AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

2D interspace confined growth of ultrathin MoS2-intercalated graphite hetero-layers for high-rate Li/K storage

Yang Li1,§Song Jiang1,§Yong Qian2Xuedong Yan3,4Jie Zhou1Zheng Yi1Ning Lin1( )Yitai Qian1,2( )
Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
College of Chemical Engineering, Ningbo Polytechnic, Ningbo 315800, China
Ningbo Veken Battery Co. Ltd, Ningbo 315800, China

§ Yang Li and Song Jiang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Herein, a two-dimensional (2D) interspace-confined synthetic strategy is developed for producing MoS2-intercalated graphite (G-MoS2) hetero-layers composite through sulfuring the pre-synthesized stage-1 MoCl5-graphite intercalation compound (MoCl5-GIC). The in situ grown MoS2 nanosheets (3-7 layers) are evenly encapsulated in graphite layers with intimate interface thus forming layer-by-layer MoS2-intercalated graphite composite. In this structure, the unique merits of MoS2 and graphite components are integrated, such as high capacity contribution of MoS2 and the flexibility of graphite layers. Besides, the tight interfacial interaction between hetero-layers optimizes the potential of conductive graphite layers as matrix for MoS2. As a result, the G-MoS2 exhibits a high reversible Li+ storage of 344 mAh·g−1 even at 10 A·g−1 and a capacity of 539.9 mAh·g−1 after 1,500 cycles at 5 A·g−1. As for potassium ion battery, G-MoS2 delivers a reversible capacity of 377.0 mAh·g−1 at 0.1 A·g−1 and 141.2 mAh·g−1 even at 2 A·g−1. Detailed experiments and density functional theory calculation demonstrate the existence of hetero-layers enhances the diffusion rates of Li+ and K+. This graphite interspace-confined synthetic methodology would provide new ideas for preparing function-integrated materials in energy storage and conversion, catalysis or other fields.

Electronic Supplementary Material

Download File(s)
12274_2020_3150_MOESM1_ESM.pdf (3.4 MB)

