AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Efficient fully blade-coated perovskite solar cells in air with nanometer-thick bathocuproine buffer layer

Sergio Castro-Hermosa1,2,3( )Luana Wouk1Izabela Silva Bicalho1Luiza de Queiroz Corrêa1Bas de Jong4,5Lucio Cinà4Thomas M. Brown2Diego Bagnis1( )
CSEM Brasil, Avenida José Cândido da Silveira, 2000, 31035-536 Belo Horizonte, Brazil
CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
Hydro Engineering and Agricultural Development Research Group (GHIDA), Faculty of Engineering, Universidad Surcolombiana, Avenida Pastrana Borrero-Carrera 1, 410001 Neiva, Colombia
Cicci Research srl, via Giordania 227, 58100 Grosseto, Italy
Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
Show Author Information

Graphical Abstract

Abstract

Fully printed perovskite solar cells (PSCs) were fabricated in air with all constituent layers, except for electrodes, deposited by the blade coating technique. The PSCs incorporated, for the first time, a nanometer-thick printed bathocuproine (BCP) hole blocking buffer using blade coating and deposited at relative humidity up to 50%. The PSCs with a p-i-n structure (glass/indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)/CH3NH3PbI3/[6,6]-phenyl-C61-butyric acid methyl ester (PCBM)/BCP/Ag) delivered a maximum power conversion efficiency (PCE) of 14.9% on an active area of 0.5 cm2 when measured under standard test conditions. The PSCs with a blade coated BCP delivered performance of 10% and 63% higher (in relative terms) than those incorporating a spin coated BCP or without any BCP film, respectively. The atomic force microscopy (AFM) showed that blade coated films were more homogeneous and acted also as a surface planarizer leading to a reduction of roughness which improved BCP/Ag interface lowering charge recombination. The demonstration of 15% efficient devices with all constituent layers, including nanometer-thick BCP (~ 10 nm), deposited by blade coating in air, demonstrates a route for industrialization of this technology.

