AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

2-D/2-D heterostructured biomimetic enzyme by interfacial assembling Mn3(PO4)2 and MXene as a flexible platform for real- time sensitive sensing cell superoxide

Shen Fei Zhao1,§Fang Xin Hu1,§Zhuan Zhuan Shi1Jing Jing Fu2Yue Chen2Fang Yin Dai3Chun Xian Guo1( )Chang Ming Li1,2,4( )
Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou 215009, China
Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing 400715, China
State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
Institute for Advanced Cross-field Science & College of Life Science, Qingdao University, Qingdao 200671, China

§ Shen Fei Zhao and Fang Xin Hu contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

It is critical for fabricating flexible biosensors with both high sensitivity and good selectivity to realize real-time monitoring superoxide anion (O2•−), a specific reactive oxygen species that plays critical roles in various biological processes. This work delicately designs a Mn3(PO4)2/MXene heterostructured biomimetic enzyme by assembling two-dimensional (2-D) Mn3(PO4)2 nanosheets with biomimetic activity and 2-D MXene nanosheets with high conductivity and abundant functional groups. The 2-D nature of the two components with strong interfacial interaction synergistically enables the heterostructure an excellent flexibility with retained 100% of the response when to reach a bending angle up to 180°, and 96% of the response after 100 bending/relaxing cycles. It is found that the surface charge state of the heterostructure promotes the adsorption of O2•−, while the high-energy active site improves electrochemical oxidation of O2•−. The Mn3(PO4)2/MXene as a sensing platform towards O2•− achieves a high sensitivity of 64.93 μA·μM−1·cm−2, a wide detection range of 5.75 nM to 25.93 μM, and a low detection limit of 1.63 nM. Finally, the flexible heterostructured sensing platform realizes real-time monitoring of O2•− in live cell assays, offering a promising flexible biosensor towards exploring various biological processes.

Electronic Supplementary Material

Video
12274_2020_3130_MOESM2_ESM.mp4
Download File(s)
12274_2020_3130_MOESM1_ESM.pdf (3.8 MB)

