AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Facile fabrication of highly conductive, waterproof, and washable e-textiles for wearable applications

Ben NiuSu YangTao Hua( )Xiao TianMingKin Koo
Nanotechnology Center, Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
Show Author Information

Graphical Abstract

Abstract

Electronic textiles (e-textiles), known as a newly-developed innovation combining the textile and electronic technologies, are burgeoning as the next-generation of wearable electronics for lots of promising applications. However, a big concern is the durability of the e-textiles during practical using. Here, we describe a facile method to fabricate mechanically and electrically durable e-textiles by chemical deposition of silver nanoparticles (AgNPs) on widely used cotton fabric. The interface between AgNPs and fabric was tightly strengthened by the bioinspired polydopamine, and a highly waterproof and anticorrosive surface was further obtained by modifying with a fluorine containing agent of 1H,1H,2H,2H-perfuorodecanethiol (PFDT). In addition to the low sheet resistance of 0.26 ohm/sq and high conductivity of 233.4 S/cm, the e-textiles present outstanding stability to different mechanical deformations including ultrasonication, bending and machine washing. Moreover, thanks to the surface roughness of AgNPs and low surface energy of PFDT, a superhydrophobic surface, with a water contact angle of ca. 152o, was further obtained, endowing the e-textiles excellent anti-corrosion to water, acid/alkaline solution and various liquids (e.g., milk, coffee and tea). Finally, the application of this highly conductive e-textiles in wearable thermal therapy is demonstrated. Together with the facile, all-solution-based, and environmentally friendly fabrication protocol, the e-textiles show great potential of large-scale applications in wearable electronics.

Electronic Supplementary Material

Video
12274_2020_3148_MOESM1_ESM.mp4
Download File(s)
12274_2020_3148_MOESM2_ESM.pdf (2.2 MB)