References

[1]
National Renewable Enery Laboratory. Best Research-Cell Efficiency Chart [Online]. https://www.nrel.gov/pv/cell-efficiency.html (accessed Aug 31, 2020).
[2]
M. Saliba,; J. P. Correa-Baena,; C. M. Wolff,; M. Stolterfoht,; N. Phung,; S. Albrecht,; D. Neher,; A. Abate, How to make over 20% efficient perovskite solar cells in regular (n-i-p) and inverted (p-i-n) architectures. Chem. Mater. 2018, 30, 4193-4201.
[3]
I. Burgués-Ceballos,; M. Stella,; P. Lacharmoise,; E. Martínez-Ferrero, Towards industrialization of polymer solar cells: Material processing for upscaling. J. Mater. Chem. A 2014, 2, 17711-17722.
[4]
F. Huang,; M. J. Li,; P. Siffalovic,; G. Z. Cao,; J. J. Tian, From scalable solution fabrication of perovskite films towards commercialization of solar cells. Energy Environ. Sci. 2019, 12, 518-549.
[5]
S. Razza,; S. Castro-Hermosa,; A. Di Carlo,; T. M. Brown, Research update: Large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology. APL Mater. 2016, 4, 091508.
[6]
M. J. Yang,; Z. Li,; M. O. Reese,; O. G. Reid,; D. H. Kim,; S. Siol,; T. R. Klein,; Y. F. Yan,; J. J. Berry,; M. F. A. M. van Hest, et al. Perovskite ink with wide processing window for scalable high- efficiency solar cells. Nat. Energy 2017, 2, 17038.
[7]
B. J. Dou,; J. B. Whitaker,; K. Bruening,; D. T. Moore,; L. M. Wheeler,; J. Ryter,; N. J. Breslin,; J. J. Berry,; S. M. Garner,; F. S. Barnes, et al. Roll-to-roll printing of perovskite solar cells. ACS Energy Lett. 2018, 3, 2558-2565.
[8]
Y. Galagan,; F. Di Giacomo,; H. Gorter,; G. Kirchner,; I. de Vries,; R. Andriessen,; P. Groen, Roll-to-roll slot die coated perovskite for efficient flexible solar cells. Adv. Energy Mater. 2018, 8, 1801935.
[9]
J. B. Whitaker,; D. H. Kim,; B. W. Larson,; F. Zhang,; J. J. Berry,; M. F. A. M. van Hest,; K. Zhu, Scalable slot-die coating of high performance perovskite solar cells. Sustain. Energy Fuels 2018, 2, 2442-2449.
[10]
N. Ahn,; D. Y. Son,; I. H. Jang,; S. M. Kang,; M. Choi,; N. G. Park, Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide. J. Am. Chem. Soc. 2015, 137, 8696-8699.
[11]
H. Uratani,; K. Yamashita, Charge carrier trapping at surface defects of perovskite solar cell absorbers: A first-principles study. J. Phys. Chem. Lett. 2017, 8, 742-746.
[12]
Y. H. Seo,; E. C. Kim,; S. P. Cho,; S. S. Kim,; S. I. Na, High- performance planar perovskite solar cells: Influence of solvent upon performance. Appl. Mater. Today 2017, 9, 598-604.
[13]
J. B. Li,; R. Munir,; Y. Y. Fan,; T. Q. Niu,; Y. C. Liu,; Y. F. Zhong,; Z. Yang,; Y. S. Tian,; B. Liu,; J. Sun, et al. Phase transition control for high-performance blade-coated perovskite solar cells. Joule 2018, 2, 1313-1330.
[14]
Z. B. Yang,; C. C. Chueh,; F. Zuo,; J. H. Kim,; P. W. Liang,; A. K. Y. Jen, High-performance fully printable perovskite solar cells via blade-coating technique under the ambient condition. Adv. Energy Mater. 2015, 5, 1500328.
[15]
F. Di Giacomo,; S. Shanmugam,; H. Fledderus,; B. J. Bruijnaers,; W. J. H. Verhees,; M. S. Dorenkamper,; S. C. Veenstra,; W. M. Qiu,; R. Gehlhaar,; T. Merckx, et al. Up-scalable sheet-to-sheet production of high efficiency perovskite module and solar cells on 6-in. substrate using slot die coating. Sol. Energy Mater. Sol. Cells 2018, 181, 53-59.
[16]
W. Zhang,; M. Saliba,; D. T. Moore,; S. K. Pathak,; M. T. Hörantner,; T. Stergiopoulos,; S. D. Stranks,; G. E. Eperon,; J. A. Alexander-Webber,; A. Abate, et al. Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nat. Commun. 2015, 6, 6142.
