cryst. Growth 2014, 405, 6-10.
[88]
G. Long,; D. Maryenko,; J. Y. Shen,; S. G. Xu,; J. Q. Hou,; Z. F. Wu,; W. K. Wong,; T. Y. Han,; J. X. Z. Lin,; Y. Cai, et al. Achieving ultrahigh carrier mobility in two-dimensional hole gas of black phosphorus. Nano Lett. 2016, 16, 7768-7773.
[89]
J. B. Smith,; D. Hagaman,; H. F. Ji, Growth of 2D black phosphorus film from chemical vapor deposition. Nanotechnology 2016, 27, 215602.
[90]
Z. N. Guo,; H. Zhang,; S. B. Lu,; Z. T. Wang,; S. Y. Tang,; J. D. Shao,; Z. B. Sun,; H. H. Xie,; H. Y. Wang,; X. F. Yu, et al. From black phosphorus to phosphorene: Basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater. 2015, 25, 6996-7002.
[91]
J. Peng,; Y. Q. Lai,; Y. Y. Chen,; J. Xu,; L. P. Sun,; J. Weng, Sensitive detection of carcinoembryonic antigen using stability- limited few-layer black phosphorus as an electron donor and a reservoir. Small 2017, 13, 1603589.
[92]
J. Kang,; S. A. Wells,; J. D. Wood,; J. H. Lee,; X. L. Liu,; C. R. Ryder,; J. Zhu,; J. R. Guest,; C. A. Husko,; M. C. Hersam, Stable aqueous dispersions of optically and electronically active phosphorene. Proc. Natl. Acad. Sci. USA 2016, 113, 11688-11693.
[93]
J. Y. Xu,; L. F. Gao,; C. X. Hu,; Z. Y. Zhu,; M. Zhao,; Q. Wang,; H. L. Zhang, Preparation of large size, few-layer black phosphorus nanosheets via phytic acid-assisted liquid exfoliation. Chem. Commun. 2016, 52, 8107-8110.
[94]
D. Hanlon,; C. Backes,; E. Doherty,; C. S. Cucinotta,; N. C. Berner,; C. Boland,; K. Lee,; A. Harvey,; P. Lynch,; Z. Gholamvand, et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 2015, 6, 8563.
[95]
X. H. Ren,; J. Zhou,; X. Qi,; Y. D. Liu,; Z. Y. Huang,; Z. J. Li,; Y. Q. Ge,; S. C. Dhanabalan,; J. S. Ponraj,; S. Y. Wang, et al. Few-layer black phosphorus nanosheets as electrocatalysts for highly efficient oxygen evolution reaction. Adv. Energy Mater. 2017, 7, 1700396.
[96]
J. R. Brent,; N. Savjani,; E. A. Lewis,; S. J. Haigh,; D. J. Lewis,; P. O'Brien, Production of few-layer phosphorene by liquid exfoliation of black phosphorus. Chem. Commun. 2014, 50, 13338-13341.
[97]
J. Kang,; J. D. Wood,; S. A. Wells,; J. H. Lee,; X. L. Liu,; K. S. Chen,; M. C. Hersam, Solvent exfoliation of electronic-grade, two- dimensional black phosphorus. ACS Nano 2015, 9, 3596-3604.
[98]
P. Yasaei,; B. Kumar,; T. Foroozan,; C. H. Wang,; M. Asadi,; D. Tuschel,; J. E. Indacochea,; R. F. Klie,; A. Salehi-Khojin, High- quality black phosphorus atomic layers by liquid-phase exfoliation. Adv. Mater. 2015, 27, 1887-1892.
[99]
G. H. Hu,; T. Albrow-Owen,; X. X. Jin,; A. Ali,; Y. W. Hu,; R. C. T. Howe,; K. Shehzad,; Z. Y. Yang,; X. K. Zhu,; R. I. Woodward, et al. Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nat. Commun. 2017, 8, 278.
[100]
Y. Y. Zhang,; X. H. Rui,; Y. X. Tang,; Y. Q. Liu,; J. Q. Wei,; S. Chen,; W. R. Leow,; W. H. Li,; Y. J. Liu,; J. Y. Deng, et al. Wet-chemical processing of phosphorus composite nanosheets for high-rate and high-capacity lithium-ion batteries. Adv. Energy Mater. 2016, 6, 1502409.
