Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Multivalent Sn species synergistically favours the CO2-into-HCOOH conversion

Jun Wu1Xue Bai2Zhiyu Ren2()Shichao Du2Zichen Song1Lei Zhao2Bowen Liu2Guiling Wang1()Honggang Fu2()
Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin 150080, China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Although Sn-based catalysts have recently achieved considerable improvement in selective electro-catalyzing CO2 into HCOOH, the role of various valence Sn species is not fully understood due to the complexity and uncertainty of their evolution during the reaction process. Here, inspired by the theoretical simulations that the concomitant multivalent Sn (Sn0, SnII and SnIV) can significantly motivate the intrinsic activity of Sn-based catalyst, the Sn/SnO/SnO2 nanosheets were proposed to experimentally verify the synergistic effect of multivalent Sn species on the CO2-into-HCOOH conversion. During CO2 reduction reaction, the Sn/SnO/SnO2 nanosheets, which are prepared by the sequential hydrothermal reaction, calcined crystallization and low-temperature H2 treatment, exhibit a high FEHCOOH of 89.6% at -0.9 VRHE as well as a large cathodic current density. Systematic experimental and theoretical results corroborate that multivalent Sn species synergistically energize the CO2 activation, the HCOO* adsorption, and the electron transfer, which make Sn/SnO/SnO2 favour the conversion from CO2 into HCOOH in both thermodynamics and kinetics. This proof-of-concept study establishes a relationship between the enhanced performance and the multivalent Sn species, and also provides a practicable and scalable avenue for rational engineering high-powered electrocatalysts.

Electronic Supplementary Material

Download File(s)
12274_2020_3149_MOESM1_ESM.pdf (4.7 MB)

References

[1]
Y. Cheng,; S. Z. Yang,; S. P. Jiang,; S. Y. Wang, Supported single atoms as new class of catalysts for electrochemical reduction of carbon dioxide. Small Meth. 2019, 3, 1800440.
[2]
Y. Q. Chen,; Y. J. Yao,; Y. J. Xia,; K. Mao,; G. G. Tang,; Q. Wu,; L. J. Yang,; X. Z. Wang,; X. H. Sun,; Z. Hu, Advanced Ni-Nx-C single-site catalysts for CO2 electroreduction to CO based on hierarchical carbon nanocages and S-doping. Nano Res. 2020, 13, 2777-2783.
[3]
C. Chen,; X. R. Zhu,; X. J. Wen,; Y. Y. Zhou,; L. Zhou,; H. Li,; L. Tao,; Q. L. Li,; S. Q. Du,; T. T. Liu, et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat. Chem. 2020, 12, 717-724.
[4]
D. X. Tan,; C. N. Cui,; J. B. Shi,; Z. X. Luo,; B. X. Zhang,; X. N. Tan,; B. X. Han,; L. R. Zheng,; J. Zhang,; J. L. Zhang, Nitrogen-carbon layer coated nickel nanoparticles for efficient electrocatalytic reduction of carbon dioxide. Nano Res. 2019, 12, 1167-1172.
[5]
Z. L. Jiang,; T. Wang,; J. J. Pei,; H. S. Shang,; D. N. Zhou,; H. J. Li,; J. C. Dong,; Y. Wang,; R. Cao,; Z. B. Zhuang, et al. Discovery of main group single Sb-N4 active sites for CO2 electroreduction to formate with high efficiency. Energy Environ. Sci. 2020, 13, 2856-2863.
[6]
A. Vasileff,; X. Zhi,; C. C. Xu,; L. Ge,; Y. Jiao,; Y. Zheng,; S. Z. Qiao, Selectivity control for electrochemical CO2 reduction by charge redistribution on the surface of copper alloys. ACS Catal. 2019, 9, 9411-9417.
[7]
S. B. Liu,; X. F. Lu,; J. Xiao,; X. Wang,; X. W. Lou, Bi2O3 nanosheets grown on multi-channel carbon matrix to catalyze efficient CO2 electroreduction to HCOOH. Angew. Chem., Int. Ed. 2019, 58, 13828-13833.
