AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Hetero-phase MoC-Mo2C nanoparticles for enhanced photocatalytic H2-production activity of TiO2

Jinfeng Liu1Ping Wang1,2( )Jiajie Fan3Huogen Yu1,2( )Jiaguo Yu4
School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, China
State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Show Author Information

Graphical Abstract

Abstract

Hexagonal molybdenum carbide (Mo2C) as an effective non-noble cocatalyst is intensively researched in the photocatalytic H2-evolution field owing to its Pt-like H+-adsorption ability and good conductivity. However, hexagonal Mo2C-modified photocatalysts possess a limited H2-evolution rate because of the weak H-desorption ability. To further improve the activity, cubic MoC was introduced into Mo2C to form the carbon-modified MoC-Mo2C nanoparticles (MoC-Mo2C@C) by a calcination method. The resultant MoC-Mo2C@C (ca. 5 nm) was eventually coupled with TiO2 to acquire high-efficiency TiO2/MoC-Mo2C@C by electrostatic self-assembly. The highest H2-generation rate of TiO2/MoC-Mo2C@C reached of 918 μmol·h−1·g−1, which was 91.8, 2.7, and 1.5 times than that of the TiO2, TiO2/MoC@C, and TiO2/Mo2C@C, respectively. The enhanced rate of TiO2 attributes to the carbon layer as cocatalyst to transmit electrons and the hetero-phase MoC-Mo2C as H2-generation active sites to boost H2-evolution reaction. This research offers a novel insight to design photocatalytic materials for energy applications.

Electronic Supplementary Material

Download File(s)
12274_2020_3156_MOESM1_ESM.pdf (1 MB)