[101]
B. Tian,; B. N. Tian,; B. Smith,; M. C. Scott,; Q. Lei,; R. N. Hua,; Y. Tian,; Y. Liu, Facile bottom-up synthesis of partially oxidized black phosphorus nanosheets as metal-free photocatalyst for hydrogen evolution. Proc. Natl. Acad. Sci. USA 2018, 115, 4345-4350.
[102]
G. Zhao,; T. L. Wang,; Y. L. Shao,; Y. Z. Wu,; B. B. Huang,; X. P. Hao, A novel mild phase-transition to prepare black phosphorus nanosheets with excellent energy applications. Small 2017, 13, 1602243.
[103]
A. Von Hippel, Structure and conductivity in the VIb group of the periodic system. J. Chem. Phys. 1948, 16, 372-380.
[104]
P. Cherin,; P. Unger, Two-dimensional refinement of the crystal structure of tellurium. Acta Crystallogr. 1967, 23, 670-671.
[105]
R. M. Martin,; G. Lucovsky,; K. Helliwell, Intermolecular bonding and lattice dynamics of Se and Te. Phys. Rev. B 1976, 13, 1383-1385.
[106]
J. Singh,; P. Jamdagni,; M. Jakhar,; A. Kumar, Stability, electronic and mechanical properties of chalcogen (Se and Te) monolayers. Phys. Chem. Chem. Phys. 2020, 22, 5749-5755.
[107]
J. S. Qiao,; Y. H. Pan,; F. Yang,; C. Wang,; Y. Chai,; W. Ji, Few-layer tellurium: One-dimensional-like layered elementary semiconductor with striking physical properties. Sci. Bull. 2018, 63, 159-168.
[108]
Y. C. Du,; G. Qiu,; Y. X. Wang,; M. W. Si,; X. F. Xu,; W. Z. Wu,; P. D. Ye, One-dimensional van der Waals material tellurium: Raman spectroscopy under strain and magneto-transport. Nano Lett. 2017, 17, 3965-3973.
[109]
P. Skadron,; V. A. Johnson, Anisotropy and annealing behavior in extrinsic single-crystal tellurium. J. Appl. Phys. 1966, 37, 1912-1917.
[110]
S. L. Yang,; B. Chen,; Y. Qin,; Y. Zhou,; L. Liu,; M. Durso,; H. L. Zhuang,; Y. X. Shen,; S. Tongay, Highly crystalline synthesis of tellurene sheets on two-dimensional surfaces: Control over helical chain direction of tellurene. Phys. Rev. Mater. 2018, 2, 104002.
[111]
Q. S. Wang,; M. Safdar,; K. Xu,; M. Mirza,; Z. X. Wang,; J. He, Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets. ACS Nano 2014, 8, 7497-7505.
[112]
X. C. Huang,; J. Q. Guan,; Z. J. Lin,; B. Liu,; S. Y. Xing,; W. H. Wang,; J. D. Guo, Epitaxial growth and band structure of Te film on graphene. Nano Lett. 2017, 17, 4619-4623.
[113]
J. L. Chen,; Y. W. Dai,; Y. Q. Ma,; X. Q. Dai,; W. Ho,; M. H. Xie, Ultrathin β-tellurium layers grown on highly oriented pyrolytic graphite by molecular-beam epitaxy. Nanoscale 2017, 9, 15945-15948.
[114]
A. Apte,; E. Bianco,; A. Krishnamoorthy,; S. Yazdi,; R. Rao,; N. Glavin,; H. Kumazoe,; V. Varshney,; A. Roy,; F. Shimojo, Polytypism in ultrathin tellurium. 2D Mater. 2018, 6, 015013.
[115]
Z. J. Xie,; C. Y. Xing,; W. C. Huang,; T. J. Fan,; Z. J. Li,; J. L. Zhao,; Y. J. Xiang,; Z. N. Guo,; J. Q. Li,; Z. G. Yang, et al. Ultrathin 2D nonlayered tellurium nanosheets: Facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability. Adv. Funct. Mater. 2018, 28, 1705833.
