AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Double diamond structured bicontinuous mesoporous titania templated by a block copolymer for anode material of lithium-ion battery

Qingqing Sheng1,§Qian Li1,§Luoxing Xiang1Tao Huang1Yiyong Mai1 ( )Lu Han2( )
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China

§ Qingqing Sheng and Qian Li contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Titania has received considerable attention as a promising anode material of Li-ion battery (LIB). Controlling the structure and morphology of titania nanostructures is crucial to govern their performance. Herein, we report a mesoporous titania scaffold with a bicontinuous shifted double diamond (SDD) structure for anode material of LIB. The titania scaffold was synthesized by the cooperative self-assembly of a block copolymer poly(ethylene oxide)-block-polystyrene template and titanium diisopropoxide bis(acetylacetonate) as the inorganic precursor in a mixture solvent of tetrahydrofuran and HCl/water. The structure shows tetragonal symmetry (space group I41/amd) comprising two sets of diamond networks adjoining each other with the unit cell parameter of a = 90 nm and c = 127 nm, which affords the porous titania a specific surface area (SSA) of 42 m2·g−1 with a mean pore diameter of 38 nm. Serving as an anode material of LIB, the bicontinuous titania scaffold exhibits a high specific capacity of 254 mAh·g−1 at the current density of 1 A·g−1 and an alluring self-improving feature upon charge/discharge over 1,000 cycles. This study overcomes the difficulty in building up ordered bicontinuous functional materials and demonstrates their potential in energy storage application.

Electronic Supplementary Material

Download File(s)
12274_2020_3139_MOESM1_ESM.pdf (2.3 MB)