References

[1]
J. F. Lin,; Y. Liu,; Y. P. Liu,; C. Huang,; W. H. Liu,; X. H. Mi,; D. Y. Fan,; F. T. Fan,; H. D. Lu,; X. B. Chen, SnS2 nanosheets/H-TiO2 nanotube arrays as a type II heterojunctioned photoanode for photoelectrochemical water splitting. ChemSusChem 2019, 12, 961-967.
[2]
X. H. Wu,; D. D. Gao,; P. Wang,; H. G. Yu,; J. G. Yu, NH4Cl-induced low-temperature formation of nitrogen-rich g-C3N4 nanosheets with improved photocatalytic hydrogen evolution. Carbon 2019, 153, 757-766.
[3]
W. Zhong,; X. H. Wu,; P. Wang,; J. J. Fan,; H. G. Yu, Homojunction CdS photocatalysts with a massive S2--adsorbed surface phase: One-step facile synthesis and high H2-evolution performance. ACS Sustainable Chem. Eng. 2020, 8, 543-551.
[4]
Y. Zhao,; C. T. Shao,; Z. X. Lin,; S. J. Jiang,; S. Q. Song, Low-energy facets on CdS allomorph junctions with optimal phase ratio to boost charge directional transfer for photocatalytic H2 fuel evolution. Small 2020, 16, 2000944.
[5]
J. X. Shen,; Y. Z. Li,; H. Y. Zhao,; K. Pan,; X. Li,; Y. Qu,; G. F. Wang,; D. S. Wang, Modulating the photoelectrons of g-C3N4 via coupling MgTi2O5 as appropriate platform for visible-light-driven photocatalytic solar energy conversion. Nano Res. 2019, 12, 1931-1936.
[6]
X. S. Wang,; C. Zhou,; R. Shi,; Q. Q. Liu,; G. I. N. Waterhouse,; L. Z. Wu,; C. H. Tung,; T. R. Zhang, Supramolecular precursor strategy for the synthesis of holey graphitic carbon nitride nanotubes with enhanced photocatalytic hydrogen evolution performance. Nano Res. 2019, 12, 2385-2389.
[7]
R. Sun,; Z. Q. Zhang,; Z. J. Li,; L. Q. Jing, Review on photogenerated hole modulation strategies in photoelectrocatalysis for solar fuel production. ChemCatChem 2019, 11, 5875-5884.
[8]
H. Wang,; X. T. Hu,; Y. J. Ma,; D. J. Zhu,; T. Li,; J. Y. Wang, Nitrate-group-grafting-induced assembly of rutile TiO2 nanobundles for enhanced photocatalytic hydrogen evolution. Chin. J. Catal. 2020, 41, 95-102.
[9]
Q. J. Xiang,; X. Y. Ma,; D. N. Zhang,; H. P. Zhou,; Y. L. Liao,; H. W. Zhang,; S. Y. Xu,; I. Levchenko,; K. Bazaka, Interfacial modification of titanium dioxide to enhance photocatalytic efficiency towards H2 production. J. Colloid Interface Sci. 2019, 556, 376-385.
[10]
J. Li,; M. Zhang,; X. Li,; Q. Y. Li,; J. J. Yang, Effect of the calcination temperature on the visible light photocatalytic activity of direct contact Z-scheme g-C3N4-TiO2 heterojunction. Appl. Catal. B 2017, 212, 106-114.
[11]
X. Q. Qiu,; M. Miyauchi,; K. Sunada,; M. Minoshima,; M. Liu,; Y. Lu,; D. Li,; Y. Shimodaira,; Y. Hosogi,; Y. Kuroda, et al. Hybrid CuxO/TiO2 nanocomposites as risk-reduction materials in indoor environments. ACS Nano 2012, 6, 1609-1618.
[12]
L. F. Liu,; J. L. Zhang,; X. N. Tan,; B. X. Zhang,; J. B. Shi,; X. Y. Cheng,; D. X. Tan,; B. X. Han,; L. R. Zheng,; F. Y. Zhang, Supercritical CO2 produces the visible-light-responsive TiO2/COF heterojunction with enhanced electron-hole separation for high-performance hydrogen evolution. Nano Res. 2020, 13, 983-988.
[13]
Q. Q. Shi,; Z. X. Qin,; C. L. Yu,; A. Waheed,; H. Xu,; Y. Gao,; H. Abroshan,; G. Li, Experimental and mechanistic understanding of photo-oxidation of methanol catalyzed by CuO/TiO2-spindle nanocomposite: Oxygen vacancy engineering. Nano Res. 2020, 13, 939-946.
[14]
Y. Y. Liu,; Z. H. Xiang, Fully conjugated covalent organic polymer with carbon-encapsulated Ni2P for highly sustained photocatalytic H2 production from seawater. ACS Appl. Mater. Interfaces 2019, 11, 41313-41320.
[15]