[116]
A. Clearfield, The synthesis and crystal structures of some alkaline earth titanium and zirconium sulfides. Acta Crystallogr. 1963, 16, 135-142.
[117]
J. Huster, Notizen: Die Kristallstruktur von BaTiS3/crystal structure of BaTiS3. Z Naturforschung B 1980, 35, 775.
[118]
J. Wang,; K. Kovnir, Giant anisotropy detected. Nat. Photonics 2018, 12, 382-383.
[119]
J. P. Lu,; J. Yang,; A. Carvalho,; H. W. Liu,; Y. R. Lu,; C. H. Sow, Light-matter interactions in phosphorene. Acc. Chem. Res. 2016, 49, 1806-1815.
[120]
H. T. Yuan,; X. G. Liu,; F. Afshinmanesh,; W. Li,; G. Xu,; J. Sun,; B. Lian,; A. G. Curto,; G. J. Ye,; Y. Hikita, et al. Polarization- sensitive broadband photodetector using a black phosphorus vertical p-n junction. Nat. Nanotechnol. 2015, 10, 707-713.
[121]
J. X. Wu,; N. N. Mao,; L. M. Xie,; H. Xu,; J. Zhang, Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew. Chem., Int. Ed. 2015, 54, 2366-2369.
[122]
N. N. Mao,; J. Y. Tang,; L. M. Xie,; J. X. Wu,; B. W. Han,; J. J. Lin,; S. B. Deng,; W. Ji,; H. Xu,; K. H. Liu, et al. Optical anisotropy of black phosphorus in the visible regime. J. Am. Chem. Soc. 2016, 138, 300-305.
[123]
D. Li,; H. Jussila,; L. Karvonen,; G. J. Ye,; H. Lipsanen,; X. H. Chen,; Z. P. Sun, Polarization and thickness dependent absorption properties of black phosphorus: New saturable absorber for ultrafast pulse generation. Sci. Rep. 2015, 5, 15899.
[124]
B. C. Deng,; R. Frisenda,; C. Li,; X. L. Chen,; A. Castellanos-Gomez,; F. N. Xia, Progress on black phosphorus photonics. Adv. Opt. Mater. 2018, 6, 1800365.
[125]
S. Zhang,; J. Yang,; R. J. Xu,; F. Wang,; W. F. Li,; M. Ghufran,; Y. W. Zhang,; Z. F. Yu,; G. Zhang,; Q. H. Qin, et al. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. ACS Nano 2014, 8, 9590-9596.
[126]
J. Q. He,; D. W. He,; Y. S. Wang,; Q. N. Cui,; M. Z. Bellus,; H. Y. Chiu,; H. Zhao, Exceptional and anisotropic transport properties of photocarriers in black phosphorus. ACS Nano 2015, 9, 6436-6442.
[127]
S. F. Lan,; S. Rodrigues,; L. Kang,; W. S. Cai, Visualizing optical phase anisotropy in black phosphorus. ACS Photonics 2016, 3, 1176-1181.
[128]
Y. Q. Cai,; G. Zhang,; Y. W. Zhang, Layer-dependent band alignment and work function of few-layer phosphorene. Sci. Rep. 2014, 4, 6677.
[129]
T. Low,; A. S. Rodin,; A. Carvalho,; Y. J. Jiang,; H. Wang,; F. N. Xia,; A. C. H. Neto, Tunable optical properties of multilayer black phosphorus thin films. Phys. Rev. B 2014, 90, 075434.
[130]
G. W. Zhang,; S. Y. Huang,; A. Chaves,; C. Y. Song,; V. O. Özçelik,; T. Low,; H. G. Yan, Infrared fingerprints of few-layer black phosphorus. Nat. Commun. 2017, 8, 14071.
[131]
W. S. Whitney,; M. C. Sherrott,; D. Jariwala,; W. H. Lin,; H. A. Bechtel,; G. R. Rossman,; H. A. Atwater, Field effect optoelectronic modulation of quantum-confined carriers in black phosphorus. Nano Lett. 2017, 17, 78-84.
[132]
Y. Y. Li,; Z. X. Hu,; S. H. Lin,; S. K. Lai,; W. Ji,; S. P. Lau, Giant anisotropic Raman response of encapsulated ultrathin black phosphorus by uniaxial strain. Adv. Funct. Mater. 2017, 27, 1600986.