References

[1]
M. Amjadi,; K. U. Kyung,; I. Park,; M. Sitti, Stretchable, skin- mountable, and wearable strain sensors and their potential applications: A review. Adv. Funct. Mater. 2016, 26, 1678-1698.
[2]
X. T. Li,; H. B. Hu,; T. Hua,; B. G. Xu,; S. X. Jiang, Wearable strain sensing textile based on one-dimensional stretchable and weavable yarn sensors. Nano Res. 2018, 11, 5799-5811.
[3]
Y. J. Zhang,; P. He,; M. Luo,; X. W. Xu,; G. Z. Dai,; J. L. Yang, Highly stretchable polymer/silver nanowires composite sensor for human health monitoring. Nano Res. 2020, 13, 919-926.
[4]
S. Choi,; S. Kwon,; H. Kim,; W. Kim,; J. H. Kwon,; M. S. Lim,; H. S. Lee,; K. C. Choi, Highly flexible and efficient fabric-based organic light-emitting devices for clothing-shaped wearable displays. Sci. Rep. 2017, 7, 6424.
[5]
S. Kwon,; Y. H. Hwang,; M. Nam,; H. Chae,; H. S. Lee,; Y. Jeon,; S. Lee,; C. Y. Kim,; S. Choi,; E. G. Jeong, et al. Recent progress of fiber shaped lighting devices for smart display applications—a fibertronic perspective. Adv. Mater. 2020, 32, 1903488.
[6]
W. Weng,; P. N. Chen,; S. S. He,; X. M. Sun,; H. S. Peng, Smart electronic textiles. Angew. Chem., Int. Ed. 2016, 55, 6140-6169.
[7]
G. R. Chen,; Y. Z. Li,; M. Bick,; J. Chen, Smart textiles for electricity generation. Chem. Rev. 2020, 120, 3668-3720.
[8]
X. Min,; B. Sun,; S. Chen,; M. H. Fang,; X. W. Wu,; Y. G. Liu,; A. Abdelkader,; Z. H. Huang,; T. Liu,; K. Xi, et al. A textile-based SnO2 ultra-flexible electrode for lithium-ion batteries. Energy Storage Mater. 2019, 16, 597-606.
[9]
S. Seyedin,; P. Zhang,; M. Naebe,; S. Qin,; J. Chen,; X. G. Wang,; J. M. Razal, Textile strain sensors: A review of the fabrication technologies, performance evaluation and applications. Mater. Horiz. 2019, 6, 219-249.
[10]
L. M. Castano,; A. B. Flatau, Smart fabric sensors and e-textile technologies: A review. Smart Mater. Struct. 2014, 23, 053001.
[11]
J. K. Mu,; G. Wang,; H. P. Yan,; H. Y. Li,; X. M. Wang,; E. L. Gao,; C. Y. Hou,; A. T. C. Pham,; L. J. Wu,; Q. H. Zhang, et al. Molecular- channel driven actuator with considerations for multiple configurations and color switching. Nat. Commun. 2018, 9, 590.
[12]
G. M. Cai,; M. Y. Yang,; Z. L. Xu,; J. G. Liu,; B. Tang,; X. G. Wang, Flexible and wearable strain sensing fabrics. Chem. Eng. J. 2017, 325, 396-403.
[13]
Z. Yang,; Y. Pang,; X. L. Han,; Y. F. Yang,; J. Ling,; M. Q. Jian,; Y. Y. Zhang,; Y. Yang,; T. L. Ren, Graphene textile strain sensor with negative resistance variation for human motion detection. ACS Nano 2018, 12, 9134-9141.
[14]
S. Afroj,; S. R. Tan,; A. M. Abdelkader,; K. S. Novoselov,; N. Karim, Highly conductive, scalable, and machine washable graphene-based e-textiles for multifunctional wearable electronic applications. Adv. Funct. Mater. 2020, 30, 2000293.
[15]
N. Karim,; M. L. H. Zhang,; S. Afroj,; V. Koncherry,; P. Potluri,; K. S. Novoselov, Graphene-based surface heater for de-icing applications. RSC Adv. 2018, 8, 16815-16823.
[16]
D. H. Du,; Z. H. Tang,; J.Y. Ouyang, Highly washable e-textile prepared by ultrasonic nanosoldering of carbon nanotubes onto polymer fibers. J. Mater. Chem. C 2018, 6, 883-889.
[17]
Y. Li,; X. Y. Cheng,; M. Y. Leung,; J. Tsang,; X. M. Tao,; M. C. W. Yuen, A flexible strain sensor from polypyrrole-coated fabrics. Synth. Met. 2005, 155, 89-94.
[18]