References

[1]
K. Wang,; M. Wei,; M. A. Morris,; H. Zhou,; J. D. Holmes, Mesoporous titania nanotubes: Their preparation and application as electrode materials for rechargeable lithium batteries. Adv. Mater. 2007, 19, 3016-3020.
[2]
W. B. Yue,; X. X. Xu,; J. T. S. Irvine,; P. S. Attidekou,; C. Liu,; H. Y. He,; D. Y. Zhao,; W. Z. Zhou, Mesoporous monocrystalline TiO2 and its solid-state electrochemical properties. Chem. Mater. 2009, 21, 2540-2546.
[3]
Y. M. Jiang,; K. X. Wang,; X. X. Guo,; X. Wei,; J. F. Wang,; J. S. Chen, Mesoporous titania rods as an anode material for high performance lithium-ion batteries. J. Power Sources 2012, 214, 298-302.
[4]
H. W. Zhu,; Y. S. Shang,; Y. K. Jing,; Y. Liu,; Y. P. Liu,; A. M. El-Toni,; F. Zhang,; D. Y. Zhao, Synthesis of monodisperse mesoporous TiO2 nanospheres from a simple double-surfactant assembly-directed method for lithium storage. ACS Appl. Mater. Interfaces 2016, 8, 25586-25594.
[5]
M. G. Fischer,; X. Hua,; B. D. Wilts,; I. Gunkel,; T. M. Bennett,; U. Steiner, Mesoporous titania microspheres with highly tunable pores as an anode material for lithium ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 22388-22397.
[6]
N. Wang,; D. Hou,; Q. Li,; P. F. Zhang,; H. Wei,; Y. Y. Mai, Two- dimensional interface engineering of mesoporous polydopamine on graphene for novel organic cathodes. ACS Appl. Energy Mater. 2019, 2, 5816-5823.
[7]
N. Wang,; H. Tian,; S. Y. Zhu,; D. Y. Yan,; Y. Y. Mai, Two-dimensional nitrogen-doped mesoporous carbon/graphene nanocomposites from the self-assembly of block copolymer micelles in solution. Chin. J. Polym. Sci. 2018, 36, 266-272.
[8]
C. Li,; Q. Li,; Y. V. Kaneti,; D. Hou,; Y. Yamauchi,; Y. Y. Mai, Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems. Chem. Soc. Rev. 2020, 49, 4681-4736.
[9]
L. Han,; S. A. Che, An overview of materials with triply periodic minimal surfaces and related geometry: From biological structures to self-assembled systems. Adv. Mater. 2018, 30, 1705708.
[10]
X. Yang,; Y. B. Tang,; X. Huang,; H. T. Xue,; W. P. Kang,; W. Y. Li,; T. W. Ng,; C. S. Lee, Lithium ion battery application of porous composite oxide microcubes prepared via metal-organic frameworks. J. Power Sources 2015, 284, 109-114.
[11]
Y. Wu,; Z. X. Wei,; R. Xu,; Y. Gong,; L. Gu,; J. M. Ma,; Y. Yu, Boosting the rate capability of multichannel porous TiO2 nanofibers with well-dispersed cu nanodots and Cu2+-doping derived oxygen vacancies for sodium-ion batteries. Nano Res. 2019, 12, 2211-2217.
[12]
A. Yu,; D. C. Gong,; M. Zhang,; Y. B. Tang, In-situ implanted carbon nanofilms into lithium titanate with 3D porous structure as fast kinetics anode for high-performance dual-ion battery. Chem. Eng. J. 2020, 401, 125834.
[13]
C. H. Hwang,; H. E. Kim,; I. Nam,; J. H. Bang, Polygonal multi- polymorphed Li4Ti5O12@rutile TiO2 as anodes in lithium-ion batteries. Nano Res. 2019, 12, 897-904.
[14]
W. Luo,; F. Li,; W. R. Zhang,; K. Han,; J. J. Gaumet,; H. E. Schaefer,; L. Q. Mai, Encapsulating segment-like antimony nanorod in hollow carbon tube as long-lifespan, high-rate anodes for rechargeable K-ion batteries. Nano Res. 2019, 12, 1025-1031.
[15]
X. W. Zhao,; Y. Z. Wu,; Y. S. Wang,; H. S. Wu,; Y. W. Yang,; Z. P. Wang,; L. X. Dai,; Y. Y. Shang,; A. Y. Cao, High-performance Li-ion batteries based on graphene quantum dot wrapped carbon nanotube hybrid anodes. Nano Res. 2020, 13, 1044-1052.
[16]
