Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Metal-semiconductor ohmic contacts are required to reduce the energy dissipation for two-dimensional (2D) electronic devices, and phase engineering of 2D transition-metal dichalcogenides (TMDCs) is a promising approach for building ohmic contacts. Here, 2D in-plane 1T′-2H MoTe2 homojunctions were prepared by direct epitaxy via vapor deposition. The interface properties of in-plane 1T′-2H MoTe2 homojunction were investigated in detail by combining experiments, calculations and theories. The ohmic contact properties of 1T′-2H MoTe2 homojunction were proved according to Kelvin force probe microscopy and density functional theory calculations. The charge carriers robust transport in in-plane 1T′-2H MoTe2 homojunction without Fermi-level pinning can be well described by Poisson equation and band alignment. These results indicate that phase engineering of 2D TMDCs is promising to construct ohmic contacts for device applications.