AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Z-scheme photocatalyst based on porphyrin derivative decorated few-layer BiVO4 nanosheets for efficient visible-light-driven overall water splitting

Jinming Wang1,3Lulu Guo1,3Lei Xu1,3Peng Zeng2,3( )Renjie Li1( )Tianyou Peng1,3( )
College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan 430072, China
School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526061, China
Research Institute of Wuhan University in Shenzhen, Wuhan University, Shenzhen 518057, China
Show Author Information

Graphical Abstract

Abstract

It is highly desirable to simulate natural photosynthesis by using sunlight to drive the overall water splitting without using external bias and sacrificial agent. Herein, few-layer monoclinic BiVO4 nanosheets (BVNS) with a thickness of ~4.3 nm, exposed (010) facets and abundant oxygen vacancies are fabricated using graphene oxide dots as templating reagent. After decorating with asymmetric chromium porphyrin derivative bearing one benzoic acid and three phenyls as meso-position substituents (chromium-5-(4-carboxyphenyl)-10,15,20-triphenylporphrin, CrmTPP) and PtOx cocatalyst, the obtained two-dimensional (2D) hybrid nanocomposite (BVNS/CrmTPP/Pt) with an optimal component ratio delivers a robust overall water splitting performance with a relatively high apparent quantum yield (8.67%) at 400 nm monochromatic light. The ultrathin structure and widely distributed oxygen vacancies on the exposed (010) facets of BVNS not only endow strong and intimate contact with the decorated CrmTPP molecules to promote a two-step excitation Z-scheme charge transfer mechanism for preserving the high redox ability of the photogenerated charge carriers, but also alleviate their recombination, and thus causing the robust overall water splitting performance of the 2D hybrid nanocomposites. The present results provide a novel strategy to construct highly efficient artificial photosynthetic system for overall water splitting.

Electronic Supplementary Material

Download File(s)
12274_2020_3145_MOESM1_ESM.pdf (5 MB)