J. Y. Wang,; W. Huang,; Y. S. Kim,; Y. K. Jeong,; S. C. Kim,; J. Heo,; H. K. Lee,; B. F. Liu,; J. Nah,; Y. Cui, Scalable synthesis of nanoporous silicon microparticles for highly cyclable lithium-ion batteries. Nano Res. 2020, 13, 1558-1563.
[17]
R. Jia,; Y. Jiang,; R. Li,; R. Q. Chai,; Z. Lou,; G. Z. Shen,; D. Chen, Nb2O5 nanotubes on carbon cloth for high performance sodium-ion capacitors. Sci. China Mater. 2020, 63, 1171-1181.
[18]
C. T. Chan,; S. Datta,; K. M. Ho,; C. M. Soukoulis, A7 structure: A family of photonic crystals. Phys. Rev. B 1994, 50, 1988-1991.
[19]
C. B. Gao,; Y. Sakamoto,; K. Sakamoto,; O. Terasaki,; S. A. Che, Synthesis and characterization of mesoporous silica AMS-10 with bicontinuous cubic Pn3m symmetry. Angew. Chem., Int. Ed. 2006, 45, 4295-4298.
[20]
L. Han,; K. Miyasaka,; O. Terasaki,; S. A. Che, Evolution of packing parameters in the structural changes of silica mesoporous crystals: Cage-type, 2D cylindrical, bicontinuous diamond and gyroid, and lamellar. J. Am. Chem. Soc. 2011, 133, 11524-11533.
[21]
X. Cao,; W. T. Mao,; Y. Y. Mai,; L. Han,; S. A. Che, Formation of diverse ordered structures in ABC triblock terpolymer templated macroporous silicas. Macromolecules 2018, 51, 4381-4396.
[22]
Q. Q. Sheng,; W. T. Mao,; L. Han,; S. A. Che, Fabrication of photonic bandgap materials by shifting double frameworks. Chem. Eur. J. 2018, 24, 17389-17396.
[23]
S. Hyde,; Z. Blum,; T. Landh,; S. Lidin,; B. W. Ninham, The Language of Shape: The Role of Curvature in Condensed Matter: Physics, Chemistry and Biology; Elsevier: Amsterdam, 1996.
[24]
M. C. Orilall,; U. Wiesner, Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: Solar cells, batteries, and fuel cells. Chem. Soc. Rev. 2011, 40, 520-535.
[25]
B. K. Cho,; A. Jain,; S. M. Gruner,; U. Wiesner, Mesophase structure- mechanical and ionic transport correlations in extended amphiphilic dendrons. Science 2004, 305, 1598-1601.
[26]
C. B. Gao,; H. B. Qiu,; W. Zeng,; Y. Sakamoto,; O. Terasaki,; K. Sakamoto,; Q. Chen,; S. A. Che, Formation mechanism of anionic surfactant- templated mesoporous silica. Chem. Mater. 2006, 18, 3904-3914.
[27]
S. T. Hyde,; G. E. Schröder-Turk, Geometry of interfaces: Topological complexity in biology and materials. Interface Focus 2012, 2, 529-538.
[28]
H. Z. Yu,; X. Y. Qiu,; S. P. Nunes,; K. V. Peinemann, Biomimetic block copolymer particles with gated nanopores and ultrahigh protein sorption capacity. Nat. Commun. 2014, 5, 4110.
[29]
M. Stefik,; S. Guldin,; S. Vignolini,; U. Wiesner,; U. Steiner, Block copolymer self-assembly for nanophotonics. Chem. Soc. Rev. 2015, 44, 5076-5091.
[30]
Y. H. Deng,; T. Yu,; Y. Wan,; Y. F. Shi,; Y. Meng,; D. Gu,; L. J. Zhang,; Y. Huang,; C. Liu,; X. J. Wu, et al. Ordered mesoporous silicas and carbons with large accessible pores templated from amphiphilic diblock copolymer poly(ethylene oxide)-b-polystyrene. J. Am. Chem. Soc. 2007, 129, 1690-1697.
[31]
Y. Y. Mai,; A. Eisenberg, Self-assembly of block copolymers. Chem. Soc. Rev. 2012, 41, 5969-5985.
[32]
Z. X. Lin,; S. H. Liu,; W. T. Mao,; H. Tian,; N. Wang,; N. H. Zhang,; F. Tian,; L. Han,; X. L. Feng,; Y. Y. Mai, Tunable self-assembly of diblock copolymers into colloidal particles with triply periodic minimal surfaces. Angew. Chem., Int. Ed. 2017, 56, 7135-7140.
[33]
Y. J. La,; J. Song,; M. G. Jeong,; A. Cho,; S. M. Jin,; E. Lee,; K. T. Kim, Templated synthesis of cubic crystalline single networks having large open-space lattices by polymer cubosomes. Nat. Commun. 2018, 9, 5327.
