AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Rational design of novel ultra-small amorphous Fe2O3 nanodots/ graphene heterostructures for all-solid-state asymmetric supercapacitors

Chenxiao Wu1,2,§Zhifang Zhang3,§Zhonghui Chen2( )Zuimin Jiang3Huiyu Li1Haijing Cao1Yongsheng Liu1Yanyan Zhu1( )Zebo Fang4Xiangrong Yu5( )
College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China
Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
Department of Physics, Fudan University, Shanghai 200433, China
Department of Physics, Shaoxing University, Shaoxing 312000, China
Department of Medical Imaging, Zhuhai People’s Hospital, Zhuhai Hospital affiliated with Jinan University, Zhuhai 519000, China

§ Chenxiao Wu and Zhifang Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Constructing graphene-based heterostructures with large interfacial area is an efficient approach to enhance the electrochemical performance of supercapacitors but remains great challenges in their synthesis. Herein, a novel ultra-small amorphous Fe2O3 nanodots/graphene heterostructure (a-Fe2O3 NDs/RGO) aerogel was facilely synthesized via excessive metal-ion-induced self-assembly and subsequent calcination route using Prussian blue/graphene oxide (PB/GO) composite aerogel as precursors. The deliberately designed a-Fe2O3 NDs/RGO heterostructure offers a highly interconnected porous conductive network, large heterostructure interfacial area, and plenty of accessible active sites, greatly facilitating the electron transfer, electrolyte diffusion, and pseudocapacitive reactions. The obtained a-Fe2O3 NDs/RGO aerogel could be used as flexible free-standing electrodes after mechanical compression, which exhibited a significantly enhanced specific capacitance of 347.4 F·g−1 at 1 A·g−1, extraordinary rate capability of 184 F·g−1 at 10 A·g−1, and decent cycling stability. With the as-prepared a-Fe2O3 NDs/RGO as negative electrodes and the Co3O4 NDs/RGO as positive electrodes, an all-solid-state asymmetric supercapacitor (a-Fe2O3 NDs/RGO//Co3O4 NDs/RGO asymmetric supercapacitor (ASC)) was assembled, which delivered a high specific capacitance of 69.1 F·g−1 at 1 A·g−1 and an impressive energy density of 21.6 W·h·kg−1 at 750 W·kg−1, as well as good cycling stability with a capacity retention of 94.3% after 5,000 cycles. This work provides a promising avenue to design high-performance graphene-based composite electrodes and profound inspiration for developing advanced flexible energy-storage devices.

Electronic Supplementary Material

Download File(s)
12274_2020_3131_MOESM1_ESM.pdf (3.2 MB)