B. T. Wu,; B. W. Zhang,; J. X. Wu,; Z. Q. Wang,; H. J. Ma,; M. Yu,; L. F. Li,; J. Y. Li, Electrical switchability and dry-wash durability of conductive textiles. Sci. Rep. 2015, 5, 11255.
[19]
H. W. Cui,; K. Suganuma,; H. Uchida, Highly stretchable, electrically conductive textiles fabricated from silver nanowires and cupro fabrics using a simple dipping-drying method. Nano Res. 2015, 8, 1604-1614.
[20]
T. G. La,; S. D. Qiu,; D. K. Scott,; R. Bakhtiari,; J. W. P. Kuziek,; K. E. Mathewson,; J. Rieger,; H. J. Chung, Two-layered and stretchable e-textile patches for wearable healthcare electronics. Adv. Healthc. Mater. 2018, 7, 1801033.
[21]
Y. D. Li,; Y. N. Li,; M. Su,; W. B. Li,; Y. F. Li,; H. Z. Li,; X. Qian,; X. Y. Zhang,; F. Y. Li,; Y. L. Song, Electronic textile by dyeing method for multiresolution physical kineses monitoring. Adv. Electron. Mater. 2017, 3, 1700253.
[22]
T. Lee,; W. Lee,; S. W. Kim,; J. J. Kim,; B. S. Kim, Flexible textile strain wireless sensor functionalized with hybrid carbon nanomaterials supported ZnO nanowires with controlled aspect ratio. Adv. Funct. Mater. 2016, 26, 6206-6214.
[23]
S. He,; B. J. Xin,; Z. M. Chen,; Y. Liu, Flexible and highly conductive Ag/G-coated cotton fabric based on graphene dipping and silver magnetron sputtering. Cellulose 2018, 25, 3691-3701.
[24]
S. J. Kim,; W. Song,; Y. Yi,; B. K. Min,; S. Mondal,; K. S. An,; C. G. Choi, High durability and waterproofing rGO/SWCNT-fabric-based multifunctional sensors for human-motion detection. ACS Appl. Mater. Interfaces 2018, 10, 3921-3928.
[25]
N. Karim,; S. Afroj,; S. R. Tan,; K. S. Novoselov,; S. G. Yeates, All inkjet-printed graphene-silver composite ink on textiles for highly conductive wearable electronics applications. Sci. Rep. 2019, 9, 8035.
[26]
S. Y. Bi,; L. Hou,; H. Zhao,; L. Zhu,; Y. X. Lu, Ultrasensitive and highly repeatable pen ink decorated cuprammonium rayon (cupra) fabrics for multifunctional sensors. J. Mater. Chem. A 2018, 6, 16556-16565.
[27]
G. Wang,; L. W. Feng,; W. Huang,; S. Mukherjee,; Y. Chen,; D. K. Shen,; B. H. Wang,; J. Strzalka,; D. Zheng,; F. S. Melkonyan, et al. Mixed-flow design for microfluidic printing of two-component polymer semiconductor systems. Proc. Natl. Acad. Sci. USA 2020, 117, 17551-17557.
[28]
J. S. Ren,; C. X. Wang,; X. Zhang,; T. Carey,; K. L. Chen,; Y. J. Yin,; F. Torrisi, Environmentally-friendly conductive cotton fabric as flexible strain sensor based on hot press reduced graphene oxide. Carbon 2017, 111, 622-630.
[29]
K. D. Harris,; A. L. Elias,; H. J. Chung, Flexible electronics under strain: A review of mechanical characterization and durability enhancement strategies. J. Mater. Sci. 2016, 51, 2771-2805.
[30]
Z. Z. Zhao,; C. Yan,; Z. X. Liu,; X. L. Fu,; L. M. Peng,; Y. F. Hu,; Z. J. Zheng, Machine-washable textile triboelectric nanogenerators for effective human respiratory monitoring through loom weaving of metallic yarns. Adv. Mater. 2016, 28, 10267-10274.
[31]
A. K. Yetisen,; H. Qu,; A. Manbachi,; H. Butt,; M. R. Dokmeci,; J. P. Hinestroza,; M. Skorobogatiy,; A. Khademhosseini,; S. H. Yun, Nanotechnology in textiles. ACS Nano 2016, 10, 3042-3068.
[32]
A. Nel,; T. Xia,; H. Meng,; X. Wang,; S. J. Lin,; Z. X. Ji,; H. Y. Zhang, Nanomaterial toxicity testing in the 21st century: Use of a predictive toxicological approach and high-throughput screening. Acc. Chem. Res. 2013, 46, 607-621.
[33]