[8]
J. Wu,; Y. Xie,; S. C. Du,; Z. Y. Ren,; P. Yu,; X. W. Wang,; G. L. Wang,; H. G. Fu, Heterophase engineering of SnO2/Sn3O4 drives enhanced carbon dioxide electrocatalytic reduction to formic acid. Sci. China Mater., in press. .
[9]
Q. F. Gong,; P. Ding,; M. Q. Xu,; X. R. Zhu,; M. Y. Wang,; J. Deng,; Q. Ma,; N. Han,; Y. Zhu,; J. Lu, et al. Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nat. Commun. 2019, 10, 2807.
[10]
N. Han,; P. Ding,; L. He,; Y. Y. Li,; Y. G. Li, Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate. Adv. Energy Mater. 2020, 10, 1902338.
[11]
S. B. Liu,; J. Xiao,; X. F. Lu,; J. Wang,; X. Wang,; X. W. Lou, Efficient electrochemical reduction of CO2 to HCOOH over Sub-2 nm SnO2 quantum wires with exposed grain Boundaries. Angew. Chem., Int. Ed. 2019, 58, 8499-8503.
[12]
T. B. Yuan,; Z. Hu,; Y. X. Zhao,; J. J. Fang,; J. Lv,; Q. H. Zhang,; Z. B. Zhuang,; L. Gu,; S. Hu, Two-dimensional amorphous SnOx from liquid metal: Mass production, phase transfer, and electrocatalytic CO2 reduction toward formic acid. Nano Lett. 2020, 20, 2916-2922.
[13]
J. C. Li,; Y. Kuang,; Y. T. Meng,; X. Tian,; W. H. Hung,; X. Zhang,; A. W. Li,; M. Q. Xu,; W. Zhou,; C. S. Ku, et al. Electroreduction of CO2 to formate on a copper-based electrocatalyst at high pressures with high energy conversion efficiency. J. Am. Chem. Soc. 2020, 142, 7276-7282.
[14]
F. C. Wei,; T. T. Wang,; X. L. Jiang,; Y. Ai,; A. Y. Cui,; J. Cui,; J. W. Fu,; J. G. Cheng,; L. C. Lei,; Y. Hou, et al. H. Controllably engineering mesoporous surface and dimensionality of SnO2 toward high-performance CO2 electroreduction. Adv. Funct. Mater. 2020, 30, 2002092.
[15]
K. Ye,; Z. W. Zhou,; J. Q. Shao,; L. Lin,; D. F. Gao,; N. Ta,; R. Si,; G. X. Wang,; X. H. Bao, In situ reconstruction of a hierarchical Sn-Cu/SnOx core/shell catalyst for high-performance CO2 electroreduction. Angew. Chem., Int. Ed. 2020, 59, 4814-4821.
[16]
K. Wang,; D. Y. Liu,; P. L. Deng,; L. M. Liu,; S. Y. Lu,; Z. J. Sun,; Y. M. Ma,; Y. K. Wang,; M. T. Li,; B. Yu. Xia, et al. Band alignment in Zn2SnO4/SnO2 heterostructure enabling efficient CO2 electrochemical reduction. Nano Energy 2019, 64, 103954.
[17]
F. C. Wei,; T. T. Wang,; X. L. Jiang,; Y. Ai,; A. Y. Cui,; J. Cui,; J. W. Fu,; J. G. Cheng,; L. C. Lei,; Y. Hou, et al. Controllably engineering mesoporous surface and dimensionality of SnO2 toward high- performance CO2 electroreduction. Adv. Funct. Mater. 2020, 30, 2002092.
[18]
Y. Zhang,; L. Ji,; W. B. Qiu,; X. F. Shi,; A. M. Asiri,; X. P. Sun, Iodide-derived nanostructured silver promotes selective and efficient carbon dioxide conversion into carbon monoxide. Chem. Commun. 2018, 54, 2666-2669.
