PDF (840.5 KB)
Collect
Submit Manuscript
Research Article | Open Access

High power and stable P-doped yolk-shell structured Si@C anode simultaneously enhancing conductivity and Li+ diffusion kinetics

Ming Chen1Qinnan Zhou1Jiantao Zai1()Asma Iqbal1TsegayeTadesse Tsega1Boxu Dong1Xuejiao Liu1Yuchi Zhang1Changyu Yan1Liang Zhao1Ali Nazakat1SharelPeisan E2,3CheeTongJohn Low2()Xuefeng Qian1()
Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
Warwick Electrochemical Engineering Group, WMG, Energy Innovation Centre, University of Warwick, CV4 7AL, UK
School of Health & Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Silicon is a low price and high capacity anode material for lithium-ion batteries. The yolk-shell structure can effectively accommodate Si expansion to improve stability. However, the limited rate performance of Si anodes can't meet people's growing demand for high power density. Herein, the phosphorus-doped yolk-shell Si@C materials (P-doped Si@C) were prepared through carbon coating on P-doped Si/SiOx matrix to obtain high power and stable devices. Therefore, the as-prepared P-doped Si@C electrodes delivered a rapid increase in Coulombic efficiency from 74.4% to 99.6% after only 6 cycles, high capacity retention of ~ 95% over 800 cycles at 4 A·g−1, and great rate capability (510 mAh·g−1 at 35 A·g−1). As a result, P-doped Si@C anodes paired with commercial activated carbon and LiFePO4 cathode to assemble lithium-ion capacitor (high power density of ~ 61,080 W·kg−1 at 20 A·g−1) and lithium-ion full cell (good rate performance with 68.3 mAh·g−1 at 5 C), respectively. This work can provide an effective way to further improve power density and stability for energy storage devices.

Electronic Supplementary Material

Download File(s)
12274_2020_3142_MOESM1_ESM.pdf (3.5 MB)

References

[1]
A. S. Aricò,; P. Bruce,; B. Scrosati,; J. M. Tarascon,; W. van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366-377.
[2]
M. Armand,; J. M. Tarascon, Building better batteries. Nature 2008, 451, 652-657.
[3]
B. Dunn,; H. Kamath,; J. M. Tarascon, Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928-935.
[4]
Z. Yi,; W. W. Wang,; Y. Qian,; X. Y. Liu,; N. Lin,; Y. T. Qian, Mechanical pressing route for scalable preparation of microstructured/ nanostrutured Si/graphite composite for lithium ion battery anodes. ACS Sustainable Chem. Eng. 2018, 6, 14230-14238.
[5]
A. Gurung,; J. Pokharel,; A. Baniya,; R. Pathak,; K. Chen,; B. S. Lamsal,; N. Ghimire,; W. H. Zhang,; Y. Zhou,; Q. Q. Qiao, A review on strategies addressing interface incompatibilities in inorganic all-solid-state lithium batteries. Sustainable Energy Fuels 2019, 3, 3279-3309.
[6]
K. Chen,; R. Pathak,; A. Gurung,; K. M. Reza,; N. Ghimire,; J. Pokharel,; A. Baniya,; W. He,; J. J. Wu,; Q. Q. Qiao, et al. A copper-clad lithiophilic current collector for dendrite-free lithium metal anodes. J. Mater. Chem. A 2020, 8, 1911-1919.
[7]
M. McGraw,; P. Kolla,; B. Yao,; R. Cook,; Q. Quiao,; J. Wu,; A. Smirnova, One-step solid-state in-situ thermal polymerization of silicon-PEDOT nanocomposites for the application in lithium-ion battery anodes. Polymer 2016, 99, 488-495.
[8]
A. Gurung,; R. Naderi,; B. Vaagensmith,; G. Varnekar,; Z. P. Zhou,; H. Elbohy,; Q. Q. Qiao, Tin selenide—Multi-walled carbon nanotubes hybrid anodes for high performance lithium-ion batteries. Electrochim. Acta 2016, 211, 720-725.
