AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (736.7 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Dimethylammonium iodide stabilized bismuth halide perovskite photocatalyst for hydrogen evolution

He Zhao1Kalyani Chordiya2,3Petri Leukkunen4Alexey Popov5,Mousumi Upadhyay Kahaly2,3Krisztian Kordas6( )Satu Ojala1( )
Environmental and Chemical Engineering Research Unit, University of Oulu, P. O. Box 4300, FI-90014 Oulu, Finland
ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics ter 13, 6720 Szeged, Hungary
Institute of Physics, University of Szeged, Dóm tér 9, H-6720 Szeged, Hungary
Nano and Molecular Systems Research Unit, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland
Optoelectronics and Measurement Techniques Unit, University of Oulu, FI-90570 Oulu, Finland
Microelectronics Research Unit, University of Oulu, P. O. Box 4500, FI-90014 Oulu, Finland

Present address: VTT Technical Research Centre of Finland, FI-90590 Oulu, Finland

Show Author Information

Graphical Abstract

Abstract

Metal halide perovskites have emerged as novel and promising photocatalysts for hydrogen generation. Currently, their stability in water is a vital and urgent research question. In this paper a novel approach to stabilize a bismuth halide perovskite [(CH3)2NH2]3[BiI6] (DA3BiI6) in water using dimethylammonium iodide (DAI) without the assistance of acids or coatings is reported. The DA3BiI6 powder exhibits good stability in DAI solutions for at least two weeks. The concentration of DAI is found as a critical parameter, where the I ions play the key role in the stabilization. The stability of DA3BiI6 in water is realized via a surface dissolution-recrystallization process. Stabilized DA3BiI6 demonstrates constant photocatalytic properties for visible light-induced photo-oxidation of I ions and with PtCl4 as a co-catalyst (Pt-DA3BiI6), photocatalytic H2 evolution with a rate of 5.7 μmol·h−1 from HI in DAI solution, obtaining an apparent quantum efficiency of 0.83% at 535 nm. This study provides new insights on the stabilization of metal halide perovskites for photocatalysis in aqueous solution.

Electronic Supplementary Material

Download File(s)
12274_2020_3159_MOESM1_ESM.pdf (2.7 MB)