[133]
X. H. Peng,; Q. Wei,; A. Copple, Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene. Phys. Rev. B 2014, 90, 085402.
[134]
A. S. Rodin,; A. Carvalho,; A. H. C. Neto, Strain-induced gap modification in black phosphorus. Phys. Rev. Lett. 2014, 112, 176801.
[135]
J. Quereda,; P. San-Jose,; V. Parente,; L. Vaquero-Garzon,; A. J. Molina-Mendoza,; N. Agraït,; G. Rubio-Bollinger,; F. Guinea,; R. Roldán,; A. Castellanos-Gomez, Strong modulation of optical properties in black phosphorus through strain-engineered rippling. Nano Lett. 2016, 16, 2931-2937.
[136]
Q. H. Liu,; X. W. Zhang,; L. B. Abdalla,; A. Fazzio,; A. Zunger, Switching a normal insulator into a topological insulator via electric field with application to phosphorene. Nano Lett. 2015, 15, 1222-1228.
[137]
R. Roldán,; A. Castellanos-Gomez, Black phosphorus: A new bandgap tuning knob. Nat. Photonics 2017, 11, 407-409.
[138]
L. Yu,; Z. Zhu,; A. Y. Gao,; J. Z. Wang,; F. Miao,; Y. Shi,; X. M. Wang, Electrically tunable optical properties of few-layer black arsenic phosphorus. Nanotechnology 2018, 29, 484001.
[139]
M. Amani,; C. L. Tan,; G. Zhang,; C. S. Zhao,; J. Bullock,; X. H. Song,; H. Kim,; V. R. Shrestha,; Y. Gao,; K. B. Crozier, et al. Solution-synthesized high-mobility tellurium nanoflakes for short- wave infrared photodetectors. ACS Nano 2018, 12, 7253-7263.
[140]
D. K. Sang,; B. Wen,; S. Gao,; Y. Z. Zeng,; F. X. Meng,; Z. N. Guo,; H. Zhang, Electronic and optical properties of two-dimensional tellurene: From first-principles calculations. Nanomaterials 2019, 9, 1075.
[141]
Y. Y. Liu,; W. Z. Wu,; W. A. Goddard III, Tellurium: Fast electrical and atomic transport along the weak interaction direction. J. Am. Chem. Soc. 2018, 140, 550-553.
[142]
J. J. Wang,; Y. R. Guo,; C. Qiao,; H. Shen,; R. J. Zhang,; Y. X. Zheng,; L. Y. Chen,; S. Y. Wang,; Y. Jia,; W. S. Su, Investigation of electronic property modulation driven by strain in monolayer tellurium. Chin. J. Phys. 2019, 62, 172-178.
[143]
J. J. Wang,; Y. R. Guo,; H. Shen,; Y. Y. Chen,; R. J. Zhang,; Y. X. Zheng,; L. Y. Chen,; S. Y. Wang,; Y. Jia,; H. Y. Chen, et al. A first-principles study of strain tuned optical properties in monolayer tellurium. RSC Adv. 2019, 9, 41703-41708.
[144]
Z. Zhu,; C. Cai,; C. Niu,; C. Wang,; Q. Sun,; X. Han,; Z. Guo,; Y. Jia, Tellurene—A monolayer of tellurium from first-principles prediction. 2016, arXiv:1605.03253v1. arXiv.org e-Print archive. https://arxiv.org/abs/1605.03253v1 (accessed Oct 16, 2020).
[145]
C. Wang,; X. Y. Zhou,; J. S. Qiao,; L. W. Zhou,; X. H. Kong,; Y. H. Pan,; Z. H. Cheng,; Y. Chai,; W. Ji, Charge-governed phase manipulation of few-layer tellurium. Nanoscale 2018, 10, 22263-22269.
[146]
J. J. Wang,; H. Shen,; Z. Y. Yu,; S. Y. Wang,; Y. Y. Chen,; B. R. Wu,; W. S. Su, Electric field-tunable structural phase transitions in monolayer tellurium. ACS Omega 2020, 5, 18213-18217.