References

[1]
D. Larcher,; J. M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19-29.
[2]
V. Etacheri,; R. Marom,; R. Elazari,; G. Salitra,; D. Aurbach, Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243-3262.
[3]
J. Y. Hwang,; S. T. Myung,; Y. K. Sun, Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529-3614.
[4]
C. J. Xu,; B. H. Li,; H. D. Du,; F. Y. Kang, Energetic zinc ion chemistry: The rechargeable zinc ion battery. Angew. Chem., Int. Ed. 2012, 51, 933-935.
[5]
H. D. Yoo,; I. Shterenberg,; Y. Gofer,; G. Gershinsky,; N. Pour,; D. Aurbach, Mg rechargeable batteries: An on-going challenge. Energy Environ. Sci. 2013, 6, 2265-2279.
[6]
Y. R. Zhu,; J. Y. Li,; X. R. Yun,; G. G. Zhao,; P. Ge,; G. Q. Zou,; Y. Liu,; H. S. Hou,; X. B. Ji, Graphitic carbon quantum dots modified nickel cobalt sulfide as cathode materials for alkaline aqueous batteries. Nano-Micro Lett. 2020, 12, 16.
[7]
J. Y. Hwang,; S. T. Myung,; Y. K. Sun, Recent progress in rechargeable potassium batteries. Adv. Funct. Mater. 2018, 28, 1802938.
[8]
Z. L. Jian,; W. Luo,; X. L. Ji, Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 2015, 137, 11566-11569.
[9]
R. Raccichini,; A. Varzi,; S. Passerini,; B. Scrosati, The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271-279.
[10]
W. W. Hong,; Y. Zhang,; L. Yang,; Y. Tian,; P. Ge,; J. G. Hu,; W. F. Wei,; G. Q. Zou,; H. S. Hou,; X. B. Ji, Carbon quantum dot micelles tailored hollow carbon anode for fast potassium and sodium storage. Nano Energy 2019, 65, 104038.
[11]
H. S. Hou,; C. E. Banks,; M. J. Jing,; Y. Zhang,; X. B. Ji, Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv. Mater. 2015, 27, 7861-7866.
[12]
L. Fan,; R. F. Ma,; Q. F. Zhang,; X. X. Jia,; B. G. Lu, Graphite anode for a potassium-ion battery with unprecedented performance. Angew. Chem., Int. Ed. 2019, 58, 10500-10505.
[13]
Z. Hu,; L. X. Wang,; K. Zhang,; J. B. Wang,; F. Y. Cheng,; Z. L. Tao,; J. Chen, MoS2 nanoflowers with expanded interlayers as high- performance anodes for sodium-ion batteries. Angew. Chem., Int. Ed. 2014, 53, 12794-12798.
[14]
L. Yang,; W. W. Hong,; Y. Tian,; G. Q. Zou,; H. S. Hou,; W. Sun,; X. B. Ji, Heteroatom-doped carbon inlaid with Sb2X3 (X= S, Se) nanodots for high-performance potassium-ion batteries. Chem. Eng. J. 2020, 385, 123838.
[15]
Z. Yi,; D. L. Fang,; W. Q. Zhang,; J. Tian,; S. M. Chen,; J. B. Liang,; N. Lin,; Y. T. Qian, Revealing quasi-1D volume expansion in Na-/K-ion battery anodes: A case study of Sb2O3 microbelts. CCS Chem. 2020, .
[16]
J. M. Ge,; B. Wang,; J. Wang,; Q. F. Zhang,; B. G. Lu, Nature of FeSe2/ N-C anode for high performance potassium ion hybrid capacitor. Adv. Energy Mater. 2020, 10, 1903277.
[17]
M. S. Whittingham, Chemistry of intercalation compounds: Metal guests in chalcogenide hosts. Prog. Solid State Chem. 1978, 12, 41-99.
[18]
M. S. Whittingham,; F. R. Gamble, Jr. The lithium intercalates of the transition metal dichalcogenides. Mater. Res. Bull. 1975, 10, 363-371.
[19]
M. A. Py,; R. R. Haering, Structural destabilization induced by lithium intercalation in MoS2 and related compounds. Can. J. Phys. 1983, 61, 76-84.
[20]
R. R. Haering,; J. A. R. Stiles,; K. Brandt, Lithium molybdenum disulphide battery cathode. U.S. Patent 4224390, Sep 23, 1980.
[21]