Y. J. Zheng,; Y. L. Li,; Y. J. Zhou,; K. Dai,; G. Q. Zheng,; B. Zhang,; C. T. Liu,; C. Y. Shen, High-performance wearable strain sensor based on graphene/cotton fabric with high durability and low detection limit. ACS Appl. Mater. Interfaces 2020, 12, 1474-1485.
[34]
C. Y. Wang,; X. Li,; E. L. Gao,; M. Q. Jian,; K. L. Xia,; Q. Wang,; Z. P. Xu,; T. L. Ren,; Y. Y. Zhang, Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv. Mater. 2016, 28, 6640-6648.
[35]
M. C. Zhang,; C. Y. Wang,; H. M. Wang,; M. Q. Jian,; X. Y. Hao,; Y. Y. Zhang, Carbonized cotton fabric for high-performance wearable strain sensors. Adv. Funct. Mater. 2017, 27, 1604795.
[36]
C. Y. Wang,; K. L. Xia,; M. Q. Jian,; H. M. Wang,; M. C. Zhang,; Y. Y. Zhang, Carbonized silk georgette as an ultrasensitive wearable strain sensor for full-range human activity monitoring. J. Mater. Chem. C 2017, 5, 7604-7611.
[37]
P. Li,; Y. K. Zhang,; Z. J. Zheng, Polymer-assisted metal deposition (PAMD) for flexible and wearable electronics: Principle, materials, printing, and devices. Adv. Mater. 2019, 31, 1902987.
[38]
X. Q. Liu,; H. X. Chang,; Y. Li,; W. T. S. Huck,; Z. J. Zheng, Polyelectrolyte-bridged metal/cotton hierarchical structures for highly durable conductive yarns. ACS Appl. Mater. Interfaces 2010, 2, 529-535.
[39]
L. Wang,; Y. Chen,; L. W. Lin,; H. Wang,; X. W. Huang,; H. G. Xue,; J. F. Gao, Highly stretchable, anti-corrosive and wearable strain sensors based on the PDMS/CNTs decorated elastomer nanofiber composite. Chem. Eng. J. 2019, 362, 89-98.
[40]
L. W. Lin,; L. Wang,; B. Li,; J. C. Luo,; X. W. Huang,; Q. Gao,; H. G. Xue,; J. F. Gao, Dual conductive network enabled superhydrophobic and high performance strain sensors with outstanding electro-thermal performance and extremely high gauge factors. Chem. Eng. J. 2020, 385, 123391.
[41]
Y. Yang,; Q. Y. Huang,; L. Y. Niu,; D. R. Wang,; C. Yan,; Y. Y. She,; Z. J. Zheng, Waterproof, ultrahigh areal-capacitance, wearable supercapacitor fabrics. Adv. Mater. 2017, 29, 1606679.
[42]
H. Lee,; S. M. Dellatore,; W. M. Miller,; P. B. Messersmith, Mussel- inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426-430.
[43]
J. H. Ryu,; P. B. Messersmith,; H. Lee, Polydopamine surface chemistry: A decade of discovery. ACS Appl. Mater. Interfaces 2018, 10, 7523-7540.
[44]
T. G. Barclay,; H. M. Hegab,; S. R. Clarke,; M. Ginic-Markovic, Versatile surface modification using polydopamine and related polycatecholamines: Chemistry, structure, and applications. Adv. Mater. Interfaces 2017, 4, 1601192.
[45]
Q. Ye,; F. Zhou,; W. M. Liu, Bioinspired catecholic chemistry for surface modification. Chem. Soc. Rev. 2011, 40, 4244-4258.
[46]
W. C. Wang,; Y. Jiang,; S. P. Wen,; L. Liu,; L. Q. Zhang, Preparation and characterization of polystyrene/Ag core-shell microspheres-A bio-inspired poly (dopamine) approach. J. Colloid Interface Sci. 2012, 368, 241-249.
[47]
Y. D. Yin,; Z. Y. Li,; Z. Y. Zhong,; B. Gates,; Y. N. Xia,; S. Venkateswaran, Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the Tollens process. J. Mater. Chem. 2002, 12, 522-527.
[48]
Y. L. Wang,; J. Hao,; Z. Q. Huang,; G. Q. Zheng,; K. Dai,; C. T. Liu,; C. Y. Shen, Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring. Carbon 2018, 126, 360-371.
[49]
A. Ulman, Formation and structure of self-assembled monolayers. Chem. Rev. 1996, 96, 1533-1554.
[50]