[147]
G. W. Zhang,; A. Chaves,; S. Y. Huang,; F. J. Wang,; Q. X. Xing,; T. Low,; H. G. Yan, Determination of layer-dependent exciton binding energies in few-layer black phosphorus. Sci. Adv. 2018, 4, eaap9977.
[148]
S. Y. Niu,; J. Milam-Guerrero,; Y. C. Zhou,; K. Ye,; B. Y. Zhao,; B. C. Melot,; J. Ravichandran, Thermal stability study of transition metal perovskite sulfides. J. Mater. Res. 2018, 33, 4135-4143.
[149]
B. E. A. Saleh,; M. C. Teich, Fundamentals of Photonics, 3rd ed.; John Wiley & Sons: Hoboken, 2019.
[150]
A. Yariv,; P. Yeh, Photonics: Optical Electronics in Modern Communications (The Oxford Series in Electrical and Computer Engineering), 6th ed.; Oxford University Press: New York, 2006.
[151]
G. Konstantatos,; M. Badioli,; L. Gaudreau,; J. Osmond,; M. Bernechea,; F. P. G. De Arquer,; F. Gatti,; F. H. L. Koppens, Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 2012, 7, 363-368.
[152]
C. Soci,; A. Zhang,; X. Y. Bao,; H. Kim,; Y. Lo,; D. L. Wang, Nanowire photodetectors. J. Nanosci. Nanotechnol. 2010, 10, 1430-1449.
[153]
M. M. Furchi,; D. K. Polyushkin,; A. Pospischil,; T. Mueller, Mechanisms of photoconductivity in atomically thin MoS2. Nano Lett. 2014, 14, 6165-6170.
[154]
D. Kufer,; G. Konstantatos, Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed. Nano Lett. 2015, 15, 7307-7313.
[155]
C. Soci,; A. Zhang,; B. Xiang,; S. A. Dayeh,; D. P. R. Aplin,; J. Park,; X. Y. Bao,; Y. H. Lo,; D. Wang, ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 2007, 7, 1003-1009.
[156]
Y. T. Zhao,; H. Y. Wang,; H. Huang,; Q. L. Xiao,; Y. H. Xu,; Z. N. Guo,; H. H. Xie,; J. D. Shao,; Z. B. Sun,; W. J. Han, et al. Surface coordination of black phosphorus for robust air and water stability. Angew. Chem., Int. Ed. 2016, 55, 5003-5007.
[157]
A. Avsar,; I. J. Vera-Marun,; J. Y. Tan,; K. Watanabe,; T. Taniguchi,; A. H. Castro Neto,; B. Ozyilmaz, Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus- based field-effect transistors. ACS Nano 2015, 9, 4138-4145.
[158]
M. T. Edmonds,; A. Tadich,; A. Carvalho,; A. Ziletti,; K. M. O’Donnell,; S. P. Koenig,; D. F. Coker,; B. Özyilmaz,; A. H. C. Neto,; M. S. Fuhrer, Creating a stable oxide at the surface of black phosphorus. ACS Appl. Mater. Interfaces 2015, 7, 14557-14562.
[159]
P. Yasaei,; A. Behranginia,; T. Foroozan,; M. Asadi,; K. Kim,; F. Khalili-Araghi,; A. Salehi-Khojin, Stable and selective humidity sensing using stacked black phosphorus flakes. ACS Nano 2015, 9, 9898-9905.
[160]
L. Viti,; J. Hu,; D. Coquillat,; A. Politano,; C. Consejo,; W. Knap,; M. S. Vitiello, Heterostructured hBN-BP-hBN nanodetectors at terahertz frequencies. Adv. Mater. 2016, 28, 7390-7396.
[161]
V. Tayari,; N. Hemsworth,; I. Fakih,; A. Favron,; E. Gaufrès,; G. Gervais,; R. Martel,; T. Szkopek, Two-dimensional magnetotransport in a black phosphorus naked quantum well. Nat. Commun. 2015, 6, 7702.
[162]
N. Youngblood,; C. Chen,; S. J. Koester,; M. Li, Waveguide- integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photonics 2015, 9, 247-252.