[17]
C. Li,; Q. Guo,; W. Y. Qiao,; Q. Chen,; S. Ma,; X. Pan,; F. Z. Wang,; J. X. Yao,; C. F. Zhang,; M. Xiao, et al. Efficient lead acetate sourced planar heterojunction perovskite solar cells with enhanced substrate coverage via one-step spin-coating. Org. Electron. 2016, 33, 194-200.
[18]
F. K. Aldibaja,; L. Badia,; E. Mas-Marzá,; R. S. Sánchez,; E. M. Barea,; I. Mora-Sero, Effect of different lead precursors on perovskite solar cell performance and stability. J. Mater. Chem. A 2015, 3, 9194-9200.
[19]
W. Qiu,; T. Merckx,; M. Jaysankar,; C. Masse de la Huerta,; L. Rakocevic,; W. Zhang,; U. W. Paetzold,; R. Gehlhaar,; L. Froyen,; J. Poortmans, et al. Pinhole-free perovskite films for efficient solar modules. Energy Environ. Sci. 2016, 9, 484-489.
[20]
W. G. Kong,; G. L. Wang,; J. M. Zheng,; H. Hu,; H. Chen,; Y. L. Li,; M. M. Hu,; X. Y. Zhou,; C. Liu,; B. N. Chandrashekar, et al. Fabricating high-efficient blade-coated perovskite solar cells under ambient condition using lead acetate trihydrate. Sol. RRL 2018, 2, 1700214.
[21]
J. E. Kim,; Y. S. Jung,; Y. J. Heo,; K. Hwang,; T. S. Qin,; D. Y. Kim,; D. Vak, Slot die coated planar perovskite solar cells via blowing and heating assisted one step deposition. Sol. Energy Mater. Sol. Cells 2018, 179, 80-86.
[22]
G. Cotella,; J. Baker,; D. Worsley,; F. De Rossi,; C. Pleydell-Pearce,; M. Carnie,; T. Watson, One-step deposition by slot-die coating of mixed lead halide perovskite for photovoltaic applications. Sol. Energy Mater. Sol. Cells 2017, 159, 362-369.
[23]
M. Kohlstädt,; M. A. Yakoob,; U. Würfel, A matter of drying: Blade-coating of lead acetate sourced planar inverted perovskite solar cells on active areas >1 cm2. Phys. Status Solidi 2018, 215, 1800419.
[24]
F. Matteocci,; S. Razza,; F. Di Giacomo,; S. Casaluci,; G. Mincuzzi,; T. M. Brown,; A. D’Epifanio,; S. Licoccia,; A. Di Carlo, Solid-state solar modules based on mesoscopic organometal halide perovskite: A route towards the up-scaling process. Phys. Chem. Chem. Phys. 2014, 16, 3918-3923.
[25]
Q. Zhao,; G. R. Li,; J. Song,; Y. L. Zhao,; Y. H. Qiang,; X. P. Gao, Improving the photovoltaic performance of perovskite solar cells with acetate. Sci. Rep. 2016, 6, 38670.
[26]
J. J. Ye,; X. H. Zhang,; L. Z. Zhu,; H. Y. Zheng,; G. Z. Liu,; H. X. Wang,; T. Hayat,; X. Pan,; S. Y. Dai, Enhanced morphology and stability of high-performance perovskite solar cells with ultra-smooth surface and high fill factor via crystal growth engineering. Sustain. Energy Fuels 2017, 1, 907-914.
[27]
T. H. Liu,; K. Chen,; Q. Hu,; R. Zhu,; Q. H. Gong, Inverted perovskite solar cells: Progresses and perspectives. Adv. Energy Mater. 2016, 6, 1600457.
[28]
C. L. Chen,; S. S. Zhang,; S. H. Wu,; W. J. Zhang,; H. M. Zhu,; Z. Z. Xiong,; Y. J. Zhang,; W. Chen, Effect of BCP buffer layer on eliminating charge accumulation for high performance of inverted perovskite solar cells. RSC Adv. 2017, 7, 35819-35826.
[29]
J. Dagar,; S. Castro-Hermosa,; G. Lucarelli,; A. Zampetti,; F. Cacialli,; T. M. Brown, Low-temperature solution-processed thin SnO2/Al2O3 double electron transport layers toward 20% efficient perovskite solar cells. IEEE J. Photovolt. 2019, 9, 1309-1315.
[30]
J. Dagar,; S. Castro-Hermosa,; G. Lucarelli,; F. Cacialli,; T. M. Brown, Highly efficient perovskite solar cells for light harvesting under indoor illumination via solution processed SnO2/MgO composite electron transport layers. Nano Energy 2018, 49, 290-299.
[31]
