AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ambipolar two-dimensional bismuth nanostructures in junction with bismuth oxychloride

Xianzhong Yang§Shengnan Lu§Jun PengXiangchen HuNan WuCongcong WuChao ZhangYifan HuangYi YuHung-Ta Wang( )
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China

§ Xianzhong Yang and Shengnan Lu contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Despite the unique properties of bismuth (Bi), there is a lack of two-dimensional (2D) heterostructures between Bi and other functional 2D materials. Here, a coherent strategy is reported to simultaneously synthesize rhombohedral phase Bi nanoflakes and bismuth oxychloride (BiOCl) nanosheets. The delicate balance between several reactions is mediated mainly for the reduction and chlorination in the chemical vapor transport (CVT) process. The Bi-BiOCl lateral heterostructures have been constructed via the coalescence of the two different 2D nanostructures. The characteristics of ambipolar conducting Bi and insulator-like BiOCl are elaborated by scanning microwave impedance microscopy (sMIM). This work demonstrates a way to construct a 2D Bi nanostructure in junction with its oxyhalide.

Electronic Supplementary Material

Download File(s)
12274_2020_3157_MOESM1_ESM.pdf (5.2 MB)

References

[1]
S. L. Zhang,; M. Q. Xie,; F. Y. Li,; Z. Yan,; Y. F. Li,; E. J. Kan,; W. Liu,; Z. F. Chen,; H. B. Zeng, Semiconducting group 15 monolayers: A broad range of band gaps and high carrier mobilities. Angew. Chem., Int. Ed. 2016, 55, 1666-1669.
[2]
M. Pumera,; Z. Sofer, 2D monoelemental arsenene, antimonene, and bismuthene: Beyond black phosphorus. Adv. Mater. 2017, 29, 1605299.
[3]
S. L. Zhang,; S. Y. Guo,; Z. F. Chen,; Y. L. Wang,; H. J. Gao,; J. Gómez-Herrero,; P. Ares,; F. Zamora,; Z. Zhu,; H. B. Zeng, Recent progress in 2D group-VA semiconductors: From theory to experiment. Chem. Soc. Rev. 2018, 47, 982-1021.
[4]
L. K. Li,; Y. J. Yu,; G. J. Ye,; Q. Q. Ge,; X. D. Ou,; H. Wu,; D. L. Feng,; X. H. Chen,; Y. B. Zhang, Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372-377.
[5]
P. Hofmann, The surfaces of bismuth: Structural and electronic properties. Prog. Surf. Sci. 2006, 81, 191-245.
[6]
K. Vandaele,; M. Otsuka,; Y. Hasegawa,; J. P. Heremans, Confinement effects, surface effects, and transport in Bi and Bi1-xSbx semiconducting and semimetallic nanowires. J. Phys.: Condens. Matter 2018, 30, 403001.
[7]
K. Behnia,; L. Balicas,; Y. Kopelevich, Signatures of electron fractionalization in ultraquantum bismuth. Science 2007, 317, 1729-1731.
[8]
C. A. Hoffman,; J. R. Meyer,; F. J. Bartoli,; A. Di Venere,; X. J. Yi,; C. L. Hou,; H. C. Wang,; J. B. Ketterson,; G. K. Wong, Semimetal- to-semiconductor transition in bismuth thin films. Phys. Rev. B 1993, 48, 11431-11434.
[9]
Y. M. Lin,; X. Z. Sun,; M. S. Dresselhaus, Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires. Phys. Rev. B 2000, 62, 4610-4623.
[10]
F. Y. Yang,; K. Liu,; K. M. Hong,; D. H. Reich,; P. C. Searson,; C. L. Chien, Large magnetoresistance of electrodeposited single-crystal bismuth thin films. Science 1999, 284, 1335-1337.
[11]
F. Schindler,; Z. J. Wang,; M. G. Vergniory,; A. M. Cook,; A. Murani,; S. Sengupta,; A. Y. Kasumov,; R. Deblock,; S. Jeon,; I. Drozdov, et al. Higher-order topology in bismuth. Nat. Phys. 2018, 14, 918-924.
[12]
C. H. Hsu,; X. T. Zhou,; T. R. Chang,; Q. Ma,; N. Gedik,; A. Bansil,; S. Y. Xu,; H. Lin,; L. Fu, Topology on a new facet of bismuth. Proc. Natl. Acad. Sci. USA 2019, 116, 13255-13259.