References

[1]
Y. J. Zhang,; P. He,; M. Luo,; X. W. Xu,; G. Z. Dai,; J. L. Yang, Highly stretchable polymer/silver nanowires composite sensor for human health monitoring. Nano Res. 2020, 13, 919-926.
[2]
P. S. Das,; A. Chhetry,; P. Maharjan,; M. S. Rasel,; J. Y. Park, A laser ablated graphene-based flexible self-powered pressure sensor for human gestures and finger pulse monitoring. Nano Res. 2019, 12, 1789-1795.
[3]
Y. R. Yang,; W. Gao, Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 2019, 48, 1465-1491.
[4]
Y. C. Guo,; Z. Q. Fang,; M. D. Du,; L. Yang,; L. H. Shao,; X. R. Zhang,; L Li,; J. D. Shi,; J. S. Tao,; J. F. Wang, et al. Flexible and biocompatible nanopaper-based electrode arrays for neural activity recording. Nano Res. 2018, 11, 5604-5614.
[5]
Y. Yu,; H. Y. Y. Nyein,; W. Gao,; A. Javey, Flexible electrochemical bioelectronics: the rise of in situ bioanalysis. Adv. Mater. 2020, 32, 1902083.
[6]
M. S. Hsu,; Y. L. Chen,; C. Y. Lee,; H. T. Chiu, Gold nanostructures on flexible substrates as electrochemical dopamine sensors. ACS Appl. Mater. Interfaces 2012, 4, 5570-5575.
[7]
A. D. Kurdekar,; L. A. A. Chunduri,; C. S. Manohar,; M. K. Haleyurgirisetty,; I. K. Hewlett,; K. Venkataramaniah, Streptavidin-conjugated gold nanoclusters as ultrasensitive fluorescent sensors for early diagnosis of HIV infection. Sci. Adv. 2018, 4, eaar6280.
[8]
Y. Lan,; Y. Yang,; Y. Wang,; Y. Wu,; Z. Y. Cao,; S. Huo,; L. H. Jiang,; Y. C. Guo,; Y. Q. Wu,; B. Yan, et al. High-temperature-annealed flexible carbon nanotube network transistors for high-frequency wearable wireless electronics. ACS Appl. Mater. Interfaces 2020, 12, 26145-26152.
[9]
Z. R. Wang,; Z. Hao,; S. F. Yu,; C. G. De Moraes,; L. H. Suh,; X. Z. Zhao,; Q. Lin, An ultraflexible and stretchable aptameric graphene nanosensor for biomarker detection and monitoring. Adv. Funct. Mater. 2019, 29, 1905202.
[10]
Y. Liu,; Y. X. Nie,; M. K. Wang,; Q. Zhang,; Q. Ma, Distance- dependent plasmon-enhanced electrochemiluminescence biosensor based on MoS2 nanosheets. Biosens. Bioelectron. 2020, 148, 111823.
[11]
Y. Li,; L. H. Zhao,; Y. Yao,; X. F. Guo, Single-molecule nanotechnologies: An evolution in biological dynamics detection. ACS Appl. Bio Mater. 2020, 3, 68-85.
[12]
H. T. Li,; Y. Y. Huang,; G. H. Hou,; A. X. Xiao,; P. W. Chen,; H. Liang,; Y. G. Huang,; X. T. Zhao,; L. L. Liang,; X. H. Feng, et al. Single- molecule detection of biomarker and localized cellular photothermal therapy using an optical microfiber with nanointerface. Sci. Adv. 2019, 5, eaax4659.
[13]
X. P. He,; B. W. Zhu,; Y. Zang,; J. Li,; G. R. Chen,; H. Tian,; Y. T. Long, Dynamic tracking of pathogenic receptor expression of live cells using pyrenyl glycoanthraquinone-decorated graphene electrodes. Chem. Sci. 2015, 6, 1996-2001.
[14]
L. Yang,; N. Mih,; A. Anand,; J. H. Park,; J. Tan,; J. T. Yurkovich,; J. M. Monk,; C. J. Lloyd,; T. E. Sandberg,; S. W. Seo, et al. Cellular responses to reactive oxygen species are predicted from molecular mechanisms. Proc. Natl. Acad. Sci. USA 2019, 116, 14368-14373.
[15]
C. X. Guo,; X. T. Zheng,; Z. S. Lu,; X. W. Lou,; C. M. Li, Biointerface by cell growth on layered graphene-artificial peroxidase-protein nanostructure for in situ quantitative molecular detection. Adv. Mater. 2010, 22, 5164-5167.
[16]
W. W. Cheng,; X. Teng,; C. Lu, Structurally ordered catalyst-amplified chemiluminescence signals. Anal. Chem. 2020, 92, 5456-5463.
[17]
L. Y. Chen,; M. K. Cho,; D. Wu,; H. M. Kim,; J. Yoon, Two-photon fluorescence probe for selective monitoring of superoxide in live cells and tissues. Anal. Chem. 2019, 91, 14691-14696.
[18]
M. A. Rahman,; A. Kothalam,; E. S. Choe,; M. S. Won,; Y. B. Shim, Stability and sensitivity enhanced electrochemical in vivo superoxide microbiosensor based on covalently co-immobilized lipid and cytochrome c. Anal. Chem. 2012, 84, 6654-6660.
[19]