W. Q. Wu,; P. N. Rudd,; Q. Wang,; Z. B. Yang,; J. S. Huang, Blading phase-pure formamidinium-alloyed perovskites for high-efficiency solar cells with low photovoltage deficit and improved stability. Adv. Mater. 2020, 32, 2000995.
[32]
W. Q. Wu,; P. N. Rudd,; Z. Y. Ni,; C. H. Van Brackle,; H. T. Wei,; Q. Wang,; B. R. Ecker,; Y. L. Gao,; J. S. Huang, Reducing surface halide deficiency for efficient and stable iodide-based perovskite solar cells. J. Am. Chem. Soc. 2020, 142, 3989-3996.
[33]
C. Stenta,; M. P. Montero-Rama,; A. Viterisi,; W. Cambarau,; E. Palomares,; L. F. Marsal, Solution processed bathocuproine for organic solar cells. IEEE Trans. Nanotechnol. 2018, 17, 128-132.
[34]
J. Cui,; P. F. Li,; Z. F. Chen,; K. Cao,; D. Li,; J. B. Han,; Y. Shen,; M. Y. Peng,; Y. Q. Fu,; M. K. Wang, Phosphor coated NiO-based planar inverted organometallic halide perovskite solar cells with enhanced efficiency and stability. Appl. Phys. Lett. 2016, 109, 171103.
[35]
Y. X. Wang,; J. H. Zhang,; Y. H. Wu,; Z. C. Yi,; F. Chi,; H. H. Wang,; W. S. Li,; Y. Zhang,; X. W. Zhang,; L. M. Liu, Solution-processed bathocuproine cathode buffer layer towards efficient planar heterojunction perovskite solar cells. Semicond. Sci. Technol. 2019, 34, 075023.
[36]
D. X. Yuan,; X. D. Yuan,; Q. Y. Xu,; M. F. Xu,; X. B. Shi,; Z. K. Wang,; L. S. Liao, A solution-processed bathocuproine cathode interfacial layer for high-performance bromine-iodine perovskite solar cells. Phys. Chem. Chem. Phys. 2015, 17, 26653-26658.
[37]
M. He,; B. Li,; X. Cui,; B. B. Jiang,; Y. J. He,; Y. H. Chen,; D. O’Neil,; P. Szymanski,; M. A. EI-Sayed,; J. S. Huang, et al. Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells. Nat. Commun. 2017, 8, 16045.
[38]
Y. H. Deng,; X. P. Zheng,; Y. Bai,; Q. Wang,; J. J. Zhao,; J. S. Huang, Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nat. Energy 2018, 3, 560-566.
[39]
S. Razza,; S. Castro-Hermosa,; A. Di Carlo,; T. M. Brown, Research update: Large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology. APL Mater. 2016, 4, 091508.
[40]
Y. F. Yan,; W. J. Yin,; T. T. Shi,; W. W. Meng,; C. B. Feng, Defect physics of CH3NH3PbX3 (X = I, Br, Cl) perovskites. In Organic- Inorganic Halide Perovskite Photovoltaics: From Fundamentals to Device Architectures; N. G. Park,; M. Grätzel,; T. Miyasaka,, Eds.; Springer International Publishing: Cham, 2016; pp 79-105.
[41]
J. Schlipf,; Y. H. Hu,; S. Pratap,; L. Bießmann,; N. Hohn,; L. Porcar,; T. Bein,; P. Docampo,; P. Müller-Buschbaum, Shedding light on the moisture stability of 3D/2D hybrid perovskite heterojunction thin films. ACS Appl. Energy Mater. 2019, 2, 1011-1018.
[42]
J. A. Yang,; A. D. Xiao,; L. S. Xie,; K. J. Liao,; X. Y. Deng,; C. B. Li,; A. L. Wang,; Y. Xiang,; T. S. Li,; F. Hao, Precise control of PbI2 excess into grain boundary for efficacious charge extraction in off-stoichiometric perovskite solar cells. Electrochim. Acta 2020, 338, 135697.
[43]
X. D. Ren,; Z. Yang,; D. Yang,; X. Zhang,; D. Cui,; Y. C. Liu,; Q. B. Wei,; H. B. Fan,; S. Z. Liu, Modulating crystal grain size and optoelectronic properties of perovskite films for solar cells by reaction temperature. Nanoscale 2016, 8, 3816-3822.
[44]
Z. R. Liang,; S. H. Zhang,; X. Q. Xu,; N. Wang,; J. X. Wang,; X. Wang,; Z. N. Bi,; G. Xu,; N. Y. Yuan,; J. N. Ding, A large grain size perovskite thin film with a dense structure for planar heterojunction solar cells via spray deposition under ambient conditions. RSC Adv. 2015, 5, 60562-60569.
[45]