[9]
S. J. P. Varapragasam,; C. Balasanthiran,; A. Gurung,; Q. Q. Qiao,; R. M. Rioux,; J. D. Hoefelmeyer, Kirkendall growth of hollow Mn3O4 nanoparticles upon galvanic reaction of MnO with Cu2+ and evaluation as anode for lithium-ion batteries. J. Phys. Chem. C 2017, 121, 11089-11099.
[10]
S. Liu,; W. W. Lei,; Y. Liu,; Q. Q. Qiao,; W. H. Zhang, Hierarchical nanosheet-based MS2 (M = Re, Mo, W) nanotubes prepared by templating sacrificial Te nanowires with superior lithium and sodium storage capacity. ACS Appl. Mater. Interfaces 2018, 10, 37445-37452.
[11]
R. Pathak,; K. Chen,; A. Gurung,; K. M. Reza,; B. Bahrami,; J. Pokharel,; A. Baniya,; W. He,; F. Wu,; Y. Zhou, et al. Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition. Nat. Commun. 2020, 11, 93.
[12]
D. Aurbach,; B. Markovsky,; I. Weissman,; E. Levi,; Y. Ein-Eli, On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochim. Acta 1999, 45, 67-86.
[13]
P. Yu,; B. S. Haran,; J. A. Ritter,; R. E. White,; B. N. Popov, Palladium-microencapsulated graphite as the negative electrode in Li-ion cells. J. Power Sources 2000, 91, 107-117.
[14]
Z. P. Zhou,; H. Zhang,; Y. Zhou,; H. Qiao,; A. Gurung,; R. Naderi,; H. Elbohy,; A. L. Smirnova,; H. T. Lu,; S. L. Chen, et al. Binder free hierarchical mesoporous carbon foam for high performance lithium ion battery. Sci. Rep. 2017, 7, 1440.
[15]
X. L. Qu,; X. Zhang,; Y. Gao,; J. J. Hu,; M. X. Gao,; H. G. Pan,; Y. F. Liu, Remarkably improved cycling stability of boron-strengthened multicomponent layer protected micron-Si composite anode. ACS Sustainable Chem. Eng. 2019, 7, 19167-19175.
[16]
M. H. Park,; M. G. Kim,; J. Joo,; K. Kim,; J. Kim,; S. Ahn,; Y. Cui,; J. Cho, Silicon nanotube battery anodes. Nano Lett. 2009, 9, 3844-3847.
[17]
C. K. Chan,; H. L. Peng,; G. Liu,; K. McIlwrath,; X. F. Zhang,; R. A. Huggins,; Y. Cui, High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31-35.
[18]
X. L. Chen,; K. Gerasopoulos,; J. C. Guo,; A. Brown,; C. S. Wang,; R. Ghodssi,; J. N. Culver, Virus-enabled silicon anode for lithium-ion batteries. ACS Nano 2010, 4, 5366-5372.
[19]
H. K. Liu,; Z. P. Guo,; J. Z. Wang,; K. Konstantinov, Si-based anode materials for lithium rechargeable batteries. J. Mater. Chem. 2010, 20, 10055-10057.
[20]
W. Wang,; P. N. Kumta, Nanostructured hybrid silicon/carbon nanotube heterostructures: Reversible high-capacity lithium-ion anodes. ACS Nano 2010, 4, 2233-2241.
[21]
X. L. Chen,; K. Gerasopoulos,; J. C. Guo,; A. Brown,; R. Ghodssi,; J. N. Culver,; C. S. Wang, High rate performance of virus enabled 3D n-type Si anodes for lithium-ion batteries. Electrochim. Acta 2011, 56, 5210-5213.
[22]
S. J. Lee,; J. K. Lee,; S. H. Chung,; H. Y. Lee,; S. M. Lee,; H. K. Baik, Stress effect on cycle properties of the silicon thin-film anode. J. Power Sources 2001, 97-98, 191-193.
[23]
Q. Liu,; Z. Cui,; R. J. Zou,; J. H. Zhang,; K. B. Xu,; J. Q. Hu, Surface coating constraint induced anisotropic swelling of silicon in Si-void@SiOx nanowire anode for lithium-ion batteries. Small 2017, 13, 1603754.