[34]
X. Cao,; D. P. Xu,; Y. Yao,; L. Han,; O. Terasaki,; S. A. Che, Interconversion of triply periodic constant mean curvature surface structures: From double diamond to single gyroid. Chem. Mater. 2016, 28, 3691-3702.
[35]
L. Han,; D. P. Xu,; Y. Liu,; T. Ohsuna,; Y. Yao,; C. Jiang,; Y. Y. Mai,; Y. Y. Cao,; Y. Y. Duan,; S. A. Che, Synthesis and characterization of macroporous photonic structure that consists of azimuthally shifted double-diamond silica frameworks. Chem. Mater. 2014, 26, 7020-7028.
[36]
J. Wei,; H. Wang,; Y. H. Deng,; Z. K. Sun,; L. Shi,; B. Tu,; M. Luqman,; D. Y. Zhao, Solvent evaporation induced aggregating assembly approach to three-dimensional ordered mesoporous silica with ultralarge accessible mesopores. J. Am. Chem. Soc. 2011, 133, 20369-20377.
[37]
E. J. W. Crossland,; M. Kamperman,; M. Nedelcu,; C. Ducati,; U. Wiesner,; D. M. Smilgies,; G. E. S. Toombes,; M. A. Hillmyer,; S. Ludwigs,; U. Steiner, et al. A bicontinuous double gyroid hybrid solar cell. Nano Lett. 2009, 9, 2807-2812.
[38]
M. Stefik,; S. T. Wang,; R. Hovden,; H. Sai,; M. W. Tate,; D. A. Muller,; U. Steiner,; S. M. Gruner,; U. Wiesner, Networked and chiral nanocomposites from ABC triblock terpolymer coassembly with transition metal oxide nanoparticles. J. Mater. Chem. 2012, 22, 1078-1087.
[39]
H. Li,; Y. Liu,; X. Cao,; L. Han,; C. Jiang,; S. A. Che, A shifted double- diamond titania scaffold. Angew. Chem., Int. Ed. 2017, 56, 806-811.
[40]
W. T. Mao,; X. Cao,; Q. Q. Sheng,; L. Han,; S. A. Che, Silica scaffold with shifted “plumber’s nightmare” networks and their interconversion into diamond networks. Angew. Chem., Int. Ed. 2017, 56, 10670-10675.
[41]
J. Hwang,; C. Jo,; K. Hur,; J. Lim,; S. Kim,; J. Lee, Direct access to hierarchically porous inorganic oxide materials with three-dimensionally interconnected networks. J. Am. Chem. Soc. 2014, 136, 16066-16072.
[42]
H. S. Liu,; Z. H. Bi,; X. G. Sun,; R. R. Unocic,; M. P. Paranthaman,; S. Dai,; G. M. Brown, Mesoporous TiO2-b microspheres with superior rate performance for lithium ion batteries. Adv. Mater. 2011, 23, 3450-3454.
[43]
E. Madej,; F. La Mantia,; B. Mei,; S. Klink,; M. Muhler,; W. Schuhmann,; E. Ventosa, Reliable benchmark material for anatase TiO2 in Li- ion batteries: On the role of dehydration of commercial TiO2. J. Power Sources 2014, 266, 155-161.
[44]
M. Stefik,; S. Mahajan,; H. Sai,; T. H. Epps,; F. S. Bates,; S. M. Gruner,; F. J. Disalvo,; U. Wiesner, Ordered three- and five-ply nanocomposites from abc block terpolymer microphase separation with niobia and aluminosilicate sols. Chem. Mater. 2009, 21, 5466-5473.
[45]
J. Wang,; Y. K. Zhou,; Y. Y. Hu,; R. O’Hayre,; Z. P. Shao, Facile synthesis of nanocrystalline TiO2 mesoporous microspheres for lithium-ion batteries. J. Phys. Chem. C 2011, 115, 2529-2536.
[46]
J. H. Jeong,; D. W. Jung,; E. W. Shin,; E. S. Oh, Boron-doped TiO2 anode materials for high-rate lithium ion batteries. J. Alloys Compd. 2014, 604, 226-232.
[47]
J. X. Qiu,; P. Zhang,; M. Ling,; S. Li,; P. R. Liu,; H. J. Zhao,; S. Q. Zhang, Photocatalytic synthesis of TiO2 and reduced graphene oxide nanocomposite for lithium ion battery. ACS Appl. Mater. Interfaces 2012, 4, 3636-3642.
[48]
S. M. Oh,; J. Y. Hwang,; C. S. Yoon,; J. Lu,; K. Amine,; I. Belharouak,; Y. K. Sun, High electrochemical performances of microsphere C-TiO2 anode for sodium-ion battery. ACS Appl. Mater. Interfaces 2014, 6, 11295-11301.