[19]
H. Mistry,; A. S. Varela,; C. S. Bonifacio,; I. Zegkinoglou,; I. Sinev,; Y. W. Choi,; K. Kisslinger,; E. A. Stach,; J. C. Yang,; P. Strasser, et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 2016, 7, 12123.
[20]
L. Fan,; Z. Xia,; M. J. Xu,; Y. Y. Lu,; Z. J. Li, 1D SnO2 with wire- in-tube architectures for highly selective electrochemical reduction of CO2 to C1 products. Adv. Funct. Mater. 2018, 28, 1706289.
[21]
K. L. Lv,; Y. C. Fan,; Y. Zhu,; Y. Yuan,; J. R. Wang,; Y. Zhu,; Q. F. Zhang, Elastic Ag-anchored N-doped graphene/carbon foam for the selective electrochemical reduction of carbon dioxide to ethanol. J. Mater. Chem. A 2018, 6, 5025-5031.
[22]
Y. Jiao,; Y. Zheng,; P. Chen,; M. Jaroniec,; S. Z. Qiao, Molecular scaffolding strategy with synergistic active centers to facilitate electrocatalytic CO2 reduction to hydrocarbon/alcohol. J. Am. Chem. Soc. 2017, 139, 18093-18100.
[23]
H. Coskun,; A. Aljabour,; P. De Luna,; D. Farka,; T. Greunz,; D. Stifter,; M. Kus,; X. L. Zheng,; M. Liu,; A. W. Hassel, et al. Biofunctionalized conductive polymers enable efficient CO2 electroreduction. Sci. Adv. 2017, 3, e1700686.
[24]
F. W. Li,; S. F. Zhao,; L. Chen,; A. Khan,; D. R. MacFarlane,; J. Zhang, Polyethylenimine promoted electrocatalytic reduction of CO2 to CO in aqueous medium by graphene-supported amorphous molybdenum sulphide. Energy Environ. Sci. 2016, 9, 216-223.
[25]
J. A. Trindell,; J. Clausmeyer,; R. M. Crooks, Size stability and H2/CO selectivity for Au nanoparticles during electrocatalytic CO2 reduction. J. Am. Chem. Soc. 2017, 139, 16161-16167.
[26]
K. Sun,; T. Cheng,; L. N. Wu,; Y. F. Hu,; J. G. Zhou,; A. Maclennan,; Z. H. Jiang,; Y. Z. Gao,; W. A. Goddard III,; Z, J. Wang, Ultrahigh mass activity for carbon dioxide reduction enabled by gold-iron core-shell nanoparticles. J. Am. Chem. Soc. 2017, 139, 15608-15611.
[27]
Y. Hori,; H. Wakebe,; T. Tsukamoto,; O. Koga, Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 1994, 39, 1833-1839.
[28]
Y. Hori, Electrochemical CO2 reduction on metal electrodes. In Modern Aspects of Electrochemistry; C. G. Vayenas,; R. E. White,; M. E. Gamboa-Aldeco,, Eds.; Springer: New York, 2008; pp 89-189.
[29]
Z. R. Zhang,; F. Ahmad,; W. H. Zhao,; W. H. Yan,; W. H. Zhang,; H. W. Huang,; C. Ma,; J. Zeng, Enhanced electrocatalytic reduction of CO2 via chemical coupling between indium oxide and reduced graphene oxide. Nano Lett. 2019, 19, 4029-4034.
[30]
X. X. Zhang,; Z. P. Chen,; K. W. Mou,; M. Y. Jiao,; X. P. Zhang,; L. C. Liu, Intentional construction of high-performance SnO2 catalysts with a 3D porous structure for electrochemical reduction of CO2. Nanoscale, 2019, 11, 18715-18722.