[24]
W. H. Li,; X. L. Sun,; Y. Yu, Si-, Ge-, Sn-based anode materials for lithium-ion batteries: From structure design to electrochemical performance. Small Methods 2017, 1, 1600037.
[25]
M. Ashuri,; Q. R. He,; L. L. Shaw, Silicon as a potential anode material for Li-ion batteries: Where size, geometry and structure matter. Nanoscale 2016, 8, 74-103.
[26]
N. Liu,; H. Wu,; M. T. McDowell,; Y. Yao,; C. M. Wang,; Y. Cui, A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 2012, 12, 3315-3321.
[27]
L. Zhang,; C. R. Wang,; Y. H. Dou,; N. Y. Cheng,; D. D. Cui,; Y. Du,; P. R. Liu,; M. Al-Mamun,; S. Q. Zhang,; H. J. Zhao, A yolk-shell structured silicon anode with superior conductivity and high tap density for full lithium-ion batteries. Angew. Chem., Int. Ed. 2019, 58, 8824-8828.
[28]
L. Pan,; H. B. Wang,; D. C. Gao,; S. Y. Chen,; L. Tan,; L. Li, Facile synthesis of yolk-shell structured Si-C nanocomposites as anodes for lithium-ion batteries. Chem. Commun. 2014, 50, 5878-5880.
[29]
B. Li,; R. R. Qi,; J. T. Zai,; F. H. Du,; C. Xue,; Y. Jin,; C. Y. Jin,; Z. F. Ma,; X. F. Qian, Silica wastes to high-performance lithium storage materials: A rational designed Al2O3 coating assisted magnesiothermic process. Small 2016, 12, 5281-5287.
[30]
B. Li,; S. X. Li,; Y. Jin,; J. T. Zai,; M. Chen,; A. Nazakat,; P. Zhan,; Y. Huang,; X. F. Qian, Porous Si@C ball-in-ball hollow spheres for lithium-ion capacitors with improved energy and power densities. J. Mater. Chem. A 2018, 6, 21098-21103.
[31]
Y. J. Liu,; Z. X. Tai,; T. F. Zhou,; V. Sencadas,; J. Zhang,; L. Zhang,; K. Konstantinov,; Z. P. Guo,; H. K. Liu, An all-integrated anode via interlinked chemical bonding between double-shelled-yolk-structured silicon and binder for lithium-ion batteries. Adv. Mater. 2017, 29, 1703028.
[32]
J. Xie,; L. Tong,; L. W. Su,; Y. W. Xu,; L. B. Wang,; Y. H. Wang, Core-shell yolk-shell Si@C@Void@C nanohybrids as advanced lithium ion battery anodes with good electronic conductivity and corrosion resistance. J. Power Sources 2017, 342, 529-536.
[33]
R. Chandrasekaran,; A. Magasinski,; G. Yushin,; T. F. Fuller, Analysis of lithium insertion/deinsertion in a silicon electrode particle at room temperature. J. Electrochem. Soc. 2010, 157, A1139-A1151.
[34]
M. Chen,; B. Li,; X. J. Liu,; L. Zhou,; L. Yao,; J. T. Zai,; X. F. Qian,; X. B. Yu, Boron-doped porous Si anode materials with high initial coulombic efficiency and long cycling stability. J. Mater. Chem. A 2018, 6, 3022-3027.
[35]
L. C. Burton,; A. H. Madjid, Coulomb screening in intrinsic medium-gap semiconductors and the electrical conductivity of silicon at elevated temperatures. Phys. Rev. 1969, 185, 1127-1132.
[36]
M. H. Kong,; J. H. Noh,; D. J. Byun,; J. K. Lee, Electrochemical characteristics of phosphorus doped silicon and graphite composite for the anode materials of lithium secondary batteries. J. Electroceram. 2009, 23, 376.
[37]
M. Perego,; C. Bonafos,; M. Fanciulli, Phosphorus doping of ultra- small silicon nanocrystals. Nanotechnology 2010, 21, 025602.