X. Z. Yue,; C. Q. Li,; Z. Y. Liu,; S. S. Yi,; D. L. Chen,; F. Wang,; S. H. Li, Steering charge kinetics in W2C@C/TiO2 heterojunction architecture: Efficient solar-light-driven hydrogen generation. Appl. Catal. B 2019, 255, 117760.
[16]
C. H. He,; L. L. Yu,; N. Lu,; W. J. Wang,; W. Chen,; S. J. Lu,; Y. Yang,; D. K. Ma,; S. M. Huang, Screwdriver-like Pd-Ag heterostructures formed via selective deposition of Ag on Pd nanowires as efficient photocatalysts for solvent-free aerobic oxidation of toluene. Nano Res. 2020, 13, 646-652.
[17]
L. Cheng,; D. N. Zhang,; Y. L. Liao,; F. Li,; H. W. Zhang,; Q. J. Xiang, Constructing functionalized plasmonic gold/titanium dioxide nanosheets with small gold nanoparticles for efficient photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2019, 555, 94-103.
[18]
C. Li,; X. P. Wang,; A. Cheruvathur,; Y. B. Shen,; H. W. Xiang,; Y. W. Li,; J. W. Niemantsverdriet,; R. Su, In-situ probing photocatalytic C-C bond cleavage in ethylene glycol under ambient conditions and the effect of metal cocatalyst. J. Catal. 2018, 365, 313-319.
[19]
X. N. Tan,; J. L. Zhang,; D. X. Tan,; J. B. Shi,; X. Y. Cheng,; F. Y. Zhang,; L. F. Liu,; B. X. Zhang,; Z. Z. Su,; B. X. Han, Ionic liquids produce heteroatom-doped Pt/TiO2 nanocrystals for efficient photocatalytic hydrogen production. Nano Res. 2019, 12, 1967-1972.
[20]
X. R. Gan,; D. Y. Lei,; R. Q. Ye,; H. M. Zhao,; K. Y. Wong, Transition metal dichalcogenide-based mixed-dimensional heterostructures for visible-light-driven photocatalysis: Dimensionality and interface engineering. Nano Res., in press, .
[21]
H. B. Zhang,; P. Zhang,; M. Qiu,; J. C. Dong,; Y. F. Zhang,; X. W. D. Lou, Ultrasmall MoOx clusters as a novel cocatalyst for photocatalytic hydrogen evolution. Adv. Mater. 2019, 31, 1804883.
[22]
R. H. Mu,; Y. H. Ao,; T. F. Wu,; C. Wang,; P. F. Wang, Synergistic effect of molybdenum nitride nanoparticles and nitrogen-doped carbon on enhanced photocatalytic hydrogen evolution performance of CdS nanorods. J. Alloys Compd. 2020, 812, 151990.
[23]
J. F. Wang,; J. Chen,; P. F. Wang,; J. Hou,; C. Wang,; Y. H. Ao, Robust photocatalytic hydrogen evolution over amorphous ruthenium phosphide quantum dots modified g-C3N4 nanosheet. Appl. Catal. B 2018, 239, 578-585.
[24]
H. Z. Yang,; X. Wang, Secondary-component incorporated hollow MOFs and derivatives for catalytic and energy-related applications. Adv. Mater. 2019, 31, 1800743.
[25]
X. Y. Chu,; Y. Qu,; A. Zada,; L. L. Bai,; Z. J. Li,; F. Yang,; L. Zhao,; G. L. Zhang,; X. J. Sun,; Z. D. Yang, et al. Ultrathin phosphate- modulated co phthalocyanine/g-C3N4 heterojunction photocatalysts with single Co-N4 (II) sites for efficient O2 activation. Adv. Sci. 2020, 7, 2001543.
[26]
Y. H. Song,; K. X. Xia,; Y. M. Gong,; H. X. Chen,; L. Li,; J. J. Yi,; X. J. She,; Z. G. Chen,; J. J. Wu,; H. M. Li, et al. Controllable synthesized heterostructure photocatalyst Mo2C@C/2D g-C3N4: Enhanced catalytic performance for hydrogen production. Dalton Trans. 2018, 47, 14706-14712.
[27]
X. N. Zang,; W. S. Chen,; X. L. Zou,; J. N. Hohman,; L. J. Yang,; B. X. Li,; M. S. Wei,; C. H. Zhu,; J. M. Liang,; M. Sanghadasa, et al. Self-assembly of large-area 2D polycrystalline transition metal carbides for hydrogen electrocatalysis. Adv. Mater. 2018, 30, 1805188.
[28]
J. Xiong,; J. Li,; J. W. Shi,; X. L. Zhang,; N. T. Suen,; Z. Liu,; Y. J. Huang,; G. X. Xu,; W. W. Cai,; X. R. Lei, et al. In situ engineering of double-phase interface in Mo/Mo2C heteronanosheets for boosted hydrogen evolution reaction. ACS Energy Lett. 2018, 3, 341-348.
[29]
