Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Defective electrocatalysts, especially for intrinsic defective carbon, have aroused a wide concern owing to high spin and charge densities. However, the designated nitrogen species favorable for creating defects by the removal of nitrogen, and the influence of defects for the coordination structure of active site and oxygen reduction reaction (ORR) activity have not been elucidated. Herein, we designed and synthesized a pair of electrocatalysts, denoted as Fe-N/C and Fe-ND/C for coordination sites of atomic iron-nitrogen and iron-nitrogen/defect configuration embedded in hollow carbon spheres, respectively, through direct pyrolysis of their corresponding hollow carbon spheres adsorbed with Fe(acac)3. The nitrogen defects were fabricated via the evaporation of pyrrolic-N on nitrogen doped hollow carbon spheres. Results of comparative experiments between Fe-N/C and Fe-ND/C reveal that Fe-ND/C shows superior ORR activity with an onset potential of 30 mV higher than that of Fe-N/C. Fe-ND sites are more favorable for the enhancement of ORR activity. Density functional theory (DFT) calculation demonstrates that Fe-ND/C with proposed coordination structure of FeN4−x (0<x<4) anchored by OH as axial ligand during ORR, weakens the strong binding of OH* intermediate and promotes the desorption of OH* as rate-determining step for ORR in alkaline electrolyte. Thus, Fe-ND/C electrocatalysts present much better ORR activity compared with that of Fe-N/C with proposed coordination structure of FeN4.
969
Views
83
Downloads
78
Crossref
N/A
Web of Science
80
Scopus
4
CSCD
Altmetrics
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.