O. Yildirim,; B. Derkus, Triazine-based 2D covalent organic frameworks improve the electrochemical performance of enzymatic biosensors. J. Mater. Sci. 2020, 55, 3034-3044.
[20]
H. X. Yang,; J. G. Hou,; Z. H. Wang,; T. T. Zhang,; C. X. Xu, An ultrasensitive biosensor for superoxide anion based on hollow porous PtAg nanospheres. Biosens. Bioelectron. 2018, 117, 429-435.
[21]
Y. P. Luo,; Y. Tian,; Q. Rui, Electrochemical assay of superoxide based on biomimetic enzyme at highly conductive TiO2 nanoneedles: From principle to applications in living cells. Chem. Commun. 2009, 3014-3016.
[22]
K. Barnese,; E. B. Gralla,; D. E. Cabelli,; J. S. Valentine, Manganous phosphate acts as a superoxide dismutase. J. Am. Chem. Soc. 2008, 130, 4604-4606.
[23]
X. Q. Ma,; W. H. Hu,; C. X. Guo,; L. Yu,; L. X. Gao,; J. L. Xie,; C. M. Li, DNA-templated biomimetic enzyme sheets on carbon nanotubes to sensitively in situ detect superoxide anions released from cells. Adv. Funct. Mater. 2014, 24, 5897-5903.
[24]
Z. Zou,; X. Q. Ma,; L. Zou,; Z. Z. Shi,; Q. Q. Sun,; Q. Liu,; T. T. Liang,; C. M. Li, Tailoring pore structures with optimal mesopores to remarkably promote DNA adsorption guiding the growth of active Mn3(PO4)2 toward sensitive superoxide biomimetic enzyme sensors. Nanoscale 2019, 11, 2624-2630.
[25]
Y. Wang,; D. Wang,; L. H. Sun,; P. Xue,; M. Q. Wang,; Z. S. Lu,; F. Wang,; Q. Y. Xia,; M. W. Xu,; S. J. Bao, Constructing high effective nano-Mn3(PO4)2-chitosan in situ electrochemical detection interface for superoxide anions released from living cell. Biosens. Bioelectron. 2019, 133, 133-140.
[26]
X. Cai,; Z. X. Wang,; H. H. Zhang,; Y. F. Li,; K. C. Chen,; H. L. Zhao,; M. B. Lan, Carbon-mediated synthesis of shape-controllable manganese phosphate as nanozymes for modulation of superoxide anions in HeLa cells. J. Mater. Chem. B 2019, 7, 401-407.
[27]
J. J. Gao,; H. Liu,; C. Tong,; L. Y. Pang,; Y. Q. Feng,; M. G. Zuo,; Z. Q. Wei,; J. Q. Li, Hemoglobin-Mn3(PO4)2 hybrid nanoflower with opulent electroactive centers for high-performance hydrogen peroxide electrochemical biosensor. Sens. Actuators B Chem. 2020, 307, 127628.
[28]
M. Naguib,; M. Kurtoglu,; V. Presser,; J. Lu,; J. J. Niu,; M. Heon,; L. Hultman,; Y. Gogotsi,; M. W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248-4253.
[29]
X. H. Xie,; S. G. Chen,; W. Ding,; Y. Nie,; Z. D. Wei, An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti3C2X2 (X = OH, F) nanosheets for oxygen reduction reaction. Chem. Commun. 2013, 49, 10112-10114.
[30]
G. P. Gao,; A. P. O'Mullane,; A. J. Du, 2D MXenes: A new family of promising catalysts for the hydrogen evolution reaction. ACS Catal. 2017, 7, 494-500.
[31]
Q. Wu,; N. B. Li,; Y. Wang,; Y. C. Xu,; J. D. Wu,; G. R. Jia,; F. J. Ji,; X. D. Fang,; F. F. Chen,; X. Q. Cui, Ultrasensitive and selective determination of carcinoembryonic antigen using multifunctional ultrathin amino-functionalized Ti3C2-MXene nanosheets. Anal. Chem. 2020, 92, 3354-3360.
[32]
H. Liu,; C. Y. Duan,; C. H. Yang,; W. Q. Shen,; F. Wang,; Z. F. Zhu, A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2. Sens. Actuators B Chem. 2015, 218, 60-66.
[33]
M. Z. Yu,; S. Zhou,; Z. Y. Wang,; J. J. Zhao,; J. S. Qiu, Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene. Nano Energy 2018, 44, 181-190.
[34]
J. S. Zheng,; B. Wang,; Y. Z. Jin,; B. Weng,; J. C. Chen, Nanostructured MXene-based biomimetic enzymes for amperometric detection of superoxide anions from HepG2 cells. Microchim. Acta 2019, 186, 95.
[35]
M. Mohammadniaei,; A. Koyappayil,; Y. Sun,; J. H. Min,; M. H. Lee, Gold nanoparticle/MXene for multiple and sensitive detection of oncomiRs based on synergetic signal amplification. Biosens. Bioelectron. 2020, 159, 112208.
[36]
H. Wang,; H. Li,; Y. Huang,; M. H. Xiong,; F. Wang,; C. Li, A label-free electrochemical biosensor for highly sensitive detection of gliotoxin based on DNA nanostructure/MXene nanocomplexes. Biosens. Bioelectron. 2019, 142, 111531.
[37]