[163]
C. Chen,; N. Youngblood,; R. M. Peng,; D. Yoo,; D. A. Mohr,; T. W. Johnson,; S. H. Oh,; M. Li, Three-dimensional integration of black phosphorus photodetector with silicon photonics and nanoplasmonics. Nano Lett. 2017, 17, 985-991.
[164]
C. Chen,; N. Youngblood,; M. Li, Study of black phosphorus anisotropy on silicon photonic waveguide. In Proceedings of 2015 Optoelectronics Global Conference, Shenzhen, China, 2015, pp 1-3.
[165]
N. Youngblood,; M. Li, Ultrafast photocurrent measurements of a black phosphorus photodetector. Appl. Phys. Lett. 2017, 110, 051102.
[166]
Z. Jiang,; E. A. Henriksen,; L. C. Tung,; Y. J. Wang,; M. E. Schwartz,; M. Y. Han,; P. Kim,; H. L. Stormer, Infrared spectroscopy of Landau levels of graphene. Phys. Rev. Lett. 2007, 98, 197403.
[167]
D. B. Li,; X. J. Sun,; H. Song,; Z. M. Li,; Y. R. Chen,; H. Jiang,; G. Q. Miao, Realization of a high-performance GaN UV detector by nanoplasmonic enhancement. Adv. Mater. 2012, 24, 845-849.
[168]
W. Li,; J. G. Valentine, Harvesting the loss: Surface plasmon-based hot electron photodetection. Nanophotonics 2017, 6, 177-179.
[169]
A. Dorodnyy,; Y. Salamin,; P. Ma,; J. V. Plestina,; N. Lassaline,; D. Mikulik,; P. Romero-Gomez,; A. F. i Morral,; J. Leuthold, Plasmonic photodetectors. IEEE J. Sel. Top. Quant. Electron. 2018, 24, 4600313.
[170]
N. Clément,; K. Nishiguchi,; A. Fujiwara,; D. Vuillaume, One-by-one trap activation in silicon nanowire transistors. Nat. Commun. 2010, 1, 92.
[171]
N. Kumada,; F. D. Parmentier,; H. Hibino,; D. C. Glattli,; P. Roulleau, Shot noise generated by graphene p-n junctions in the quantum Hall effect regime. Nat. Commun. 2015, 6, 8068.
[172]
Y. X. Deng,; Z. Luo,; N. J. Conrad,; H. Liu,; Y. J. Gong,; S. Najmaei,; P. M. Ajayan,; J. Lou,; X. F. Xu,; P. D. Ye, Black phosphorus- monolayer MoS2 van der Waals heterojunction p-n diode. ACS Nano 2014, 8, 8292-8299.
[173]
S. W. Cao,; Y. H. Xing,; J. Han,; X. Luo,; W. X. Lv,; W. M. Lv,; B. S. Zhang,; Z. M. Zeng, Ultrahigh-photoresponsive UV photodetector based on a BP/ReS2 heterostructure p-n diode. Nanoscale 2018, 10, 16805-16811.
[174]
L. Ye,; H. Li,; Z. F. Chen,; J. B. Xu, Near-infrared photodetector based on MoS2/black phosphorus heterojunction. ACS Photonics 2016, 3, 692-699.
[175]
W. K. Zhu,; X. Wei,; F. G. Yan,; Q. S. Lv,; C. Hu,; K. Y. Wang, Broadband polarized photodetector based on p-BP/n-ReS2 heterojunction. J. Semicond. 2019, 40, 092001.
[176]
M. Q. Huang,; S. M. Li,; Z. F. Zhang,; X. Xiong,; X. F. Li,; Y. Q. Wu, Multifunctional high-performance van der Waals heterostructures. Nat. Nanotechnol. 2017, 12, 1148-1154.
[177]
X. Xiong,; J. Y. Kang,; Q. L. Hu,; C. R. Gu,; T. T. Gao,; X. F. Li,; Y. Q. Wu, Reconfigurable logic-in-memory and multilingual artificial synapses based on 2D heterostructures. Adv. Funct. Mater. 2020, 30, 1909645.
[178]
A. Y. Gao,; J. W. Lai,; Y. J. Wang,; Z. Zhu,; J. W. Zeng,; G. L. Yu,; N. Z. Wang,; W. C. Chen,; T. J. Cao,; W. D. Hu, et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat. Nanotechnol. 2019, 14, 217-222.