References

[1]
T. Lv,; M. X. Liu,; D. Z. Zhu,; L. H. Gan; T. Chen, Nanocarbon- based materials for flexible all-solid-state supercapacitors. Adv. Mater. 2018, 30, 1705489.
[2]
H. Yuan,; G. Wang,; Y. X. Zhao,; Y. Liu,; Y. Wu,; Y. G. Zhang, A stretchable, asymmetric, coaxial fiber-shaped supercapacitor for wearable electronics. Nano Res. 2020, 13, 1686-1692.
[3]
S. Zhu,; J. F. Ni,; Y. Li, Carbon nanotube-based electrodes for flexible supercapacitors. Nano Res. 2020, 13, 1825-1841.
[4]
Z. H. Chen,; X. H. An,; L. M. Dai,; Y. X. Xu, Holey graphene-based nanocomposites for efficient electrochemical energy storage. Nano Energy 2020, 73, 104762.
[5]
N. Iqbal,; X. F. Wang,; A. A. Babar,; J. H. Yan,; J. Y. Yu,; S. J. Park,; B. Ding, Polyaniline enriched flexible carbon nanofibers with core-shell structure for high-performance wearable supercapacitors. Adv. Mater. Interfaces 2017, 4, 1700855.
[6]
P. C. Wu,; M. Gao,; S. C. Yu,; M. L. Feng,; S. H. Liu,; J. W. Fu, MnO2 nanosheets grown on N and P co-doped hollow carbon microspheres for high performance asymmetric supercapacitor. Electrochim. Acta 2020 354, 136681.
[7]
Z. F. Zhang,; X. R. Su,; Y. Y. Zhu,; Z. H. Chen,; Z. B. Fang,; X. J. Luo, Porous multishelled NiO hollow microspheres encapsulated within three-dimensional graphene as flexible free-standing electrodes for high-performance supercapacitors. Nanoscale 2019, 11, 16071-16079.
[8]
S. M. Wang,; Z. W. Wang,; Y. H. Wang,; J. F. Chen,; Z. M. Chen,; Y. Chen,; J. W. Fu, Environmentally friendly room temperature synthesis of hierarchical porous α-Ni(OH)2 nanosheets for supercapacitor and catalysis applications. Green Chem. 2019, 21, 5960-5968.
[9]
Z. H. Chen,; S. Li,; Y. Zhao,; M. F. Aly Aboud,; I. Shakir,; Y. X. Xu, Ultrafine FeS2 nanocrystals/porous nitrogen-doped carbon hybrid nanospheres encapsulated in three-dimensional graphene for simultaneous efficient lithium and sodium ion storage. J. Mater. Chem. A 2019, 7, 26342-26350.
[10]
Z. H. Chen,; W. F. Liao,; X. Y. Ni, Spherical polypyrrole nanoparticles growing on the reduced graphene oxide-coated carbon cloth for high performance and flexible all-solid-state supercapacitors. Chem. Eng. J. 2017, 327, 1198-1207.
[11]
P. T. Xiao,; F. X. Bu,; R. R. Zhao,; M. F. Aly Aboud,; I. Shakir,; Y. X. Xu, Sub-5 nm ultrasmall metal-organic framework nanocrystals for highly efficient electrochemical energy storage. ACS Nano 2018, 12, 3947-3953.
[12]
L. Liu,; J. W. Lang,; P. Zhang,; B. Hu,; X. B. Yan, Facile synthesis of Fe2O3 nano-dots@nitrogen-doped graphene for supercapacitor electrode with ultralong cycle life in KOH electrolyte. ACS Appl. Mater. Interfaces 2016, 8, 9335-9344.
[13]
H. Xia,; C. Y. Hong,; B. Li,; B. Zhao,; Z. X. Lin,; M. B. Zheng,; S. V. Savilov,; S. M. Aldoshin, Facile synthesis of hematite quantum-dot/functionalized graphene-sheet composites as advanced anode materials for asymmetric supercapacitors. Adv. Funct. Mater. 2015, 25, 627-635.
[14]
S. Sun,; T. Zhai,; C. L. Liang,; S. V. Savilov,; H. Xia,; Boosted crystalline/amorphous Fe2O3-δ core/shell heterostructure for flexible solid-state pseudocapacitors in large scale. Nano Energy 2018, 45, 390-397.
[15]
F. Yang,; W. Y. Li,; B. H. J. Tang, Facile synthesis of amorphous UiO-66 (Zr-MOF) for supercapacitor application. J. Alloys Compd. 2018, 733, 8-14.
[16]
B. Yan,; Z. H. Chen,; Y. X. Xu, Amorphous and crystalline 2D polymeric carbon nitride nanosheets for photocatalytic hydrogen/ oxygen evolution and hydrogen peroxide production. Chem. Asian J. 2020, 15, 2329-2340.
[17]
T. C. Jiang,; F. X. Bu,; X. X. Feng,; I. Shakir,; G. L. Hao,; Y. X. Xu, Porous Fe2O3 nanoframeworks encapsulated within three-dimensional graphene as high-performance flexible anode for lithium-ion battery. ACS Nano 2017, 11, 5140-5147.
[18]