[31]
G. B. Wen,; D. U. Lee,; B. H. Ren,; F. M. Hassan,; G. P. Jiang,; Z. P. Cano,; J. Gostick,; E. Croiset,; Z. Y. Bai,; L. Yang, et al. Orbital interactions in Bi-Sn bimetallic electrocatalysts for highly selective electrochemical CO2 reduction toward formate production. Adv. Energy Mater. 2018, 8, 1802427.
[32]
T. F. Li,; C. Yang,; J. L. Luo,; G. F. Zheng, Electrolyte driven highly selective CO2 electroreduction at low overpotentials. ACS Catal. 2019, 9, 10440-10447.
[33]
A. Dutta,; A. Kuzume,; V. Kaliginedi,; M. Rahaman,; I. Sinev,; M. Ahmadi,; B. R. Cuenya,; S. Vesztergom,; P. Broekmann, Probing the chemical state of tin oxide NP catalysts during CO2 electroreduction: A complementary operando approach. Nano Energy 2018, 53, 828-840.
[34]
H. S. Shang,; W. M. Sun,; R. Sui,; J. J. Pei,; L. R. Zheng,; J. C. Dong,; Z. L. Jiang,; D. N. Zhou,; Z. B. Zhuang,; W. X. Chen, et al. Engineering isolated Mn−N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443-5450.
[35]
H. S. Shang,; Z. L. Jiang,; D. N. Zhou,; J. J. Pei,; Y. Wang,; J. C. Dong,; X. S. Zheng,; J. T. Zhang,; W. X. Chen. Engineering a metal-organic framework derived Mn-N4-CxSy atomic interface for highly efficient oxygen reduction reaction. Chem. Sci. 2020, 11, 5994-5999.
[36]
H. S. Shang,; X. Y. Zhou,; J. C. Dong,; A. Li,; X. Zhao,; Q. H. Liu,; Y. Lin,; J. J. Pei,; Z. Li,; Z. L. Jiang, et al. Engineering unsymmetrically coordinated Cu-S1N3 Single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.
[37]
M. F. Baruch,; J. E. Pander,; J. L. White III,; A. B. Bocarsly, Mechanistic insights into the reduction of CO2 on tin electrodes using in situ ATR-IR spectroscopy. ACS Catal. 2015, 5, 3148-3156.
[38]
A. Dutta,; A. Kuzume,; M. Rahaman,; S. Vesztergom,; P. Broekmann, Monitoring the chemical state of catalysts for CO2 electroreduction: An in operando study. ACS Catal. 2015, 5, 7498-7502.
[39]
C. C. Zhao,; J. L. Wang,; J. B. Goodenough, Comparison of electrocatalytic reduction of CO2 to HCOOH with different tin oxides on carbon nanotubes. Electrochem. Commun. 2016, 65, 9-13.
[40]
M. L. Fang,; Z. P. Zheng,; J. Y. Chen,; Q. Chen,; D. Y. Liu,; B. B. Xu,; J. Y. Wu,; Q. Kuang,; Z. X. Xie, Surface structure-dependent electrocatalytic reduction of CO2 to C1 products on SnO2 catalysts. Sustain. Energy Fuels 2020, 4, 600-606.
[41]
X. W. An,; S. S. Li,; A. Yoshida,; Z. D. Wang,; X. G. Hao,; A. Abudula,; G. Q. Guan, Electrodeposition of tin-based electrocatalysts with different surface tin species distributions for electrochemical reduction of CO2 to HCOOH. ACS Sustainable Chem. Eng. 2019, 7, 9360-9368.
[42]
X. S. Su,; Y. M. Sun,; L. Jin,; L. Zhang,; Y. Yang,; P. Kerns,; B. Liu,; S. Z. Li,; J. He, Hierarchically porous Cu/Zn bimetallic catalysts for highly selective CO2 electroreduction to liquid C2 products. Appl. Catal. B: Environ. 2020, 269, 118800.