References

[1]
M. S. Zhu,; Z. C. Sun,; M. Fujitsuka,; T. Majima, Z-scheme photocatalytic water splitting on a 2D heterostructure of black phosphorus/bismuth vanadate using visible light. Angew. Chem., Int. Ed. 2018, 57, 2160-2164.
[2]
Y. Zhang,; L. L. Wu,; X. Y. Zhao,; Y. N. Zhao,; H. Q. Tan,; X. Zhao,; Y. Y. Ma,; Z. Zhao,; S. Y. Song,; Y. H. Wang, et al. Leaf-mosaic-inspired vine-like graphitic carbon nitride showing high light absorption and efficient photocatalytic hydrogen evolution. Adv. Energy Mater. 2018, 8, 1801139.
[3]
L. Hui,; Y. R. Xue,; B. L. Huang,; H. D. Yu,; C. Zhang,; D. Y. Zhang,; D. Z. Jia,; Y. J. Zhao,; Y. J. Li,; H. B. Liu, et al. Overall water splitting by graphdiyne-exfoliated and -sandwiched layered double-hydroxide nanosheet arrays. Nat. Commun. 2018, 9, 5309.
[4]
J. M. Wang,; J. Luo,; D. Liu,; S. T. Chen,; T. Y. Peng, One-pot solvothermal synthesis of MoS2-modified Mn0.2Cd0.8S/MnS heterojunction photocatalysts for highly efficient visible-light-driven H2 production. Appl. Catal. B Environ. 2019, 241, 130-140.
[5]
Y. Tsuji,; K. Yamamoto,; K. Yamauchi,; K. Sakai, Near-infrared light-driven hydrogen evolution from water using a polypyridyl triruthenium photosensitizer. Angew. Chem., Int. Ed. 2018, 57, 208-212.
[6]
J. Q. Xu,; X. D. Li,; Z. Y. Ju,; Y. F. Sun,; X. C. Jiao,; J. Wu,; C. M. Wang,; W. S. Yan,; H. X. Ju,; J. F. Zhu, et al. Visible-light-driven overall water splitting boosted by tetrahedrally coordinated blende cobalt(II) oxide atomic layers. Angew. Chem., Int. Ed. 2019, 58, 3032-3036.
[7]
C. W. Dong,; S. Y. Lu,; S. Y. Yao,; R. Ge,; Z. D. Wang,; Z. Wang,; P. F. An,; Y. Liu,; B. Yang,; H. Zhang, Colloidal synthesis of ultrathin monoclinic BiVO4 nanosheets for Z-scheme overall water splitting under visible light. ACS Catal. 2018, 8, 8649-8658.
[8]
X. H. Zhang,; J. Xiao,; M. Hou,; Y. G. Xiang,; H. Chen, Robust visible/near-infrared light driven hydrogen generation over Z-scheme conjugated polymer/CdS hybrid. Appl. Catal. B Environ. 2018, 224, 871-876.
[9]
Q. Wang,; T. Hisatomi,; Y. Suzuk,; Z. H. Pan,; J. Seo,; M. Katayama,; T. Minegishi,; H. Nishiyama,; T. Takata,; K. Seki, et al. Particulate photocatalyst sheets based on carbon conductor layer for efficient Z-scheme pure-water splitting at ambient pressure. J. Am. Chem. Soc. 2017, 139, 1675-1683.
[10]
Q. Zhang,; W. J. Wang,; J. Q. Zhang,; X. H. Zhu,; Q. Q. Zhang,; Y. J. Zhang,; Z. M. Ren,; S. S. Song,; J. M. Wang,; Z. H. Ying, et al. Highly efficient photocatalytic hydrogen evolution by ReS2 via a two-electron catalytic reaction. Adv. Mater. 2018, 30, 1707123.
[11]
X. Hai,; W. Zhou,; K. Chang,; H. Pang,; H. M. Liu,; L. Shi,; F. Ichihara,; J. H. Ye, Engineering the crystallinity of MoS2 monolayers for highly efficient solar hydrogen production. J. Mater. Chem. A 2017, 5, 8591-8598.
[12]
S. Ida,; N. Kim,; E. Ertekin,; S. Takenaka,; T. Ishihara, Photocatalytic reaction centers in two-dimensional titanium oxide crystals. J. Am. Chem. Soc. 2015, 137, 239-244.
[13]
M. Xiao,; B. Luo,; M. Q. Lyu,; S. C. Wang,; L. Z. Wang, Single-crystalline nanomesh tantalum nitride photocatalyst with improved hydrogen-evolving performance. Adv. Energy Mater. 2018, 8, 1701605.
[14]
F. Ye,; H. F. Li,; H. T. Yu,; S. Chen,; X. Quan, Constructing BiVO4-Au@CdS photocatalyst with energic charge-carrier-separation capacity derived from facet induction and Z-scheme bridge for degradation of organic pollutants. Appl. Catal. B Environ. 2018, 227, 258-265.
[15]
Z. F. Jiang,; W. M. Wan,; H. M Li,; S. Q. Yuan,; H. J. Zhao,; P. K. Wong, A hierarchical Z-scheme α-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction. Adv. Mater. 2018, 11, 1706108.
[16]
W. K. Jo,; T. S. Natarajan, Facile synthesis of novel redox-mediator-free direct z-scheme CaIn2S4 marigold-flower-like/TiO2 photocatalysts with superior photocatalytic efficiency. ACS Appl. Mater. Interfaces 2015, 7, 17138-17154.
[17]