J. Q. Liu,; M. B. Zheng,; X. Q. Shi,; H. B. Zeng,; H. Xia, Amorphous FeOOH quantum dots assembled mesoporous film anchored on graphene nanosheets with superior electrochemical performance for supercapacitors. Adv. Funct. Mater. 2016, 26, 919-930.
[19]
Z. H. Chen,; J. D. Chen,; F. X. Bu,; P. O. Agboola,; I. Shakir,; Y. X. Xu, Double-holey-heterostructure frameworks enable fast, stable and simultaneous ultrahigh gravimetric, areal, and volumetric lithium storage. ACS Nano 2018, 12, 12879-12887.
[20]
Y. K. Wang,; R. F. Zhang,; J. Chen,; H. Wu,; S. Y. Lu,; K. Wang,; H. L. Li,; C. J. Harris,; K. Xi,; R. V. Kumar, et al. Enhancing catalytic activity of titanium oxide in lithium-Sulfur batteries by band engineering. Adv. Energy Mater. 2019, 9, 1900953.
[21]
Z. F. Zhang,; C. X. Wu,; Z. H. Chen,; H. Y. Li,; H. J. Cao,; X. J. Luo,; Z. B. Fang,; Y. Y. Zhu, Spatially confined synthesis of a flexible and hierarchically porous three-dimensional graphene/FeP hollow nanosphere composite anode for highly efficient and ultrastable potassium ion storage. J. Mater. Chem. A 2020, 8, 3369-3378.
[22]
W. F. Chen,; S. R. Li,; C. H. Chen,; L. F. Yan, Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. Adv. Mater. 2011, 23, 5679-5683.
[23]
F. X. Bu,; P. T. Xiao,; J. D. Chen,; M. F. Aly Aboud,; I. Shakir,; Y. X. Xu, Rational design of three-dimensional graphene encapsulated core-shell FeS@carbon nanocomposite as a flexible high-performance anode for sodium-ion batteries. J. Mater. Chem. A 2018, 6, 6414-6421.
[24]
Y. C. Zhang,; R. Lin,; Y. Fu,; X. J. Wang,; X. Yu,; J. L. Li,; Y. Zhu,; S. Z. Tan,; Z. L. Wang, Metal-organic framework derived Fe2O3 nanocubes on intertwined N-doped carbon nanowires for fiber-shaped supercapacitor. Mater. Lett. 2018, 228, 9-12.
[25]
Z. Y. Zhou,; Q. C. Zhang,; J. Sun,; B. He,; J. B. Guo,; Q. L. Li,; C. W. Li,; L. Y. Xie,; Y. G. Yao, Metal-organic framework derived spindle-like carbon incorporated α-Fe2O3 grown on carbon nanotube fiber as anodes for high-performance wearable asymmetric supercapacitors. ACS Nano 2018, 12, 9333-9341.
[26]
Z. Y. Yu,; X. Y. Zhang,; L. Wei,; X. Guo, MOF-derived porous hollow α-Fe2O3 microboxes modified by silver nanoclusters for enhanced pseudocapacitive storage. Appl. Surf. Sci. 2019, 463, 616-625.
[27]
X. W. He,; L. D. Tian,; M. T. Qiao,; J. Z. Zhang,; W. C. Geng,; Q. Y. Zhang, A novel highly crystalline Fe4(Fe(CN)6)3 concave cube anode material for Li-ion batteries with high capacity and long life. J. Mater. Chem. A 2019, 7, 11478-11486.
[28]
C. J. Zhao,; X. X. Shao,; Y. X. Zhang,; X. Z. Qian, Fe2O3/reduced graphene oxide/Fe3O4 composite in situ grown on Fe foil for high- performance supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 30133-30142.
[29]
M. Li,; X. Y. Li,; Z. Z. Li,; Y. H. Wu, Hierarchical nanosheet-built CoNi2S4 nanotubes coupled with carbon-encapsulated carbon nanotubes@Fe2O3 composites toward high-performance aqueous hybrid supercapacitor devices. ACS Appl. Mater. Interfaces 2018, 10, 34254-34264.
[30]
T. Li,; H. Yu,; L. Zhi,; W. L. Zhang,; L. Q. Dang,; Z. H. Liu,; Z. B. Lei, Facile electrochemical fabrication of porous Fe2O3 nanosheets for flexible asymmetric supercapacitors. J. Phys. Chem. C 2017, 121, 18982-18991.
[31]
L. B. Wang,; H. L. Yang,; X. X. Liu,; R. Zeng,; M. Li,; Y. H. Huang,; X. L. Hu, Constructing hierarchical tectorum-like α-Fe2O3/PPy nanoarrays on carbon cloth for solid-state asymmetric supercapacitors. Angew. Chem., Int. Ed. 2017, 56, 1105-1110.
[32]
G. D. Nie,; X. F. Lu,; M. Q. Chi,; Y. Zhu,; Z. Z. Yang,; N. Song,; C. Wang, Hierarchical α-Fe2O3@MnO2 core-shell nanotubes as electrode materials for high-performance supercapacitors. Electrochim. Acta 2017, 231, 36-43.
[33]
N. W. Pu,; C. Y. Chen,; H. X. Qiu,; Y. M. Liu,; C. H. Song,; M. H. Lin,; M. D. Ger, Hydrothermal synthesis of N-doped graphene/Fe2O3 nanocomposite for supercapacitors. Int. J. Electrochem. Sci. 2018, 13, 6812-6823.
[34]
Z. Jin,; J. Yao,; C. Kittrell,; J. M. Tour, Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets. ACS Nano 2011, 5, 4112-4117.