[49]
J. Li,; J. F. Huang,; J. Y. Li,; L. Y. Cao,; H. Qi,; Y. Y. Cheng,; Q. Xi,; H. Dang, Improved li-ion diffusion process in TiO2/RGO anode for lithium-ion battery. J. Alloys Compd. 2017, 727, 998-1005.
[50]
I. Moriguchi,; Y. Shono,; H. Yamada,; T. Kudo, Colloidal crystal- derived nanoporous electrode materials of cut swnts-assembly and TiO2/SWNTs nanocomposite. J. Phys. Chem. B 2008, 112, 14560-14565.
[51]
H. Lindström,; S. Södergren,; A. Solbrand,; H. Rensmo,; J. Hjelm,; A. Hagfeldt,; S. E. Lindquist, Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J. Phys. Chem. B 1997, 101, 7717-7722.
[52]
D. McNulty,; E. Carroll,; C. O'Dwyer, Rutile TiO2 inverse opal anodes for Li-ion batteries with long cycle life, high-rate capability, and high structural stability. Adv. Energy Mater. 2017, 7, 1602291.
[53]
J. Jin,; S. Z. Huang,; J. Shu,; H. E. Wang,; Y. Li,; Y. Yu,; L. H. Chen,; B. J. Wang,; B. L. Su, Highly porous TiO2 hollow microspheres constructed by radially oriented nanorods chains for high capacity, high rate and long cycle capability lithium battery. Nano Energy 2015, 16, 339-349.
[54]
H. Xiong,; H. Yildirim,; E. V. Shevchenko,; V. B. Prakapenka,; B. Koo,; M. D. Slater,; M. Balasubramanian,; S. K. R. S. Sankaranarayanan,; J. P. Greeley,; S. Tepavcevic, et al. Self-improving anode for lithium-ion batteries based on amorphous to cubic phase transition in TiO2 nanotubes. J. Phys. Chem. C 2012, 116, 3181-3187.
[55]
M. Zhou,; Y. Xu,; C. L. Wang,; Q. W. Li,; J. X. Xiang,; L. Y. Liang,; M. H. Wu,; H. P. Zhao,; Y. Lei, Amorphous TiO2 inverse opal anode for high-rate sodium ion batteries. Nano Energy 2017, 31, 514-524.
[56]
J. S. Chen,; Y. L. Tan,; C. M. Li,; Y. L. Cheah,; D. Y. Luan,; S. Madhavi,; F. Y. C. Boey,; L. A. Archer,; X. W. Lou, Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J. Am. Chem. Soc. 2010, 132, 6124-6130.
[57]
L. Kavan,; M. Kalbáč,; M. Zukalová,; I. Exnar,; V. Lorenzen,; R. Nesper,; M. Graetzel, Lithium storage in nanostructured TiO2 made by hydrothermal growth. Chem. Mater. 2004, 16, 477-485.
[58]
N. Li,; G. Liu,; C. Zhen,; F. Li,; L. L. Zhang,; H. M. Cheng, Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template-free self-assembly. Adv. Funct. Mater. 2011, 21, 1717-1722.
[59]
L. Qie,; W. M. Chen,; Z. H. Wang,; Q. G. Shao,; X. Li,; L. X. Yuan,; X. L. Hu,; W. X. Zhang,; Y. H. Huang, Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv. Mater. 2012, 24, 2047-2050.
[60]
W. M. Lv,; J. Y. Xiang,; F. S. Wen,; Z. Y. Jia,; R. L. Yang,; B. Xu,; D. L. Yu,; J. L. He,; Z. Y. Liu, Chemical vapor synthesized WS2-embedded polystyrene-derived porous carbon as superior long-term cycling life anode material for li-ion batteries. Electrochim. Acta 2015, 153, 49-54.
[61]
S. B. Yang,; X. L. Feng,; K. Müllen, Sandwich-like, graphene-based titania nanosheets with high surface area for fast lithium storage. Adv. Mater. 2011, 23, 3575-3579.
Nano Research
Pages 992-997
Cite this article:
Sheng Q, Li Q, Xiang L, et al. Double diamond structured bicontinuous mesoporous titania templated by a block copolymer for anode material of lithium-ion battery. Nano Research, 2021, 14(4): 992-997. https://doi.org/10.1007/s12274-020-3139-4
Topics:

1031

Views

28

Crossref

N/A

Web of Science

25

Scopus

4

CSCD

Altmetrics

Received: 12 August 2020
Revised: 14 September 2020
Accepted: 20 September 2020
Published: 23 October 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return