AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Geometrical quasi-ballistic effects on thermal transport in nanostructured devices

Sami Alajlouni1,2,§( )Albert Beardo3,§( )Lluc Sendra3Amirkoushyar Ziabari4,5Javier Bafaluy3Juan Camacho3Yi Xuan1,2F. Xavier Alvarez3Ali Shakouri1,2
Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
Department of electrical and computer engineering, Purdue University, West Lafayette, Indiana 47907, USA
Department of physics, Universitat Autònoma de Barcelona, Bellaterra 08193, Catalonia, Spain
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
R&D Staff Scientist, Imaging, Signals and Machine Learning, Tennessee 37831, USA

§ Sami Alajlouni and Albert Beardo contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

We employ thermoreflectance thermal imaging to directly measure the steady-state two-dimensional (2D) temperature field generated by nanostructured heat sources deposited on silicon substrate with different geometrical configurations and characteristic sizes down to 400nm. The analysis of the results using Fourier’s law not only breaks down as size scales down, but it also fails to capture the impact of the geometry of the heat source. The substrate effective Fourier thermal conductivities fitted to wire-shaped and circular-shaped structures with identical characteristic lengths are found to display up to 40% mismatch. Remarkably, a hydrodynamic heat transport model reproduces the observed temperature fields for all device sizes and shapes using just intrinsic Si parameters, i.e., a geometry and size-independent thermal conductivity and nonlocal length scale. The hydrodynamic model provides insight into the observed thermal response and of the contradictory Fourier predictions. We discuss the substantial Silicon hydrodynamic behavior at room temperature and contrast it to InGaAs, which shows less hydrodynamic effects due to dominant phonon-impurity scattering.

Electronic Supplementary Material

Download File(s)
12274_2020_3129_MOESM1_ESM.pdf (1.3 MB)