A. Fateeva,; P. A. Chater,; C. P. Ireland,; A. A. Tahir,; Y. Z. Khimyak,; P. V. Wiper,; J. R. Darwent,; M. J. Rosseinsky, A water-stable porphyrin-based metal-organic framework active for visible-light photocatalysis. Angew. Chem., Int. Ed. 2012, 51, 7440-7444.
[18]
J. M. Wang,; Y. Zheng,; T. Y. Peng,; J. Zhang,; R. J. Li, Asymmetric zinc porphyrin derivative-sensitized graphitic carbon nitride for efficient visible-light-driven H2 production. ACS Sustain. Chem. Eng. 2017, 5, 7549-7556.
[19]
K. Li,; L. Lin,; T. Y. Peng,; Y. Y. Guo,; R. J. Li,; J. Zhang, Asymmetric zinc porphyrin-sensitized nanosized TiO2 for efficient visible-light-driven CO2 photoreduction to CO/CH4. Chem. Commun. 2015, 51, 12443-12446.
[20]
J. M. Wang,; D. Liu,; Q. W. Liu,; T. Y. Peng,; R. J. Li,; S. Y. Zhou, Effects of the central metal ions on the photosensitization of metalloporphyrins over carbon nitride for visible-light-responsive H2 production. Appl. Surf. Sci. 2019, 464, 255-261.
[21]
Y. Zheng,; J. M. Wang,; J. Zhang,; T. Y. Peng,; R. J. Li, Syntheses of asymmetric zinc porphyrins bearing different pseudo-pyridine substituents and their photosensitization for visible-light-driven H2 production activity. Dalton Trans. 2017, 46, 8219-8228.
[22]
X. H. Zhang,; T. Y. Peng,; L. J. Yu,; R. J. Li,; Q. Q. Li,; Z. Li, visible/near-infrared-light-induced h2 production over g-C3N4 co-sensitized by organic dye and zinc phthalocyanine derivative. ACS Catal. 2015, 5, 504-510.
[23]
X. H. Zhang,; T. Y. Peng,; S. S. Song, Recent advances in dye-sensitized semiconductor systems for photocatalytic hydrogen production. J. Mater. Chem. A 2016, 4, 2365-2402.
[24]
H. Hagiwara,; M. Nagatomo,; C. Seto,; S. Ida,; T. Ishiahara, Dye modification effects on TaON for photocatalytic hydrogen production from water. Catalysts 2013, 3, 614-624.
[25]
H. Hagiwara,; T. Inoue,; K. Kaneko,; T. Ishihara, Charge-transfer mechanism in Pt/KTa(Zr)O3 photocatalysts modified with porphyrinoids for water splitting. Chem.—Eur. J. 2009, 15, 12862-12870.
[26]
H. Hagiwara,; M. Nagatomo,; C. Seto,; S. Ida,; T. Ishihara, Dye-modification effects on water splitting activity of GaN: ZnO photocatalyst. J. Photochem. Photobio. A Chem. 2013, 272, 41-48.
[27]
K. Hu,; C. Y. Chen,; Y. Zhu,; G. M. Zeng,; B. B. Huang,; W. Q. Chen,; S. H. Liu,; C. Lei,; B. S. Li,; Y. Yang, Ternary Z-scheme heterojunction of Bi2WO6 with reduced graphene oxide (rGO) and meso-tetra (4-carboxyphenyl) porphyrin (TCPP) for enhanced visible-light photocatalysis. J. Colloid Interf. Sci. 2019, 540, 115-125.
[28]
P. Li,; X. H. Zhang,; C. C. Hou,; Y. Chen,; T. He, Highly efficient visible-light driven solar-fuel production over tetra(4-carboxyphenyl)porphyrin iron(III) chloride using CdS/Bi2S3 heterostructure as photosensitizer. Appl. Catal. B Environ. 2018, 238, 656-663.
[29]
B. S. Nguyen,; Y. K. Xiao,; C. Y. Shih,; V. C. Nguyen,; W. Y. Chou,; H. Teng, Electronic structure manipulation of graphene dots for effective hydrogen evolution from photocatalytic water decomposition. Nanoscale 2018, 10, 10721-10730.
[30]
L. Stobinski,; B. Lesiak,; A. Malolepszy,; M. Mazurkiewicz,; B. Mierzwa,; J. Zemek,; P. Jiricek,; I. Bieloshapka, Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron Spectrosc. Relat. Phenom. 2014, 195, 145-154.
[31]
R. G. Li,; F. X. Zhang,; D. G. Wang,; J. X. Yang,; M. R. Li,; J. Zhu,; X. Zhou,; H. X. Han,; C. Li, Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4. Nat. Commun. 2013, 4, 1432.
[32]
Y. S. Fu,; X. Q. Sun,; X. Wang, BiVO4-graphene catalyst and its high photocatalytic performance under visible light irradiation. Mater. Chem. Phys. 2011, 131, 325-330.
[33]
H. S. Kibombo,; C. M. Wua,; R. Peng,; J. Baltrusaitis,; R. T. Koodali, Investigation of the role of platinum oxide for the degradation of phenol under simulated solar irradiation. Appl. Catal. B Environ. 2013, 136-137, 248-259.
[34]