L. B. Hu,; M. Pasta,; F. La Mantia,; L. F. Cui,; S. Jeong,; H. D. Deshazer,; J. W. Choi,; S. M. Han,; Y. Cui, Stretchable, porous, and conductive energy textiles. Nano Lett. 2010, 10, 708-714.
[51]
Z. X. Liu,; X. Zhang,; C. Liu,; D. Y. Li,; M. X. Zhang,; F. X. Yin,; G. Q. Xin,; G. K. Wang, Ferroconcrete-inspired design of a nonwoven graphene fiber fabric reinforced electrode for flexible fast-charging sodium ion storage devices. J. Mater. Chem. A 2020, 8, 2777-2788.
[52]
Y. J. Ding,; M. A. Invernale,; G. A. Sotzing, Conductivity trends of PEDOT-PSS impregnated fabric and the effect of conductivity on electrochromic textile. ACS Appl. Mater. Interfaces 2010, 2, 1588-1593.
[53]
K. W. Oh,; H. J. Park,; S. H. Kim, Stretchable conductive fabric for electrotherapy. J. Appl. Polym. Sci. 2003, 88, 1225-1229.
[54]
H. C. Lu,; J. Z. Chen,; Q. H. Tian, Wearable high-performance supercapacitors based on Ni-coated cotton textile with low-crystalline Ni-Al layered double hydroxide nanoparticles. J. Colloid Interface Sci. 2018, 513, 342-348.
[55]
X. S. Liu,; J. M. Cao,; H. Li,; J. Y. Li,; Q. Jin,; K. F. Ren,; J. Ji, Mussel-inspired polydopamine: A biocompatible and ultrastable coating for nanoparticles in vivo. ACS Nano 2013, 7, 9384-9395.
[56]
J. H. Jiang,; L. P. Zhu,; L. J. Zhu,; B. K. Zhu,; Y. Y. Xu, Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films. Langmuir 2011, 27, 14180-14187.
[57]
H. Liu,; Q. M. Li,; Y. B. Bu,; N. Zhang,; C. F. Wang,; C. F. Pan,; L. W. Mi,; Z. H. Guo,; C. T. Liu,; C. Y. Shen, Stretchable conductive nonwoven fabrics with self-cleaning capability for tunable wearable strain sensor. Nano Energy 2019, 66, 104143.
[58]
A. B. D. Cassie,; S. Baxter, Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546-551.
[59]
S. T. Wang,; K. S. Liu,; X. Yao,; L. Jiang, Bioinspired surfaces with superwettability: New insight on theory, design, and applications. Chem. Rev. 2015, 115, 8230-8293.
[60]
X. Q. Liao,; Q. L. Liao,; X. Q. Yan,; Q. J. Liang,; H. N. Si,; M. H. Li,; H. L. Wu,; S. Y. Cao,; Y. Zhang, Flexible and highly sensitive strain sensors fabricated by pencil drawn for wearable monitor. Adv. Funct. Mater. 2015, 25, 2395-2401.
[61]
H. B. Liu,; H. E. Jiang,; F. Du,; D. P. Zhang,; Z. J. Li,; H. W. Zhou, Flexible and degradable paper-based strain sensor with low cost. ACS Sustainable Chem. Eng. 2017, 5, 10538-10543.
[62]
R. Holm, Electric Contacts: Theory and Application; Springer Science & Business Media: Berlin, 2013.
[63]
Y. Cheng,; H. Zhang,; R. R. Wang,; X. Wang,; H. T. Zhai,; T. Wang,; Q. H. Jin,; J. Sun, Highly stretchable and conductive copper nanowire based fibers with hierarchical structure for wearable heaters. ACS Appl. Mater. Interfaces 2016, 8, 32925-32933.
[64]
M. C. Zhang,; C. Y. Wang,; X. P. Liang,; Z. Yin,; K. L. Xia,; H. M. Wang,; M. Q. Jian,; Y. Y. Zhang, Weft-knitted fabric for a highly stretchable and low-voltage wearable heater. Adv. Electron. Mater. 2017, 3, 1700193.
Nano Research
Pages 1043-1052
Cite this article:
Niu B, Yang S, Hua T, et al. Facile fabrication of highly conductive, waterproof, and washable e-textiles for wearable applications. Nano Research, 2021, 14(4): 1043-1052. https://doi.org/10.1007/s12274-020-3148-3
Topics:

816

Views

54

Crossref

N/A

Web of Science

52

Scopus

3

CSCD

Altmetrics

Received: 18 July 2020
Revised: 19 September 2020
Accepted: 27 September 2020
Published: 23 October 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return