References

[1]
A. Fujishima,; K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-38.
[2]
Q. Wang,; K. Domen, Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies. Chem. Rev. 2020, 120, 919-985.
[3]
A. F. Heyduk,; D. G. Nocera, Hydrogen produced from hydrohalic acid solutions by a two-electron mixed-valence photocatalyst. Science 2001, 293, 1639-1641.
[4]
F. E. Osterloh, Inorganic materials as catalysts for photochemical splitting of water. Chem. Mater. 2008, 20, 35-54.
[5]
J. Schneider,; M. Matsuoka,; M. Takeuchi,; J. L. Zhang,; Y. Horiuchi,; M. Anpo,; D. W. Bahnemann, Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919-9986.
[6]
A. Kojima,; K. Teshima,; Y. Shirai,; T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050-6051.
[7]
B. Chen,; S. W. Baek,; Y. Hou,; E. Aydin,; M. De Bastiani,; B. Scheffel,; A. Proppe,; Z. R. Huang,; M. Y Wei,; Y. K. Wang, et al. Enhanced optical path and electron diffusion length enable high-efficiency perovskite tandems. Nat. Commun. 2020, 11, 1257.
[8]
Q. Chen,; N. De Marco,; Y. Yang,; T. B. Song,; C. C. Chen,; H. X. Zhao,; Z. R. Hong,; H. P. Zhou,; Y. Yang, Under the spotlight: The organic-inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 2015, 10, 355-396.
[9]
G. C. Xing,; N. Mathews,; S. Y. Sun,; S. S. Lim,; Y. M. Lam,; M. Grätzel,; S. Mhaisalkar,; T. C. Sum, Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 2013, 342, 344-347.
[10]
Q. F. Dong,; Y. J. Fang,; Y. C. Shao,; P. Mulligan,; J. Qiu,; L. Cao,; J. S. Huang, Electron-hole diffusion lengths > 175 μm in solution- grown CH3NH3PbI3 single crystals. Science 2015, 347, 967-970.
[11]
S. Park,; W. J. Chang,; C. W. Lee,; S. Park,; H. Y. Ahn,; K. T. Nam, Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution. Nat. Energy 2017, 2, 16185.
[12]
Y. Q. Wu,; P. Wang,; X. L. Zhu,; Q. Q. Zhang,; Z. Y. Wang,; Y. Y. Liu,; G. Z. Zou,; Y. Dai,; M. H. Whangbo,; B. B. Huang, Composite of CH3NH3PbI3 with reduced graphene oxide as a highly efficient and stable visible-light photocatalyst for hydrogen evolution in aqueous HI solution. Adv. Mater. 2018, 30, 1704342.
[13]
H. Wang,; X. M. Wang,; R. T. Chen,; H. F. Zhang,; X. L. Wang,; J. H. Wang,; J. Zhang,; L. C. Mu,; K. F. Wu,; F. T. Fan, et al. Promoting photocatalytic H2 evolution on organic-inorganic hybrid perovskite nanocrystals by simultaneous dual-charge transportation modulation. ACS Energy Lett. 2019, 4, 40-47.
[14]
Z. J. Zhao,; J. J. Wu,; Y. Z. Zheng,; N. Li,; X. T. Li,; X. Tao, Ni3C- decorated MAPbI3 as visible-light photocatalyst for H2 evolution from HI splitting. ACS Catal. 2019, 9, 8144-8152.
[15]
X. M. Wang,; H. Wang,; H. F. Zhang,; W. Yu,; X. L. Wang,; Y. Zhao,; X. Zong,; C. Li, Dynamic interaction between methylammonium lead iodide and TiO2 nanocrystals leads to enhanced photocatalytic H2 evolution from HI splitting. ACS Energy Lett. 2018, 3, 1159-1164.
[16]
Z. H. Guan,; Y. Q. Wu,; P. Wang,; Q. Q. Zhang,; Z. Y. Wang,; Z. K. Zheng,; Y. Y. Liu,; Y. Dai,; M. H. Whangbo,; B. B. Huang, Perovskite photocatalyst CsPbBr3−xIx with a bandgap funnel structure for H2 evolution under visible light. Appl. Catal. B Environ. 2019, 245, 522-527.
[17]
M. Y. Wang,; Y. P. Zuo,; J. L. Wang,; Y. Wang,; X. P. Shen,; B. C. Qiu,; L. J. Cai,; F. C. Zhou,; S. P. Lau,; Y. Chai, Remarkably enhanced hydrogen generation of organolead halide perovskites via piezocatalysis and photocatalysis. Adv. Energy Mater. 2019, 9, 1901801.
[18]
Y. Q. Wu,; P. Wang,; Z. H. Guan,; J. X. Liu,; Z. Y. Wang,; Z. K. Zheng,; S. Y. Jin,; Y. Dai,; M. H. Whangbo,; B. B. Huang, Enhancing the photocatalytic hydrogen evolution activity of mixed-halide perovskite CH3NH3PbBr3−xIx achieved by bandgap funneling of charge carriers. ACS Catal. 2018, 8, 10349-10357.
[19]
T. Wang,; D. T. Yue,; X. Li,; Y. X. Zhao, Lead-free double perovskite Cs2AgBiBr6/RGO composite for efficient visible light photocatalytic H2 evolution. Appl. Catal. B Environ. 2020, 268, 118399.
[20]
P. C. K. Vesborg, Photocatalysis: HI-time for perovskites. Nat. Energy 2017, 2, 16205.