X. D. Ren,; Q. Zhao,; W. D. McCulloch,; Y. Y. Wu, MoS2 as a long- life host material for potassium ion intercalation. Nano Res. 2017, 10, 1313-1321.
[22]
X. Q. Xie,; Z. M. Ao,; D. W. Su,; J. Q. Zhang,; G. X. Wang, MoS2/ graphene composite anodes with enhanced performance for sodium-ion batteries: The role of the two-dimensional heterointerface. Adv. Funct. Mater. 2015, 25, 1393-1403.
[23]
Z. G. Deng,; H. Jiang,; Y. J. Hu,; Y. Liu,; L. Zhang,; H. L. Liu,; C. Z. Li, 3D ordered macroporous MoS2@C nanostructure for flexible Li-ion batteries. Adv. Mater. 2017, 29, 1603020.
[24]
K. Y. Xie,; K. Yuan,; X. Li,; W. Lu,; C. Shen,; C. L. Liang,; R. Vajtai,; P. Ajayan,; B. Q. Wei, Superior potassium ion storage via vertical MoS2 “Nano-Rose” with expanded interlayers on graphene. Small 2017, 13, 1701471.
[25]
B. R. Jia,; Q. Y. Yu,; Y. Z. Zhao,; M. L. Qin,; W. Wang,; Z. W. Liu,; C. Y. Lao,; Y. Liu,; H. W. Wu,; Z. L. Zhang, et al. Bamboo-like hollow tubes with MoS2/N-doped-c interfaces boost potassium-ion storage. Adv. Funct. Mater. 2018, 28, 1803409.
[26]
J. W. Zhou,; J. Qin,; X. Zhang,; C. S. Shi,; E. Z. Liu,; J. J. Li,; N. Q. Zhao,; C. N. He, 2D space-confined synthesis of few-layer MoS2 anchored on carbon nanosheet for lithium-ion battery anode. ACS Nano 2015, 9, 3837-3848.
[27]
K. Chang,; W. X. Chen, L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 2011, 5, 4720-4728.
[28]
X. H. Cao,; Y. M. Shi,; W. H. Shi,; X. H. Rui,; Q. Y. Yan,; J. Kong,; H. Zhang, Preparation of MoS2-coated three-dimensional graphene networks for high-performance anode material in lithium-ion batteries. Small 2013, 9, 3433-3438.
[29]
K. Ma,; H. Jiang,; Y. J. Hu,; C. Z. Li, 2D nanospace confined synthesis of pseudocapacitance-dominated MoS2-in-Ti3C2 superstructure for ultrafast and stable Li/Na-ion batteries. Adv. Funct. Mater. 2018, 28, 1804306.
[30]
S. Wang,; D. Zhang,; B. Li,; C. Zhang,; Z. G. Du,; H. M. Yin,; X. F. Bi,; S. B. Yang, Ultrastable in-plane 1T-2H MoS2 heterostructures for enhanced hydrogen evolution reaction. Adv. Energy Mater. 2018, 8, 1801345.
[31]
J. Mittal,; M. Inagaki, Synthesis of stage-one MoCl5-GIC in single phase. Synth. Met. 1998, 92, 87-89.
[32]
M. Kalbac,; A. Reina-Cecco,; H. Farhat,; J. Kong,; L. Kavan,; M. S. Dresselhaus, The influence of strong electron and hole doping on the Raman intensity of chemical vapor-deposition graphene. ACS Nano 2010, 4, 6055-6063.
[33]
H. Kinoshita,; I. Jeon,; M. Maruyama,; K. Kawahara,; Y. Terao,; D. Ding,; R. Matsumoto,; Y. Matsuo,; S. Okada,; H. Ago, Highly conductive and transparent large-area bilayer graphene realized by MoCl5 intercalation. Adv. Mater. 2017, 29, 1702141.
[34]
G. L. Frey,; R. Tenne,; M. J. Matthews,; M. S. Dresselhaus,; G. Dresselhaus, Raman and resonance Raman investigation of MoS2 nanoparticles. Phys. Rev. B 1999, 60, 2883-2892.
[35]
L. Cai,; J. F. He,; Q. H. Liu,; T. Yao,; L. Chen,; W. S. Yan,; F. C. Hu,; Y. Jiang,; Y. D. Zhao,; T. D. Hu, et al. Vacancy-induced ferromagnetism of MoS2 nanosheets. J. Am. Chem. Soc. 2015, 137, 2622-2627.
[36]
K. M. McCreary,; A. T. Hanbicki,; J. T. Robinson,; E. Cobas,; J. C. Culbertson,; A. L. Friedman,; G. G. Jernigan,; B. T. Jonker, Large- area synthesis of continuous and uniform MoS2 monolayer films on graphene. Adv. Funct. Mater. 2014, 24, 6449-6454.
[37]