[179]
L. Li,; M. Engel,; D. B. Farmer,; S. J. Han,; H. S. P. Wong, High-performance p-type black phosphorus transistor with scandium contact. ACS Nano 2016, 10, 4672-4677.
[180]
K. Dolui,; I. Rungger,; S. Sanvito, Origin of the n-type and p-type conductivity of MoS2 monolayers on a SiO2 substrate. Phys. Rev. B 2013, 87, 165402.
[181]
L. D. Yau,; C. T. Sah, Theory and experiments of low-frequency generation-recombination noise in MOS transistors. IEEE Trans. Electron Devices 1969, 16, 170-177.
[182]
J. A. Copeland, Semiconductor impurity analysis from low-frequency noise spectra. IEEE Trans. Electron Devices 1971, 18, 50-53.
[183]
J. B. Wu,; H. Zhao,; Y. R. Li,; D. Ohlberg,; W. Shi,; W. Wu,; H. Wang,; P. H. Tan, Monolayer molybdenum disulfide nanoribbons with high optical anisotropy. Adv. Opt. Mater. 2016, 4, 756-762.
[184]
X. F. Qiao,; J. B. Wu,; L. W. Zhou,; J. S. Qiao,; W. Shi,; T. Chen,; X. Zhang,; J. Zhang,; W. Ji,; P. H. Tan, Polytypism and unexpected strong interlayer coupling in two-dimensional layered ReS2. Nanoscale 2016, 8, 8324-8332.
[185]
H. Zhao,; J. B. Wu,; H. X. Zhong,; Q. S. Guo,; X. M. Wang,; F. N. Xia,; L. Yang,; P. H. Tan,; H. Wang, Interlayer interactions in anisotropic atomically thin rhenium diselenide. Nano Res. 2015, 8, 3651-3661.
[186]
S. X. Yang,; C. G. Hu,; M. H. Wu,; W. F. Shen,; S. Tongay,; K. D. Wu,; B. Wei,; Z. Y. Sun,; C. B. Jiang,; L. Huang, et al. In-plane optical anisotropy and linear dichroism in low-symmetry layered TlSe. ACS Nano 2018, 12, 8798-8807.
[187]
Z. Q. Zhou,; M. S. Long,; L. F. Pan,; X. T. Wang,; M. Z. Zhong,; M. Blei,; J. L. Wang,; J. Z. Fang,; S. Tongay,; W. D. Hu, et al. Perpendicular optical reversal of the linear dichroism and polarized photodetection in 2D GeAs. ACS Nano 2018, 12, 12416-12423.
[188]
L. Tong,; X. Y. Huang,; P. Wang,; L. Ye,; M. Peng,; L. C. An,; Q. D. Sun,; Y. Zhang,; G. M. Yang,; Z. Li, et al. Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature. Nat. Commun. 2020, 11, 2308.
[189]
M. Q. Huang,; M. L. Wang,; C. Chen,; Z. W. Ma,; X. F. Li,; J. B. Han,; Y. Q. Wu, Broadband black-phosphorus photodetectors with high responsivity. Adv. Mater. 2016, 28, 3481-3485.
[190]
A. Y. Vorobyev,; C. L. Guo, Spectral and polarization responses of femtosecond laser-induced periodic surface structures on metals. J. Appl. Phys. 2008, 103, 043513.
[191]
R. Girard-Desprolet,; S. Boutami,; S. Lhostis,; G. Vitrant, Angular and polarization properties of cross-holes nanostructured metallic filters. Opt. Express 2013, 21, 29412-29424.
Nano Research
Pages 1863-1877
Cite this article:
Wu J, Wang N, Yan X, et al. Emerging low-dimensional materials for mid-infrared detection. Nano Research, 2021, 14(6): 1863-1877. https://doi.org/10.1007/s12274-020-3128-7
Topics:
Part of a topical collection:

984

Views

27

Crossref

N/A

Web of Science

27

Scopus

5

CSCD

Altmetrics

Received: 28 June 2020
Revised: 01 September 2020
Accepted: 11 September 2020
Published: 23 October 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return