J. Y. Yun,; J. Jun,; H. Yu,; K. Lee,; J. Ryu,; J. Lee,; J. Jang, Highly efficient perovskite solar cells incorporating NiO nanotubes: Increased grain size and enhanced charge extraction. J. Mater. Chem. A 2017, 5, 21750-21756.
[46]
G. Lu,; W. D. Zhu,; F. Q. He,; D. Z. Chen,; C. F. Zhang,; Y. Hao, Enhanced sensitivity of grain sizes to precursor stoichiometry enables high-quality CH3NH3PbI3 films for efficient perovskite solar cells. Mater. Lett. 2019, 250, 88-91.
[47]
C. Quarti,; G. Grancini,; E. Mosconi,; P. Bruno,; J. M. Ball,; M. M. Lee,; H. J. Snaith,; A. Petrozza,; F. De Angelis, The raman spectrum of the CH3NH3PbI3 hybrid perovskite: Interplay of theory and experiment. J. Phys. Chem. Lett. 2014, 5, 279-284.
[48]
P. Pistor,; A. Ruiz,; A. Cabot,; V. Izquierdo-Roca, Advanced Raman spectroscopy of methylammonium lead iodide: Development of a non-destructive characterisation methodology. Sci. Rep. 2016, 6, 35973.
[49]
Y. Xie,; F. Shao,; Y. M. Wang,; T. Xu,; D. L. Wang,; F. Q. Huang, Enhanced performance of perovskite CH3NH3PbI3 solar cell by using CH3NH3I as additive in sequential deposition. ACS Appl. Mater. Interfaces 2015, 7, 12937-12942.
[50]
W. G. Kong,; A. Rahimi-Iman,; G. Bi,; X. S. Dai,; H. Z. Wu, Oxygen intercalation induced by photocatalysis on the surface of hybrid lead halide perovskites. J. Phys. Chem. C 2016, 120, 7606-7611.
[51]
A. S. Yerramilli,; Y. Q. Chen,; D. Sanni,; J. Asare,; N. D. Theodore,; T. L. Alford, Impact of excess lead on the stability and photo-induced degradation of lead halide perovskite solar cells. Org. Electron. 2018, 59, 107-112.
[52]
T. Baikie,; Y. N. Fang,; J. M. Kadro,; M. Schreyer,; F. X. Wei,; S. G. Mhaisalkar,; M. Graetzel,; T. J. White, Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 2013, 1, 5628-5641.
[53]
X. N. Sun,; M. Gobbi,; A. Bedoya-Pinto,; O. Txoperena,; F. Golmar,; R. Llopis,; A. Chuvilin,; F. Casanova,; L. E. Hueso, Room-temperature air-stable spin transport in bathocuproine-based spin valves. Nat. Commun. 2013, 4, 2794.
[54]
A. K. Chauhan,; A. Gusain,; P. Jha,; P. Veerender,; S. P. Koiry,; C. Sridevi,; D. K. Aswal,; S. K. Gupta,; D. Taguchi,; T. Manaka, et al. Interfacial charge trapping in the polymer solar cells and its elimination by solvent annealing. AIP Adv. 2016, 6, 095012.
[55]
F. C. Krebs, Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 2009, 93, 394-412.
[56]
B. T. Chen, Investigation of the solvent-evaporation effect on spin coating of thin films. Polym. Eng. Sci. 1983, 23, 399-403.
[57]
C. H. Jun,; S. Ohisa,; Y. J. Pu,; T. Chiba,; J. Kido, Comparison of spin and blade coating methods in solution-process for organic light-emitting devices. J. Photopolym. Sci. Technol. 2015, 28, 343-347.
[58]
N. G. Park,; K. Zhu, Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nat. Rev. Mater. 2020, 5, 333-350.
[59]
B. Chen,; M. J. Yang,; S. Priya,; K. Zhu, Origin of J-V hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 2016, 7, 905-917.
[60]
C. T. Lin,; S. Pont,; J. Kim,; T. Du,; S. D. Xu,; X. E. Li,; D. Bryant,; M. A. Mclachlan,; J. R. Durrant, Passivation against oxygen and light induced degradation by the PCBM electron transport layer in planar perovskite solar cells. Sustain. Energy Fuels 2018, 2, 1686-1692.
[61]
Y. C. Shao,; Z. G. Xiao,; C. Bi,; Y. B. Yuan,; J. S. Huang, Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 2014, 5, 5784.
[62]
J. Dagar,; S. Castro-Hermosa,; M. Gasbarri,; A. L. Palma,; L. Cina,; F. Matteocci,; E. Calabrò,; A. Di Carlo,; T. M. Brown, Efficient fully laser-patterned flexible perovskite modules and solar cells based on low-temperature solution-processed SnO2/mesoporous-TiO2 electron transport layers. Nano Res. 2018, 11, 2669-2681.