[13]
F. Reis,; G. Li,; L. Dudy,; M. Bauernfeind,; S. Glass,; W. Hanke,; R. Thomale,; J. Schäfer,; R. Claessen, Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin hall material. Science 2017, 357, 287-290.
[14]
J. Gou,; L. J. Kong,; X. Y. He,; Y. L. Huang,; J. T. Sun,; S. Meng,; K. H. Wu,; L. Chen,; A. T. S. Wee, The effect of Moiré superstructures on topological edge states in twisted bismuthene homojunctions. Sci. Adv. 2020, 6, eaba2773.
[15]
Z. W. Zhang,; P. Chen,; X. D. Duan,; K. T. Zang,; J. Luo,; X. F. Duan, Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 2017, 357, 788-792.
[16]
P. K. Sahoo,; S. Memaran,; Y. Xin,; L. Balicas,; H. R. Gutiérrez, One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy. Nature 2018, 553, 63-67.
[17]
X. L. Liu,; M. C. Hersam, Borophene-graphene heterostructures. Sci. Adv. 2019, 5, eaax6444.
[18]
T. Nagao,; J. T. Sadowski,; M. Saito,; S. Yaginuma,; Y. Fujikawa,; T. Kogure,; T. Ohno,; Y. Hasegawa,; S. Hasegawa,; T. Sakurai, Nanofilm allotrope and phase transformation of ultrathin Bi film on Si(111)-7×7. Phys. Rev. Lett. 2004, 93, 105501.
[19]
P. J. Kowalczyk,; D. Belic,; O. Mahapatra,; S. A. Brown,; E. S. Kadantsev,; T. K. Woo,; B. Ingham,; W. Kozlowski, Anisotropic oxidation of bismuth nanostructures: Evidence for a thin film allotrope of bismuth. Appl. Phys. Lett. 2012, 100, 151904.
[20]
P. J. Kowalczyk,; O. Mahapatra,; M. Le Ster,; S. A. Brown,; G. Bian,; X. Wang,; T. C. Chiang, Single atomic layer allotrope of bismuth with rectangular symmetry. Phys. Rev. B 2017, 96, 205434.
[21]
Y. Shu,; W. T. Hu,; Z. Y. Liu,; G. Y. Shen,; B. Xu,; Z. S. Zhao,; J. L. He,; Y. B. Wang,; Y. J. Tian,; D. L. Yu, Coexistence of multiple metastable polytypes in rhombohedral bismuth. Sci. Rep. 2016, 6, 20337.
[22]
P. J. Kowalczyk,; O. Mahapatra,; S. A. Brown,; G. Bian,; X. Wang,; T. C. Chiang, Electronic size effects in three-dimensional nanostructures. Nano Lett. 2013, 13, 43-47.
[23]
F. D. Wang,; R. Tang,; H. Yu,; P. C. Gibbons,; W. E. Buhro, Size- and shape-controlled synthesis of bismuth nanoparticles. Chem. Mater. 2008, 20, 3656-3662.
[24]
J. Jiang,; K. Zhao,; X. Y. Xiao,; L. Z. Zhang, Synthesis and facet- dependent photoreactivity of BiOCl single-crystalline nanosheets. J. Am. Chem. Soc. 2012, 134, 4473-4476.
[25]
M. L. Guan,; C. Xiao,; J. Zhang,; S. J. Fan,; R. An,; Q. M. Cheng,; J. F. Xie,; M. Zhou,; B. J. Ye,; Y. Xie, Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets. J. Am. Chem. Soc. 2013, 135, 10411-10417.
[26]
L. L. Liu,; Y. H. Sun,; X. Q. Cui,; K. Qi,; X. He,; Q. L. Bao,; W. L. Ma,; J. Lu,; H. Y. Fang,; P. Zhang, et al. Bottom-up growth of homogeneous Moiré superlattices in bismuth oxychloride spiral nanosheets. Nat. Commun. 2019, 10, 4472.
[27]
B. T. Rosner,; D. W. van der Weide, High-frequency near-field microscopy. Rev. Sci. Instrum. 2002, 73, 2505-2525.
[28]
K. Lai,; W. Kundhikanjana,; M. Kelly,; Z. X. Shen, Modeling and characterization of a cantilever-based near-field scanning microwave impedance microscope. Rev. Sci. Instrum. 2008, 79, 063703.
[29]
K. J. Lai,; H. L. Peng,; W. Kundhikanjana,; D. T. Schoen,; C. Xie,; S. Meister,; Y. Cui,; M. A. Kelly,; Z. X. Shen, Nanoscale electronic inhomogeneity in In2Se3 nanoribbons revealed by microwave impedance microscopy. Nano Lett. 2009, 9, 1265-1269.
[30]