References

[1]
C. Y. Hua,; L. Lindsay,; X. W. Chen,; A. J. Minnich, Generalized Fourier’s law for nondiffusive thermal transport: Theory and experiment. Phys. Rev. B 2019, 100, 085203.
[2]
M. E. Siemens,; Q. Li,; R. G. Yang,; K. A. Nelson,; E. H. Anderson,, M. M. Murnane,; H. C. Kapteyn, Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams. Nat. Mater. 2010, 9, 26-30.
[3]
A. Beardo,; M. G. Hennessy,; L. Sendra,; J. Camacho,; T. G. Myers,; J. Bafaluy,; F. X. Alvarez, Phonon hydrodynamics in frequency-domain thermoreflectance experiments. Phys. Rev. B 2020, 101, 075303.
[4]
A. A. Maznev,; J. A. Johnson,; K. A. Nelson, Onset of nondiffusive phonon transport in transient thermal grating decay. Phys. Rev. B 2011, 84, 195206.
[5]
J. Maire,; R. Anufriev,; M. Nomura, Ballistic thermal transport in silicon nanowires. Sci. Rep. 2017, 7, 41794.
[6]
M. Tsutsui,; Y. C. Chen, Heat dissipation in quasi-ballistic single- atom contacts at room temperature. Sci. Rep. 2019, 9, 18677.
[7]
R. Anufriev,; S. Gluchko,; S. Volz,; M. Nomura, Probing ballistic thermal conduction in segmented silicon nanowires. Nanoscale 2019, 11, 13407-13414.
[8]
J. A. Johnson,; A. A. Maznev,; J. Cuffe,; J. K. Eliason,; A. J. Minnich,; T. Kehoe,; C. M. Torres,; G. Chen,; K. A. Nelson, Direct measurement of room-temperature nondiffusive thermal transport over micron distances in a silicon membrane. Phys. Rev. Lett. 2013, 110, 025901.
[9]
G. Chen, Nonlocal and nonequilibrium heat conduction in the vicinity of nanoparticles. J. Heat Transfer 1996, 118, 539-545.
[10]
P. G. Sverdrup,; S. Sinha,; M. Asheghi,; S. Uma,; K. E. Goodson, Measurement of ballistic phonon conduction near hotspots in silicon. Appl. Phys. Lett. 2001, 78, 3331-3333.
[11]
K. M. Hoogeboom-Pot,; J. N. Hernandez-Charpak,; X. K. Gu,; T. D. Frazer,; E. H. Anderson,; W. L. Chao,; R. W. Falcone,; R. G. Yang,; M. M. Murnane,; H. C. Kapteyn, et al. A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency. Proc. Natl. Acad. Sci. USA 2015, 112, 4846-4851.
[12]
Y. J. Hu,; L. P. Zeng,; A. J. Minnich,; M. S. Dresselhaus,; G. Chen, Spectral mapping of thermal conductivity through nanoscale ballistic transport. Nat. Nanotechnol. 2015, 10, 701-706.
[13]
R. B. Wilson,; D. G. Cahill, Anisotropic failure of Fourier theory in time-domain thermoreflectance experiments. Nat. Commun. 2014, 5, 5075.
[14]
A. Ziabari,; P. Torres,; B. Vermeersch,; Y. Xuan,; X. Cartoixà,; A. Torelló,; J. H. Bahk,; Y. R. Koh,; M. Parsa,; P. D. Ye, et al. Full-field thermal imaging of quasiballistic crosstalk reduction in nanoscale devices. Nat. Commun. 2018, 9, 255.
[15]
J. Markoff, Technology: Intel’s Big Shift After Hitting Technical Wall[Online]. https://www.nytimes.com/2004/05/17/business/technology-intel-s-big-shift-after-hitting-technical-wall.html (accessed July 1, 2020).
[16]
M. M. Waldrop, The chips are down for Moore’s law. Nature 2016, 530, 144-147.
[17]
B. Vermeersch,; J. Carrete,; N. Mingo,; A. Shakouri, Superdiffusive heat conduction in semiconductor alloys. I. Theoretical foundations. Phys. Rev. B 2015, 91, 085202.
[18]
B. Vermeersch,; A. M. S. Mohammed,; G. Pernot,; Y. R. Koh,; A. Shakouri, Superdiffusive heat conduction in semiconductor alloys. II. Truncated Lévy formalism for experimental analysis. Phys. Rev. B 2015, 91, 085203.
[19]
A. Ziabari,; M. Parsa,; Y. Xuan,; J. H. Bahk,; K. Yazawa,; F. X. Alvarez,; A. Shakouri, Far-field thermal imaging below diffraction limit. Opt. Express 2020, 28, 7036-7050.
[20]
D. A. Broido,; M. Malorny,; G. Birner,; N. Mingo,; D. A. Stewart, Intrinsic lattice thermal conductivity of semiconductors from first principles. Appl. Phys. Lett. 2007, 91, 231922.
[21]
L. Chaput, Direct Solution to the linearized phonon Boltzmann equation. Phys. Rev. Lett. 2013, 110, 265506.
[22]
M. Simoncelli,; N. Marzari,; A. Cepellotti, Generalization of Fourier’s law into viscous heat equations. Phys. Rev. X 2020, 10, 011019.
[23]