Y. J. Tang,; Y. Wang,; X. L. Wang,; S. L. Li,; W. Huang,; L. Z. Dong,; C. H. Liu,; Y. F. Li,; Y. Q. Lan, Molybdenum disulfide/nitrogen-doped reduced graphene oxide nanocomposite with enlarged interlayer spacing for electrocatalytic hydrogen evolution. Adv. Energy Mater. 2016, 6, 1600116.
[38]
C. F. Zhang,; H. B. Wu,; Z. P. Guo,; X. W. Lou, Facile synthesis of carbon-coated MoS2 nanorods with enhanced lithium storage properties. Electrochem. Commun. 2012, 20, 7-10.
[39]
K. Chang,; D. S. Geng,; X. F. Li,; J. L. Yang,; Y. J. Tang,; M. Cai,; R. Y. Li,; X. L. Sun, Ultrathin MoS2/nitrogen-doped graphene nanosheets with highly reversible lithium storage. Adv. Energy Mater. 2013, 3, 839-844.
[40]
T. Stephenson,; Z. Li,; B. Olsen,; D. Mitlin, Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ. Sci. 2014, 7, 209-231.
[41]
L. L. Wang,; Q. F. Zhang,; J. Y. Zhu,; X. D. Duan,; Z. Xu,; Y. T. Liu,; H. G. Yang,; B. G. Lu, Nature of extra capacity in MoS2 electrodes: Molybdenum atoms accommodate with lithium. Energy Storage Mater. 2019, 16, 37-45.
[42]
N. Zheng,; G. Y. Jiang,; X. Chen,; J. Y. Mao,; Y. J. Zhou,; Y. S. Li, Rational design of a tubular, interlayer expanded MoS2-N/O doped carbon composite for excellent potassium-ion storage. J. Mater. Chem. A 2019, 7, 9305-9315.
[43]
Z. Chen,; D. G. Yin,; M. Zhang, Sandwich-like MoS2@SnO2@C with high capacity and stability for sodium/potassium ion batteries. Small 2018, 14, 1703818.
[44]
D. G. Yin,; Z. Chen,; M. Zhang, Sn-interspersed MoS2/C nanosheets with high capacity for Na+/K+ storage. J. Phys. Chem. Solids 2019, 126, 72-77.
[45]
J. H. Li,; B. L. Rui,; W. X. Wei,; P. Nie,; L. M. Chang,; Z. Y. Le,; M. Q. Liu,; H. R. Wang,; L. M. Wang,; X. G. Zhang, Nanosheets assembled layered MoS2/MXene as high performance anode materials for potassium ion batteries. J. Power Sources 2020, 449, 227481.
[46]
V. Augustyn,; J. Come,; M. A. Lowe,; J. W. Kim,; P. L. Taberna,; S. H. Tolbert,; H. D. Abruña,; P. Simon,; B. Dunn, High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518-522.
[47]
D. L. Chao,; P. Liang,; Z. Chen,; L. Y. Bai,; H. Shen,; X. X. Liu,; X. H. Xia,; Y. L. Zhao,; S. V. Savilov,; J. Y. Lin, et al. Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 2016, 10, 10211-10219.
[48]
D. Sun,; D. L. Ye,; P. Liu,; Y. G. Tang,; J. Guo,; L. Z. Wang,; H. Y. Wang, MoS2/graphene nanosheets from commercial bulky MoS2 and graphite as anode materials for high rate sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1702383.
[49]
R. H. Miwa,; W. L. Scopel, Lithium incorporation at the MoS2/ graphene interface: An ab initio investigation. J. Phys.: Condens. Matter 2013, 25, 445301.
[50]
C. Chen,; X. Q. Xie,; B. Anasori,; A. Sarycheva,; T. Makaryan,; M. Q. Zhao,; P. Urbankowski,; L. Miao,; J. J. Jiang,; Y. Gogotsi, MoS2- on-MXene heterostructures as highly reversible anode materials for lithium-ion batteries. Angew. Chem., Int. Ed. 2018, 57, 1846-1850.
Nano Research
Pages 1061-1068
Cite this article:
Li Y, Jiang S, Qian Y, et al. 2D interspace confined growth of ultrathin MoS2-intercalated graphite hetero-layers for high-rate Li/K storage. Nano Research, 2021, 14(4): 1061-1068. https://doi.org/10.1007/s12274-020-3150-9
Topics:

794

Views

24

Crossref

N/A

Web of Science

24

Scopus

3

CSCD

Altmetrics

Received: 03 March 2020
Revised: 20 September 2020
Accepted: 29 September 2020
Published: 02 November 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return