[63]
D. Tsikritzis,; K. Rogdakis,; K. Chatzimanolis,; M. Petrović,; N. Tzoganakis,; L. Najafi,; B. Martín-García,; R. Oropesa-Nuñez,; S. Bellani,; A. E. Del Rio Castillo, et al. A two-fold engineering approach based on Bi2Te3 flakes towards efficient and stable inverted perovskite solar cells. Mater. Adv. 2020, 1, 450-462.
[64]
U. K. Thakur,; A. M. Askar,; R. Kisslinger,; B. D. Wiltshire,; P. Kar,; K. Shankar, Halide perovskite solar cells using monocrystalline TiO2 nanorod arrays as electron transport layers: Impact of nanorod morphology. Nanotechnology 2017, 28, 274001.
[65]
X. L. Ji,; B. Q. Liu,; H. J. Tang,; X. L. Yang,; X. Li,; H. M. Gong,; B. Shen,; P. Han,; F. Yan, 2.6 μm MBE grown InGaAs detectors with dark current of SRH and TAT. AIP Adv. 2014, 4, 087135.
[66]
G. A. H. Wetzelaer,; M. Kuik,; M. Lenes,; P. W. M. Blom, Origin of the dark-current ideality factor in polymer: Fullerene bulk heterojunction solar cells. Appl. Phys. Lett. 2011, 99, 153506.
[67]
J. Carrillo,; A. Guerrero,; S. Rahimnejad,; O. Almora,; I. Zarazua,; E. Mas-Marza,; J. Bisquert,; G. Garcia-Belmonte, Ionic reactivity at contacts and aging of methylammonium lead triiodide perovskite solar cells. Adv. Energy Mater. 2016, 6, 1502246.
[68]
D. Moerman,; G. E. Eperon,; J. T. Precht,; D. S. Ginger, Correlating photoluminescence heterogeneity with local electronic properties in methylammonium lead tribromide perovskite thin films. Chem. Mater. 2017, 29, 5484-5492.
[69]
R. D. Chavan,; P. Yadav,; A. Nimbalkar,; S. P. Bhoite,; P. N. Bhosale,; C. Kook Hong, Ruthenium doped mesoporous titanium dioxide for highly efficient, hysteresis-free and stable perovskite solar cells. Sol. Energy 2019, 186, 156-165.
[70]
J. Hidalgo,; A. F. Castro-Méndez,; J. Correa-Baena, Imaging and mapping characterization tools for perovskite solar cells. Adv. Energy Mater. 2019, 9, 1900444.
[71]
B. J. Dou,; E. M. Miller,; J. A. Christians,; E. M. Sanehira,; T. R. Klein,; F. S. Barnes,; S. E. Shaheen,; S. M. Garner,; S. Ghosh,; A. Mallick, et al. High-performance flexible perovskite solar cells on ultrathin glass: Implications of the TCO. J. Phys. Chem. Lett. 2017, 8, 4960-4966.
[72]
M. Saliba,; T. Matsui,; J. Y. Seo,; K. Domanski,; J. P. Correa-Baena,; M. K. Nazeeruddin,; S. M. Zakeeruddin,; W. Tress,; A. Abate,; A. Hagfeldt, et al. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy Environ. Sci. 2016, 9, 1989-1997.
[73]
N. G. Park, Research direction toward scalable, stable, and high efficiency perovskite solar cells. Adv. Energy Mater. 2020, 10, 1903106.
[74]
D. Di Girolamo,; F. Matteocci,; F. U. Kosasih,; G. Chistiakova,; W. W. Zuo,; G. Divitini,; L. Korte,; C. Ducati,; A. Di Carlo,; D. Dini, et al. Stability and dark hysteresis correlate in NiO-based perovskite solar cells. Adv. Energy Mater. 2019, 9, 1901642.
Nano Research
Pages 1034-1042
Cite this article:
Castro-Hermosa S, Wouk L, Bicalho IS, et al. Efficient fully blade-coated perovskite solar cells in air with nanometer-thick bathocuproine buffer layer. Nano Research, 2021, 14(4): 1034-1042. https://doi.org/10.1007/s12274-020-3147-4
Topics:

1080

Views

35

Crossref

N/A

Web of Science

37

Scopus

2

CSCD

Altmetrics

Received: 29 April 2020
Revised: 27 September 2020
Accepted: 28 September 2020
Published: 06 November 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return