W. W. Fu,; Y. W. Wang,; J. S. Hu,; H. J. Zhang,; P. Luo,; F. Sun,; X. G. Ma,; Z. Y. Huang,; J. Li,; Z. P. Guo, et al. Surface-electron coupling for efficient hydrogen evolution. Angew. Chem., Int. Ed. 2019, 58, 17709-17717.
[30]
C. Huang,; X. W. Miao,; C. R. Pi,; B. Gao,; X. M. Zhang,; P. Qin,; K. F. Huo,; X. Peng,; P. K. Chu, Mo2C/VC heterojunction embedded in graphitic carbon network: An advanced electrocatalyst for hydrogen evolution. Nano Energy 2019, 60, 520-526.
[31]
T. L. Xiong,; J. Jia,; Z. Q. Wei,; L. L. Zeng,; Y. Q. Deng,; W. J. Zhou,; S. W. Chen, N-doped carbon-wrapped MoxC heterophase sheets for high-efficiency electrochemical hydrogen production. Chem. Eng. J. 2019, 358, 362-368.
[32]
H. L. Lin,; Z. P. Shi,; S. He,; X. Yu,; S. N. Wang,; Q. S. Gao,; Y. Tang, Heteronanowires of MoC-Mo2C as efficient electrocatalysts for hydrogen evolution reaction. Chem. Sci. 2016, 7, 3399-3405.
[33]
X. Y. Zhang,; J. C. Wang,; T. Guo,; T. Y. Liu,; Z. Z. Wu,; L. Cavallo,; Z. Cao,; D. Z. Wang, Structure and phase regulation in MoxC (α-MoC1-x/β-Mo2C) to enhance hydrogen evolution. Appl. Catal. B 2019, 247, 78-85.
[34]
X. F. Lu,; L. Yu,; J. T. Zhang,; X. W. D. Lou, Ultrafine dual-phased carbide nanocrystals confined in porous nitrogen-doped carbon dodecahedrons for efficient hydrogen evolution reaction. Adv. Mater. 2019, 31, 1900699.
[35]
S. Kim,; C. Choi,; J. Hwang,; J. Park,; J. Jeong,; H. Jun,; S. Lee,; S. K. Kim,; J. H. Jang,; Y. Jung, et al. Interaction mediator assisted synthesis of mesoporous molybdenum carbide: Mo-valence state adjustment for optimizing hydrogen evolution. ACS Nano 2020, 14, 4988-4999.
[36]
J. F. Liu,; P. Wang,; J. J. Fan,; H. G. Yu, Carbon-coated cubic-phase molybdenum carbide nanoparticle for enhanced photocatalytic H2-evolution performance of TiO2. J. Energy Chem. 2020, 51, 253-261.
[37]
P. Wang,; Y. Sheng,; F. Z. Wang,; H. G. Yu, Synergistic effect of electron-transfer mediator and interfacial catalytic active-site for the enhanced H2-evolution performance: A case study of CdS-Au photocatalyst. Appl. Catal. B 2018, 220, 561-569.
[38]
C. L. Wang,; L. S. Sun,; F. F. Zhang,; X. X. Wang,; Q. J. Sun,; Y. Cheng,; L. M. Wang, Formation of Mo-polydopamine hollow spheres and their conversions to MoO2/C and Mo2C/C for efficient electrochemical energy storage and catalyst. Small 2017, 13, 1701246.
[39]
H. J. Song,; M. C. Sung,; H. Yoon,; B. Ju,; D. W. Kim, Ultrafine α-phase molybdenum carbide decorated with platinum nanoparticles for efficient hydrogen production in acidic and alkaline media. Adv. Sci. 2019, 6, 1802135.
[40]
Q. L. Wang,; H. Y. Li,; J. H. Yang,; Q. Sun,; Q. Y. Li,; J. J. Yang, Iron phthalocyanine-graphene donor-acceptor hybrids for visible-light- assisted degradation of phenol in the presence of H2O2. Appl. Catal. B 2016, 192, 182-192.
[41]
Q. L. Wang,; L. M. Tao,; X. X. Jiang,; M. K. Wang,; Y. Shen, Graphene oxide wrapped CH3NH3PbBr3 perovskite quantum dots hybrid for photoelectrochemical CO2 reduction in organic solvents. Appl. Surf. Sci. 2019, 465, 607-613.
[42]
F. Gao,; Y. Zhao,; L. L. Zhang,; B. Wang,; Y. Z. Wang,; X. Y. Huang,; K. Q. Wang,; W. H. Feng,; P. Liu, Well dispersed MoC quantum dots in ultrathin carbon films as efficient co-catalysts for photocatalytic H2 evolution. J. Mater. Chem. A 2018, 6, 18979-18986.
[43]
X. Z. Yue,; S. S. Yi,; R. W. Wang,; Z. T. Zhang,; S. L. Qiu, A novel architecture of dandelion-like Mo2C/TiO2 heterojunction photocatalysts towards high-performance photocatalytic hydrogen production from water splitting. J. Mater. Chem. A 2017, 5, 10591-10598.
[44]
C. Wan,; Y. N. Regmi,; B. M. Leonard, Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 6407-6410.