C. De Tomas,; A. Cantarero,; A. F. Lopeandia,; F. X. Alvarez, From kinetic to collective behavior in thermal transport on semiconductors and semiconductor nanostructures. J. Appl. Phys. 2014, 115, 164314.
[24]
A. Cepellotti,; N. Marzari, Thermal transport in crystals as a kinetic theory of relaxons. Phys. Rev. X 2016, 6, 041013.
[25]
C. H. Hua,; L. Lindsay,; X. W. Chen,; A. J. Minnich, Generalized Fourier’s law for non-diffusive thermal transport: Theory and experiment. Phys. Rev. B 2019, 100, 085203.
[26]
A. Beardo,; M. Calvo-Schwarzwälder,; J. Camacho,; T. G. Myers,; P. Torres,; L. Sendra,; F. X. Alvarez,; J. Bafaluy, Hydrodynamic heat transport in compact and holey silicon thin films. Phys. Rev. Appl. 2019, 11, 034003.
[27]
P. Torres,; A. Ziabari,; A. Torelló,; J. Bafaluy,; J. Camacho,; X. Cartoixà,; A. Shakouri,; F. X. Alvarez, Emergence of hydrodynamic heat transport in semiconductors at the nanoscale. Phys. Rev. Mater. 2018, 2, 076001.
[28]
R. A. Guyer,; J. A. Krumhansl, Solution of the linearized phonon Boltzmann equation. Phys. Rev. 1966, 148, 766-778.
[29]
Y. Y. Guo,; M. R. Wang, Phonon hydrodynamics for nanoscale heat transport at ordinary temperatures. Phys. Rev. B 2018, 97, 035421.
[30]
Z. W. Ding,; J. W. Zhou,; B. Song,; V. Chiloyan,; M. D. Li,; T. H. Liu,; G. Chen, Phonon hydrodynamic heat conduction and Knudsen minimum in graphite. Nano Lett. 2018, 18, 638-649.
[31]
Y. Machida,; A. Subedi,; K. Akiba,; A. Miyake,; M. Tokunaga,; Y. Akahama,; K. Izawa,; K. Behnia, Observation of Poiseuille flow of phonons in black phosphorus. Sci. Adv. 2018, 4, eaat3374.
[32]
S. Lee,; D. Broido,; K. Esfarjani,; G. Chen, Hydrodynamic phonon transport in suspended graphene. Nat. Commun. 2015, 6, 6290.
[33]
X. Li,; S. Lee, Role of hydrodynamic viscosity on phonon transport in suspended graphene. Phys. Rev. B 2018, 97, 094309.
[34]
P. Scuracchio,; K. H. Michel,; F. M. Peeters, Phonon hydrodynamics, thermal conductivity, and second sound in two-dimensional crystals. Phys. Rev. B 2019, 99, 144303.
[35]
A. Ziabari,; J. H. Bahk,; Y. Xuan,; P. D. Ye,; D. Kendig,; K. Yazawa,; P. G. Burke,; H. Lu,; A. C. Gossard,; A. Shakouri, Sub-diffraction limit thermal imaging for HEMT devices. In Proceedings of the 31st Thermal Measurement, Modeling & Management Symposium (SEMI- THERM), San Jose, CA, USA, 2015, pp 82-87.
[36]
P. Torres,; A. Torelló,; J. Bafaluy,; J. Camacho,; X. Cartoixà,; F. X. Alvarez, First principles kinetic-collective thermal conductivity of semiconductors. Phys. Rev. B 2017, 95, 165407.
[37]
M. Farzaneh,; K. Maize,; D. Lüerβen; J. A. Summers,; P. M. Mayer,; P. E. Raad,; K. P. Pipe,; A. Shakouri,; R. J. Ram,; J. A. Hudgings, CCD-based thermoreflectance microscopy: Principles and applications. J. Phys. D: Appl. Phys. 2009, 42, 143001.
[38]
T. Favaloro,; J. H. Bahk,; A. Shakouri. Characterization of the temperature dependence of the thermoreflectance coefficient for conductive thin films. Rev. Sci. Instrum. 2015, 86, 024903.
[39]
A. Shakouri,; A. Ziabari,; D. Kendig,; J. H. Bahk,; Y. Xuan,; P. D. Ye,; K. Yazawa,; A. Shakouri. Stable thermoreflectance thermal imaging microscopy with piezoelectric position control. Proceedings of the 32nd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM), San Jose, CA, USA, 2016, pp 128-132.
[40]
F. Warkusz, The size effect and the temperature coefficient of resistance in thin films. J. Phys. D: Appl. Phys. 1978, 11, 689-694.
Nano Research
Pages 945-952
Cite this article:
Alajlouni S, Beardo A, Sendra L, et al. Geometrical quasi-ballistic effects on thermal transport in nanostructured devices. Nano Research, 2021, 14(4): 945-952. https://doi.org/10.1007/s12274-020-3129-6
Topics:

725

Views

11

Crossref

N/A

Web of Science

10

Scopus

0

CSCD

Altmetrics

Received: 06 July 2020
Revised: 17 September 2020
Accepted: 21 September 2020
Published: 27 November 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return