[38]
J. W. Liang,; D. H. Wei,; N. Lin,; Y. C. Zhu,; X. N. Li,; J. J. Zhang,; L. Fan,; Y. T. Qian, Low temperature chemical reduction of fusional sodium metasilicate nonahydrate into a honeycomb porous silicon nanostructure. Chem. Commun. 2014, 50, 6856-6859.
[39]
S. Q. Chen,; L. F. Shen,; P. A. van Aken,; J. Maier,; Y. Yu, Dual- functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries. Adv. Mater. 2017, 29, 1605650.
[40]
Z. D. Lu,; N. Liu,; H. W. Lee,; J. Zhao,; W. Y. Li,; Y. Z. Li,; Y. Cui, Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes. ACS Nano 2015, 9, 2540-2547.
[41]
G. X. Lv,; B. Zhu,; X. Q. Li,; C. L. Chen,; J. L. Li,; Y. Jin,; X. Z. Hu,; J. Zhu, Simultaneous perforation and doping of Si nanoparticles for lithium-ion battery anode. ACS Appl. Mater. Interfaces 2017, 9, 44452-44457.
[42]
N. H. Nickel,; P. Lengsfeld,; I. Sieber, Raman spectroscopy of heavily doped polycrystalline silicon thin films. Phys. Rev. B 2000, 61, 15558-15561.
[43]
W. S. Wei,; G. Y. Xu,; J. L. Wang,; T. M. Wang, Raman spectra of intrinsic and doped hydrogenated nanocrystalline silicon films. Vacuum 2007, 81, 656-662.
[44]
J. S. Kim,; W. Choi,; D. Byun,; J. K. Lee, Electrochemical characteristics of phosphorus doped silicon for the anode material of lithium secondary batteries. Solid State Ionics 2012, 212, 43-46.
[45]
P. Lu,; W. W. Mu,; J. Xu,; X. W. Zhang,; W. P. Zhang,; W. Li,; L. Xu,; K. J. Chen, Phosphorus doping in Si nanocrystals/SiO2 multilayers and light emission with wavelength compatible for optical telecommunication. Sci. Rep. 2016, 6, 22888.
[46]
X. J. Gao,; B. Guan,; A. Mesli,; K. X. Chen,; Y. P. Dan, Deep level transient spectroscopic investigation of phosphorus-doped silicon by self-assembled molecular monolayers. Nat. Commun. 2018, 9, 118.
[47]
S. Q. Huang,; L. Z. Cheong,; D. Y. Wang,; C. Shen, Nanostructured phosphorus doped silicon/graphite composite as anode for high- performance lithium-ion batteries. ACS Appl. Mater. Interfaces. 2017, 9, 23672-23678.
[48]
X. Y. Dou,; M. Chen,; J. T. Zai,; Z. De,; B. X. Dong,; X. J. Liu,; N. Ali,; T. T. Tsega,; R. R. Qi,; X. F. Qian, Carbon coated porous silicon flakes with high initial coulombic efficiency and long-term cycling stability for lithium ion batteries. Sustainable Energy Fuels 2019, 3, 2361-2365.
[49]
E. Pollak,; G. Salitra,; V. Baranchugov,; D. Aurbach, In situ conductivity, impedance spectroscopy, and ex situ Raman spectra of amorphous silicon during the insertion/extraction of lithium. J. Phys. Chem. C 2007, 111, 11437-11444.
[50]
K. Chen,; R. Pathak,; A. Gurung,; E. A. Adhamash,; B. Bahrami,; Q. Q. He,; H. Qiao,; A. L. Smirnova,; J. J. Wu,; Q. Q. Qiao, et al. Flower-shaped lithium nitride as a protective layer via facile plasma activation for stable lithium metal anodes. Energy Storage Materials 2019, 18, 389-396.
[51]
R. Pathak,; K. Chen,; A. Gurung,; K. M. Reza,; B. Bahrami,; F. Wu,; A. Chaudhary,; N. Ghimire,; B. Zhou,; W. H. Zhang, et al. Ultrathin bilayer of graphite/SiO2 as solid interface for reviving Li metal anode. Adv. Energy Mater. 2019, 9, 1901486.