F. X. Hu,; Y. J. Kang,; F. Du,; L. Zhu,; Y. H. Xue,; T. Chen,; L. M. Dai,; C. M. Li, Living cells directly growing on a DNA/Mn3(PO4)2- immobilized and vertically aligned CNT array as a free-standing hybrid film for highly sensitive in situ detection of released superoxide anions. Adv. Funct. Mater. 2015, 25, 5924-5932.
[38]
G. Neher,; T. T. Salguero, δ-polymorph of manganese phosphate. Cryst. Growth Des. 2017, 17, 4864-4872.
[39]
O. Mashtalir,; M. Naguib,; V. N. Mochalin,; Y. Dall’Agnese,; M. Heon,; M. W. Barsoum,; Y. Gogotsi, Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 2013, 4, 1716.
[40]
Q. Xue,; H. J. Zhang,; M. S. Zhu,; Z. X. Pei,; H. F. Li,; Z. F. Wang,; Y. Huang,; Y. Huang,; Q. H. Deng,; J. Zhou, et al. Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging. Adv. Mater. 2017, 29, 1604847.
[41]
F. Wang,; C. H. Yang,; M. Duan,; Y. Tang,; J. F. Zhu, TiO2 nanoparticle modified organ-like Ti3C2 MXene nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances. Biosens. Bioelectron. 2015, 74, 1022-1028.
[42]
J. F. Zhu,; Y. Tang,; C. H. Yang,; F. Wang,; M. J. Cao, Composites of TiO2 nanoparticles deposited on Ti3C2 MXene nanosheets with enhanced electrochemical performance. J. Electrochem. Soc. 2016, 163, A785-A791.
[43]
M. A. Green,; S. Pillai, Harnessing plasmonics for solar cells. Nat. Photonics 2012, 6, 130-132.
[44]
C. X. Guo,; J. L. Xie,; H. B. Yang,; C. M. Li, Au@CdS core-shell nanoparticles-modified ZnO nanowires photoanode for efficient photoelectrochemical water splitting. Adv. Sci. 2015, 2, 1500135.
[45]
M. Xu,; D. Obodo,; V. K. Yadavalli, The design, fabrication, and applications of flexible biosensing devices. Biosens. Bioelectron. 2019, 124-125, 96-114.
[46]
C. X. Guo,; Y. Zheng,; J. R. Ran,; F. X. Xie,; M. Jaroniec,; S. Z. Qiao, Engineering high-energy interfacial structures for high-performance oxygen-involving electrocatalysis. Angew. Chem., Int. Ed. 2017, 56, 8539-8543.
[47]
C. X. Guo,; C. M. Li, Room temperature-formed iron-doped nickel hydroxide on nickel foam as a 3D electrode for low polarized and high-current-density oxygen evolution. Chem. Commun. 2018, 54, 3262-3265.
[48]
K. Jin,; J. Park,; J. Lee,; K. D. Yang,; G. K. Pradhan,; U. Sim,; D. Jeong,; H. L. Jang,; S. Park,; D. Kim, et al. Hydrated manganese(II) phosphate (Mn3(PO4)2·3H2O) as a water oxidation catalyst. J. Am. Chem. Soc. 2014, 136, 7435-7443.
[49]
C. Yang,; L. Dong,; Z. X. Chen,; H. B. Lu, High-performance all- solid-state supercapacitor based on the assembly of graphene and manganese(II) phosphate nanosheets. J. Phys. Chem. C 2014, 118, 18884-18891.
[50]
J. T. Wang,; P. P. Chen,; B. B. Shi,; W. W. Guo,; M. Jaroniec,; S. Z. Qiao, A regularly channeled lamellar membrane for unparalleled water and organics permeation. Angew. Chem., Int. Ed. 2018, 57, 6814-6818.
[51]
J. H. Peng,; X. Z. Chen,; W. J. Ong,; X. J. Zhao,; N. Li, Surface and heterointerface engineering of 2D MXenes and their nanocomposites: Insights into electro- and photocatalysis. Chem 2019, 5, 18-50.
[52]
R. B. Zhong,; Q. Tang,; S. P. Wang,; H. B. Zhang,; F. Zhang,; M. S. Xiao,; T. T. Man,; X. M. Qu,; L. Li,; W. J. Zhang, et al. Self-assembly of enzyme-like nanofibrous G-molecular hydrogel for printed flexible electrochemical sensors. Adv. Mater. 2018, 30, 1706887.
[53]
S. Chung,; K. Cho,; T. Lee, Recent progress in inkjet-printed thin-film transistors. Adv. Sci. 2019, 6, 1801445.
Nano Research
Pages 879-886
Cite this article:
Zhao SF, Hu FX, Shi ZZ, et al. 2-D/2-D heterostructured biomimetic enzyme by interfacial assembling Mn3(PO4)2 and MXene as a flexible platform for real- time sensitive sensing cell superoxide. Nano Research, 2021, 14(3): 879-886. https://doi.org/10.1007/s12274-020-3130-0
Topics:

794

Views

32

Crossref

0

Web of Science

36

Scopus

3

CSCD

Altmetrics

Received: 16 July 2020
Revised: 17 September 2020
Accepted: 20 September 2020
Published: 01 March 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return