[45]
H. G. Yu,; R. R. Yuan,; D. D. Gao,; Y. Xu,; J. G. Yu, Ethyl acetate- induced formation of amorphous MoSx nanoclusters for improved H2-evolution activity of TiO2 photocatalyst. Chem. Eng. J. 2019, 375, 121934.
[46]
Y. X. Pan,; J. B. Peng,; S. Xin,; Y. You,; Y. L. Men,; F. Zhang,; M. Y. Duan,; Y. Cui,; Z. Q. Sun,; J. Song, Enhanced visible-light-driven photocatalytic H2 evolution from water on noble-metal-free CdS- nanoparticle-dispersed Mo2C@C nanospheres. ACS Sustainable Chem. Eng. 2017, 5, 5449-5456.
[47]
P. Wang,; S. Q. Xu,; F. Chen,; H. G. Yu, Ni nanoparticles as electron- transfer mediators and NiSx as interfacial active sites for coordinative enhancement of H2-evolution performance of TiO2. Chin. J. Catal. 2019, 40, 343-351.
[48]
H. G. Yu,; W. J. Liu,; X. F. Wang,; F. Z. Wang, Promoting the interfacial H2-evolution reaction of metallic Ag by Ag2S cocatalyst: A case study of TiO2/Ag-Ag2S photocatalyst. Appl. Catal. B 2018, 225, 415-423.
[49]
J. Li,; Y. Li,; G. K. Zhang,; H. X. Huang,; X. Y. Wu, One- dimensional/two-dimensional core-shell-structured Bi2O4/BiO2-x heterojunction for highly efficient broad spectrum light-driven photocatalysis: Faster interfacial charge transfer and enhanced molecular oxygen activation mechanism. ACS Appl. Mater. Interfaces 2019, 11, 7112-7122.
[50]
X. X. Lu,; C. Y. Toe,; F. Ji,; W. J. Chen,; X. M. Wen,; R. J. Wong,; J. Seidel,; J. Scott,; J. N. Hart,; Y. H. Ng, Light-induced formation of MoOxSy clusters on CdS nanorods as cocatalyst for enhanced hydrogen evolution. ACS Appl. Mater. Interfaces 2020, 12, 8324-8332.
[51]
S. S. Yi,; J. M. Yan,; B. R. Wulan,; Q. Jiang, Efficient visible-light- driven hydrogen generation from water splitting catalyzed by highly stable CdS@Mo2C-C core-shell nanorods. J. Mater. Chem. A 2017, 5, 15862-15868.
[52]
X. Yang,; H. L. Tao,; W. R. Leow,; J. J. Li,; Y. X. Tan,; Y. F. Zhang,; T. Zhang,; X. D. Chen,; S. Y. Gao,; R. Cao, Oxygen-vacancies- engaged efficient carrier utilization for the photocatalytic coupling reaction. Chin. J. Catal. 2019, 373, 116-125.
[53]
Y. Li,; X. Y. Wang,; J. Gong,; Y. H. Xie,; X. Y. Wu,; G. K. Zhang, Graphene-based nanocomposites for efficient photocatalytic hydrogen evolution: Insight into the interface toward separation of photogenerated charges. ACS Appl. Mater. Interfaces 2018, 10, 43760-43767.
[54]
K. Wang,; Y. Li,; J. Li,; G. K. Zhang, Boosting interfacial charge separation of Ba5Nb4O15/g-C3N4 photocatalysts by 2D/2D nanojunction towards efficient visible-light driven H2 generation. Appl. Catal. B 2020, 263, 117730.
[55]
D. D. Gao,; X. H. Wu,; P. Wang,; Y. Xu,; H. G. Yu,; J. G. Yu, Simultaneous realization of direct photoinduced deposition and improved H2-evolution performance of Sn-nanoparticle-modified TiO2 photocatalyst. ACS Sustainable Chem. Eng. 2019, 7, 10084-10094.
[56]
D. D. Gao,; W. J. Liu,; Y. Xu,; P. Wang,; J. J. Fan,; H. G. Yu, Core-shell Ag@Ni cocatalyst on the TiO2 photocatalyst: One-step photoinduced deposition and its improved H2-evolution activity. Appl. Catal. B 2020, 260, 118190.
Nano Research
Pages 1095-1102
Cite this article:
Liu J, Wang P, Fan J, et al. Hetero-phase MoC-Mo2C nanoparticles for enhanced photocatalytic H2-production activity of TiO2. Nano Research, 2021, 14(4): 1095-1102. https://doi.org/10.1007/s12274-020-3156-3
Topics:

1025

Views

64

Crossref

N/A

Web of Science

60

Scopus

4

CSCD

Altmetrics

Received: 31 July 2020
Revised: 28 September 2020
Accepted: 29 September 2020
Published: 13 November 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return