[52]
L. W. Su,; J. Xie,; Y. W. Xu,; L. B. Wang,; Y. H. Wang,; M. M. Ren, Preparation and lithium storage performance of yolk-shell Si@void@C nanocomposites. Phys. Chem. Chem. Phys. 2015, 17, 17562-17565.
[53]
Y. Han,; J. D. Zou,; Z. Li,; W. Q. Wang,; Y. Jie,; J. M. Ma,; B. Tang,; Q. Zhang,; X. Cao,; S. M. Xu, et al. Si@void@C nanofibers fabricated using a self-powered electrospinning system for lithium-ion batteries. ACS Nano 2018, 12, 4835-4843.
[54]
J. Jiang,; H. Zhang,; J. H. Zhu,; L. P. Li,; Y. N. Liu,; T. Meng,; L. Ma,; M. W. Xu,; J. P. Liu,; C. M. Li, Putting nanoarmors on yolk-shell Si@C nanoparticles: A reliable engineering way to build better Si-based anodes for Li-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 24157-24163.
[55]
J. Nzabahimana,; S. T. Guo,; X. L. Hu, Facile synthesis of Si@void@C nanocomposites from low-cost microsized Si as anode materials for lithium-ion batteries. Appl. Surf. Sci. 2019, 479, 287-295.
[56]
A. Celzard,; J. F. Marêché,; F. Payot,; G. Furdin, Electrical conductivity of carbonaceous powders. Carbon 2002, 40, 2801-2815.
[57]
R. Pathak,; A. Gurung,; H. Elbohy,; K. Chen,; K. M. Reza,; B. Bahrami,; S. Mabrouk,; R. Ghimire,; M. Hummel,; Z. R. Gu, et al. Self-recovery in Li-metal hybrid lithium-ion batteries via WO3 reduction. Nanoscale 2018, 10, 15956-15966.
[58]
Z. L. Li,; H. L. Zhao,; P. P. Lv,; Z. J. Zhang,; Y. Zhang,; Z. H. Du,; Y. Q. Teng,; L. N. Zhao,; Z. M. Zhu, Watermelon-like structured SiOx-TiO2@C nanocomposite as a high-performance lithium-ion battery anode. Adv. Funct. Mater. 2018, 28, 1605711.
[59]
R. Pathak,; Y. Zhou,; Q. Q. Qiao, Recent advances in lithiophilic porous framework toward dendrite-free lithium metal anode. Appl. Sci. 2020, 10, 4185.
[60]
B. Li,; Z. J. Xiao,; M. Chen,; Z. Y. Huang,; X. Y. Tie,; J. T. Zai,; X. F. Qian, Rice husk-derived hybrid lithium-ion capacitors with ultra-high energy. J. Mater. Chem. A 2017, 5, 24502-24507.
[61]
B. Li,; F. Dai,; Q. F. Xiao,; L. Yang,; J. M. Shen,; C. M. Zhang,; M. Cai, Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ. Sci. 2016, 9, 102-106.
[62]
B. Li,; F. Dai,; Q. F. Xiao,; L. Yang,; J. M. Shen,; C. M. Zhang,; M. Cai, Activated carbon from biomass transfer for high-energy density lithium-ion supercapacitors. Adv. Energy Mater. 2016, 6, 1600802.
[63]
X. Y. Liu,; H. G. Jung,; S. O. Kim,; H. S. Choi,; S. Lee,; J. H. Moon,; J. K. Lee, Silicon/copper dome-patterned electrodes for high-performance hybrid supercapacitors. Sci. Rep. 2013, 3, 3183.
[64]
R. Yi,; S. R. Chen,; J. X. Song,; M. L. Gordin,; A. Manivannan,; D. H. Wang, High-performance hybrid supercapacitor enabled by a high-rate Si-based anode. Adv. Funct. Mater. 2014, 24, 7433-7439.
Nano Research
Pages 1004-1011
Cite this article:
Chen M, Zhou Q, Zai J, et al. High power and stable P-doped yolk-shell structured Si@C anode simultaneously enhancing conductivity and Li+ diffusion kinetics. Nano Research, 2021, 14(4): 1004-1011. https://doi.org/10.1007/s12274-020-3142-9
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return