[35]
R. R. Li,; X. J. Zhou,; H. J. Shen,; M. H. Yang,; C. L. Li, Conductive holey MoO2−Mo3N2 Heterojunctions as job-synergistic cathode host with low surface area for high-loading Li−S batteries. ACS Nano 2019, 13, 10049-10061.
[36]
J. Wang,; S. K. Liu,; X. Zhang,; X. S. Liu,; X. X. Liu,; N. Li,; J. P. Zhao,; Y. Li, A high energy asymmetric supercapacitor based on flower-like CoMoO4/MnO2 heterostructures and activated carbon. Electrochim. Acta 2016, 213, 663-671.
[37]
Q. Y. Liao,; N. Li,; S. X. Jin,; G. W. Yang,; C. X. Wang, All-solid-state symmetric supercapacitor based on Co3O4 nanoparticles on vertically aligned graphene. ACS Nano 2015, 9, 5310-5317.
[38]
R. Z. Li,; Z. Ba,; H. F. Zhang,; P. Xu,; Y. Y. Li,; C. W. Cheng,; J. P. Liu, Conformal multifunctional Titania shell on iron oxide nanorod conversion electrode enables high stability exceeding 30 000 cycles in aqueous electrolyte. Adv. Funct. Mater. 2018, 28, 1800497.
[39]
B. H. Deng,; T. Y. Lei,; W. H. Zhu,; L. Xiao,; J. P. Liu, In-plane assembled orthorhombic Nb2O5 nanorod films with high-rate Li+ intercalation for high-performance flexible Li-ion capacitors. Adv. Funct. Mater. 2018, 28, 1704330.
[40]
M. S. Wu,; Y. A. Huang,; C. H. Yang,; J. J. Jow, Electrodeposition of nanoporous nickel oxide film for electrochemical capacitors. Int. J. Hydrogen Energy 2007, 32, 4153-4159.
[41]
A. Shanmugavani,; R. K. Selvan, Microwave assisted reflux synthesis of NiCo2O4/NiO composite: Fabrication of high performance asymmetric supercapacitor with Fe2O3. Electrochim. Acta 2016, 189, 283-294.
[42]
S. W. Zhang,; B. S. Yin,; Z. B. Wang,; F. Peter, Super long-life all solid-state asymmetric supercapacitor based on NiO nanosheets and α-Fe2O3 nanorods. Chem. Eng. J. 2016, 306, 193-203.
[43]
R. M. Kore,; B. J. Lokhande, A robust solvent deficient route synthesis of mesoporous Fe2O3 nanoparticles as supercapacitor electrode material with improved capacitive performance. J. Alloys Compd. 2017, 725, 129-138.
[44]
M. Mazloum-Ardakani,; F. Sabaghian,; M. Yavari,; A. Ebady,; N. Sahraie, Enhance the performance of iron oxide nanoparticles in supercapacitor applications through internal contact of α-Fe2O3@CeO2 core-shell. J. Alloys Compd. 2020, 819, 152949.
[45]
C. Y. Zhu,; C. Guan,; D. M. Cai,; T. Chen,; Y. H. Wang,; J. J. Du,; J. Wu,; X. Xu,; H. Yu,; W. Huang, Carbon nanoarrays embedded with metal compounds for high-performance flexible supercapacitors. Batteries Supercaps 2020, 3, 93-100.
[46]
H. L. Fan,; R. T. Niu,; J. Q. Duan,; W. Liu,; W. Z. Shen, Fe3O4@carbon nanosheets for all-solid-state supercapacitor electrodes. ACS Appl. Mater. Interfaces 2016, 8, 19475-19483.
[47]
A. M. Khattak,; H. J. Yin,; Z. A. Ghazi,; B. Liang,; A. Iqbal,; N. A. Khan,; Y. Gao,; L. S. Li,; Z. Y. Tang, Three dimensional iron oxide/ graphene aerogel hybrids as all-solid-state flexible supercapacitor electrodes. RSC Adv. 2016, 6, 58994-59000.
[48]
M. Huang,; Y. X. Zhang,; F. Li,; L. L. Zhang,; Z. Y. Wen,; Q. Liu, Facile synthesis of hierarchical Co3O4@MnO2 core-shell arrays on Ni foam for asymmetric supercapacitors. J. Power Sources 2014, 252, 98-106.
[49]
W. W. Liu,; X. Li,; M. H. Zhu,; X. He, High-performance all-solid state asymmetric supercapacitor based on Co3O4 nanowires and carbon aerogel. J. Power Sources 2015, 282, 179-186.
Nano Research
Pages 953-960
Cite this article:
Wu C, Zhang Z, Chen Z, et al. Rational design of novel ultra-small amorphous Fe2O3 nanodots/ graphene heterostructures for all-solid-state asymmetric supercapacitors. Nano Research, 2021, 14(4): 953-960. https://doi.org/10.1007/s12274-020-3131-z
Topics:

899

Views

58

Crossref

N/A

Web of Science

59

Scopus

3

CSCD

Altmetrics

Received: 19 July 2020
Revised: 06 September 2020
Accepted: 20 September 2020
Published: 12 November 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return