W. Kundhikanjana,; K. J. Lai,; H. L. Wang,; H. J. Dai,; M. A. Kelly,; Z. X. Shen, Hierarchy of electronic properties of chemically derived and pristine graphene probed by microwave imaging. Nano Lett. 2009, 9, 3762-3765.
[31]
D. Wu,; X. Li,; L. Luan,; X. Y. Wu,; W. Li,; M. N. Yogeesh,; R. Ghosh,; Z. D. Chu,; D. Akinwande,; Q. Niu, et al. Uncovering edge states and electrical inhomogeneity in MoS2 field-effect transistors. Proc. Natl. Acad. Sci. USA 2016, 113, 8583-8588.
[32]
H. Wang,; J. Jing,; R. R. Mallik,; H. T. Chu,; P. N. Henriksen, Crystallographic structure and defects in epitaxial bismuth films grown on mica. J. Cryst. Growth 1993, 130, 571-577.
[33]
A. C. Ferrari,; J. C. Meyer,; V. Scardaci,; C. Casiraghi,; M. Lazzeri,; F. Mauri,; S. Piscanec,; D. Jiang,; K. S. Novoselov,; S. Roth, et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.
[34]
C. Lee,; H. G. Yan,; L. E. Brus,; T. F. Heinz,; J. Hone,; S. Ryu, Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695-2700.
[35]
D. L. Lu,; S. W. Luo,; S. H. Liu,; H. Yao,; X. H. Ren,; W. C. Zhou,; D. S. Tang,; X. Qi,; J. X. Zhong, Anomalous temperature-dependent Raman scattering of vapor-deposited two-dimensional Bi thin films. J. Phys. Chem. C 2018, 122, 24459-24466.
[36]
K. Ishioka,; M. Kitajima,; O. V. Misochko,; T. Nagao, Ultrafast phonon dynamics of epitaxial atomic layers of Bi on Si(111). Phys. Rev. B 2015, 91, 125431.
[37]
J. Yang,; G. Q. Huang,; X. F. Zhu, Thickness evolution of phonon properties in ultrathin Bi (111) films. Phys. Status Solidi B 2013, 250, 1937-1942.
[38]
X. D. Yan,; H. M. Zhao,; T. F. Li,; W. Zhang,; Q. L. Liu,; Y. Yuan,; L. J. Huang,; L. L. Yao,; J. H. Yao,; H. L. Su, et al. In situ synthesis of BiOCl nanosheets on three-dimensional hierarchical structures for efficient photocatalysis under visible light. Nanoscale 2019, 11, 10203-10208.
[39]
A. Cavalleri, Melted in a flash. Nature 2009, 458, 42-43.
[40]
P. Zhou,; C. Streubühr,; M. Ligges,; T. Brazda,; T. Payer,; F. M. zu Heringdorf,; M. Horn-von Hoegen,; D. von der Linde, Transient anisotropy in the electron diffraction of femtosecond laser-excited bismuth. New J. Phys. 2012, 14, 103031.
[41]
J. Jiang,; K. Zhao,; X. Y. Xiao,; L. Z. Zhang, Synthesis and facet- dependent photoreactivity of BiOCl single-crystalline nanosheets. J. Am. Chem. Soc. 2012, 134, 4473-4476.
[42]
W. Shim,; J. Ham,; K. I. Lee,; W. Y. Jeung,; M. Johnson,; W. Lee, On-film formation of Bi nanowires with extraordinary electron mobility. Nano Lett. 2009, 9, 18-22.
[43]
A. Boukai,; K. Xu,; J. R. Heath, Size-dependent transport and thermoelectric properties of individual polycrystalline bismuth nanowires. Adv. Mater. 2006, 18, 864-869.
[44]
J. Kim,; W. Lee, Semimetal to semiconductor transition and polymer electrolyte gate modulation in single-crystalline bismuth nanowires. Nanoscale 2017, 9, 923-929.
[45]
T. B. Song,; Y. Chen,; C. H. Chung,; Y. Yang,; B. Bob,; H. S. Duan,; G. Li,; K. N. Tu,; Y. Huang,; Y. Yang, Nanoscale joule heating and electromigration enhanced ripening of silver nanowire contacts. ACS Nano 2014, 8, 2804-2811.
Nano Research
Pages 1103-1109
Cite this article:
Yang X, Lu S, Peng J, et al. Ambipolar two-dimensional bismuth nanostructures in junction with bismuth oxychloride. Nano Research, 2021, 14(4): 1103-1109. https://doi.org/10.1007/s12274-020-3157-2
Topics:

784

Views

7

Crossref

N/A

Web of Science

7

Scopus

1

CSCD

Altmetrics

Received: 20 August 2020
Revised: 23 September 2020
Accepted: 30 September 2020
Published: 13 November 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return