B. Ohtani,; K. Iwai,; S. I Nishimoto,; S. Sato, Role of platinum deposits on titanium(IV) oxide particles: Structural and kinetic analyses of photocatalytic reaction in aqueous alcohol and amino acid solutions. J. Phys. Chem. B 1997, 101, 3349-3359.
[35]
J. Lee,; W. Choi, Photocatalytic reactivity of surface platinized TiO2: Substrate specificity and the effect of Pt oxidation state. J. Phys. Chem. B 2005, 109, 7399-7406.
[36]
J. F. Liu,; X. T. Yu,; R. F. Du,; C. Q. Zhang,; T. Zhang,; J. Llorca,; J. Arbiol,; Y. Wang,; M. Meyns,; A. Cabot, Chromium phosphide CrP as highly active and stable electrocatalysts for oxygen electroreduction in alkaline media. Appl. Catal. B Environ. 2019, 256, 117846.
[37]
H. L. Tan,; A. Suyanto,; A. T. De Denko,; W. H. Saputera,; R. Amal,; F. E. Osterloh,; Y. H. Ng, Enhancing the photoactivity of faceted BiVO4 via annealing in oxygen-deficient condition. Part. Part. Syst. Charact. 2017, 34, 1600290.
[38]
J. Yin,; Y. X. Li,; F. Lv,; M. Lu,; K. Sun,; W. Wang,; L. Wang,; F. Y. Cheng,; Y. F. Li,; P. X. Xi, et al. Oxygen vacancies dominated NiS2/CoS2 interface porous nanowires for portable Zn-Air batteries driven water splitting devices. Adv. Mater. 2017, 29, 1704681.
[39]
S. Bai,; C. Gao,; J. X. Low,; Y. J. Xiong, Crystal phase engineering on photocatalytic materials for energy and environmental applications. Nano Res. 2019, 12, 2031-2054.
[40]
D. Zu,; H. Y. Wang,; S. Lin,; G. Ou,; H. H. Wei,; S. Q. Sun,; H. Wu, Oxygen-deficient metal oxides: Synthesis routes and applications in energy and environment. Nano Res. 2019, 12, 2150-2163.
[41]
S. F. Tian,; S. D. Chen,; X. T. Ren,; Y. Q. Hu,; H. Y. Hu,; J. J. Sun,; F. Bai, An efficient visible-light photocatalyst for CO2 reduction fabricated by cobalt porphyrin and graphitic carbon nitride via covalent bonding. Nano Res. 2020, 13, 2665-2672.
[42]
X. F. Wang,; P. F. Sun,; H. L. Lu,; K. Tang,; Q. Li,; C. Wang,; Z. Y. Mao,; T. Ali,; C. L. Yan, Aluminum-tailored energy level and morphology of Co3-xAlxO4 porous nanosheets toward highly efficient electrocatalysts for water oxidation. Small 2019, 15, 1804886.
[43]
W. J. Chun,; A. Ishikawa,; H. Fujisawa,; T. Takata,; J. N. Kondo,; M. Hara,; M. Kawai,; Y. Matsumoto,; K. Domen, Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods. J. Phys. Chem. B 2003, 107, 1798-1803.
[44]
H. L. Tan,; F. F. Abdi,; Y. H. Ng, Heterogeneous photocatalysts: An overview of classic and modern approaches for optical, electronic, and charge dynamics evaluation. Chem. Soc. Rev. 2019, 48, 1255-1271.
[45]
S. C. Wang,; P. Chen,; Y. Bai,; J. H. Yun,; G. Liu,; L. Z. Wang, New BiVO4 dual photoanodes with enriched oxygen vacancies for efficient solar-driven water splitting. Adv. Mater. 2018, 30, 1800486.
[46]
C. S. Diercks,; S. Lin,; N. Kornienko,; E. A. Kapustin,; E. M. Nichols,; C. H. Zhu,; Y. B. Zhao,; C. J. Chang,; O. M. Yaghi, Reticular electronic tuning of porphyrin active sites in covalent organic frameworks for electrocatalytic carbon dioxide reduction. J. Am. Chem. Soc. 2018, 140, 1116-1122.
[47]
P. F. Xia,; B. C. Zhu,; B. Cheng,; J. G. Yu,; J. S. Xu, 2D/2D g-C3N4/MnO2 nanocomposite as a direct Z-scheme photocatalyst for enhanced photocatalytic activity. ACS Sustainable Chem. Eng. 2018, 6, 965-973.
[48]
A. Iwase,; Y. H. Ng,; Y. Ishiguro,; A. Kudo,; R. Amal, Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light. J. Am. Chem. Soc. 2011, 133, 11054-11057.
Nano Research
Pages 1294-1304
Cite this article:
Wang J, Guo L, Xu L, et al. Z-scheme photocatalyst based on porphyrin derivative decorated few-layer BiVO4 nanosheets for efficient visible-light-driven overall water splitting. Nano Research, 2021, 14(5): 1294-1304. https://doi.org/10.1007/s12274-020-3145-6
Topics:

861

Views

21

Crossref

N/A

Web of Science

21

Scopus

3

CSCD

Altmetrics

Received: 24 August 2020
Revised: 23 September 2020
Accepted: 24 September 2020
Published: 29 December 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return