[43]
J. Li,; J. Q. Jiao,; H. C. Zhang,; P. Zhu,; H. F. Ma,; C. Chen,; H. Xiao,; Q. Lu, Two-dimensional SnO2 nanosheets for efficient carbon dioxide electroreduction to formate. ACS Sustain. Chem. Eng. 2020, 8, 4975-4982.
[44]
B. Hammer,; J. K. Nørskov, Electronic factors determining the reactivity of metal surfaces. Surf. Sci. 1995, 343, 211-220.
[45]
Z. P. Chen,; X. X. Zhang,; M. Y. Jiao,; K. W. Mou,; X. P. Zhang,; L. C. Liu, Engineering electronic structure of stannous sulfide by amino-functionalized carbon: Toward efficient electrocatalytic reduction of CO2 to formate. Adv. Energy Mater. 2020, 10, 1903664.
[46]
Q. Lu,; J. Rosen,; Y. Zhou,; G. S. Hutchings,; Y. C. Kimmel,; J. G. Chen,; F. Jiao. A selective and efficient electrocatalyst for carbon dioxide reduction. Nat. Commun. 2014, 5, 3242.
[47]
S. Gao,; X. C. Jiao,; Z. T. Sun,; W. H. Zhang,; Y. F. Sun,; C. M. Wang,; Q. T. Hu,; X. L. Zu,; F. Yang,; S. Y. Yang, et al. Ultrathin Co3O4 layers realizing optimized CO2 electroreduction to formate. Angew. Chem., Int. Ed. 2016, 55, 698-702.
[48]
D. Kim,; J. Resasco,; Y. Yu,; A. M. Asiri,; P. D. Yang. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 2014, 5, 4948.
[49]
Z. Chen,; T. T. Fan,; Y, Q. Zhang,; J. Xiao,; M. R. Gao,; N. Q. Duan,; J. W. Zhang,; J. H. Li,; Q. X. Liu,; X. D. Yi, et al. Wavy SnO2 catalyzed simultaneous reinforcement of carbon dioxide adsorption and activation towards electrochemical conversion of CO2 to HCOOH. Appl. Catal. B: Environ. 2020, 261, 118243.
[50]
W. Y. Zhang,; Q. Qin,; L. Dai,; R. X. Qin,; X. J. Zhao,; X. M. Chen,; D. H. Ou,; J. Chen,; T. T. Chuong,; B. H. Wu, et al. Electrochemical reduction of carbon dioxide to methanol on hierarchical Pd/SnO2 nanosheets with abundant Pd-O-Sn interfaces. Angew. Chem., Int. Ed. 2018, 57, 9475-9479.
[51]
S. Zhang,; P. Kang,; T. J. Meyer, Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J. Am. Chem. Soc. 2014, 136, 1734-1737.
[52]
F. C. Lei,; W. Liu,; Y. F. Sun,; J. Q. Xu,; K. T. Liu,; L. Liang,; T. Yao,; B. C. Pan,; S. Q. Wei,; Y. Xie. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction. Nat. Commun. 2016, 7, 12697.
[53]
D. H. Won,; C. H. Choi,; J. Chung,; M. W. Chung,; E. H. Kim,; S. I. Woo, Rational design of a hierarchical tin dendrite electrode for efficient electrochemical reduction of CO2. ChemSusChem 2015, 8, 3092-3098.
[54]
A. Salehi-Khojin,; H. R. M. Jhong,; B. A. Rosen,; W. Zhu,; S. C. Ma,; P. J. A. Kenis,; R. I. Masel, Nanoparticle silver catalysts that show enhanced activity for carbon dioxide electrolysis. J. Phys. Chem. C 2013, 117, 1627-1632.
Nano Research
Pages 1053-1060
Cite this article:
Wu J, Bai X, Ren Z, et al. Multivalent Sn species synergistically favours the CO2-into-HCOOH conversion. Nano Research, 2021, 14(4): 1053-1060. https://doi.org/10.1007/s12274-020-3149-2
Topics:
Metrics & Citations  
Article History
Copyright
Return