[21]
J. M. Li,; H. L. Cao,; W. B. Jiao,; Q. Wang,; M. D. Wei,; I. Cantone,; J. Lü,; A. Abate, Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold. Nat. Commun. 2020, 11, 310.
[22]
L. Zhang,; K. Wang,; B. Zou, Bismuth halide perovskite-like materials: Current opportunities and challenges. ChemSusChem 2019, 12, 1612-1630.
[23]
H. Zhao,; Y. X. Li,; B. Zhang,; T. Xu,; C. Y. Wang, PtIx/ [(CH3)2NH2]3[BiI6] as a well-dispersed photocatalyst for hydrogen production in hydroiodic acid. Nano Energy 2018, 50, 665-674.
[24]
K. B. Chu,; J. L. Xie,; W. J. Chen,; W. X. Lu,; J. L. Song,; C. Zhang, A novel bismuth-based hybrid material with highly activity for fast removal of rhodamine B under dark conditions. Polyhedron 2018, 151, 146-151.
[25]
H. Liu,; M. Siron,; M. Y. Gao,; D. Lu,; Y. Bekenstein,; D. D. Zhang,; L. T. Dou,; A. P. Alivisatos,; P. D. Yang, Lead halide perovskite nanowires stabilized by block copolymers for Langmuir-Blodgett assembly. Nano Res. 2020, 13, 1453-1458.
[26]
I. Poli,; U. Hintermair,; M. Regue,; S. Kumar,; E. V. Sackville,; J. Baker,; T. M. Watson,; S. Eslava,; P. J. Cameron, Graphite-protected CsPbBr3 perovskite photoanodes functionalised with water oxidation catalyst for oxygen evolution in water. Nat. Commun. 2019, 10, 2097.
[27]
S. Hu,; M. R. Shaner,; J. A. Beardslee,; M. Lichterman,; B. S. Brunschwig,; N. S. Lewis, Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 2014, 344, 1005-1009.
[28]
H. Wang,; X. M. Wang,; H. F. Zhang,; W. G. Ma,; L. Z. Wang,; X. Zong, Organic-inorganic hybrid perovskites: Game-changing candidates for solar fuel production. Nano Energy 2020, 71, 104647.
[29]
W. J. Ke,; I. Spanopoulos,; C. C. Stoumpos,; M. G. Kanatzidis, Myths and reality of HPbI3 in halide perovskite solar cells. Nat. Commun. 2018, 9, 4785.
[30]
H. G. Meng,; Z. P. Shao,; L. Wang,; Z. P. Li,; R. R. Liu,; Y. P. Fan,; G. L. Cui,; S. P. Pang, Chemical composition and phase evolution in DMAI-derived inorganic perovskite solar cells. ACS Energy Lett. 2020, 5, 263-270.
[31]
A. Pisanu,; A. Speltini,; P. Quadrelli,; G. Drera,; L. Sangaletti,; L. Malavasi, Enhanced air-stability of Sn-based hybrid perovskites induced by dimethylammonium (DMA): Synthesis, characterization, aging and hydrogen photogeneration of the MA1−XDMAXSnBr3 system. J. Mater. Chem. C 2019, 7, 7020-7026.
[32]
G. E. Eperon,; K. H. Stone,; L. E. Mundt,; T. H. Schloemer,; S. N. Habisreutinger,; S. P. Dunfield,; L. T. Schelhas,; J. J. Berry,; D. T. Moore, The role of dimethylammonium in bandgap modulation for stable halide perovskites. ACS Energy Lett. 2020, 5, 1856-1864.
[33]
H. Bian,; H. R. Wang,; Z. Z. Li,; F. G. Zhou,; Y. K. Xu,; H. Zhang,; Q. Wang,; L. M. Ding,; S. Z. Liu,; Z. W. Jin, Unveiling the effects of hydrolysis-derived DMAI/DMAPbIX intermediate compound on the performance of CsPbI3 solar cells. Adv. Sci. 2020, 7, 1902868.
[34]
M. Xiao,; M. M. Hao,; M. Q. Lyu,; E. G. Moore,; C. Zhang,; B. Luo,; J. W. Hou,; J. Lipton-Duffin,; L. Z. Wang, Surface ligands stabilized lead halide perovskite quantum dot photocatalyst for visible light- driven hydrogen generation. Adv. Funct. Mater. 2019, 29, 1905683.
[35]
Y. F. Mu,; W. Zhang,; X. X. Guo,; G. X. Dong,; M. Zhang,; T. B. Lu, Water-tolerant lead halide perovskite nanocrystals as efficient photocatalysts for visible-light-driven CO2 reduction in pure water. ChemSusChem 2019, 12, 4769-4774.
[36]
P. Giannozzi,; O. Andreussi,; T. Brumme,; O. Bunau,; M. B. Nardelli,; M. Calandra,; R. Car,; C. Cavazzoni,; D. Ceresoli,; M. Cococcioni, et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter. 2017, 29, 465901.
[37]
R. A. Marcus, On the theory of oxidation-reduction reactions involving electron transfer. I. J. Chem. Phys. 1956, 24, 966-978.
[38]
R. A. Marcus, Transfer reactions in chemistry. Theory and experiment. Pure Appl. Chem. 1997, 69, 13-30.
[39]
G. H. Meng,; Y. P. Feng,; X. D. Song,; Y. T. Shi,; M. Ji,; Y. Xue,; C. Hao, Theoretical insight into the carrier mobility anisotropy of organic-inorganic perovskite CH3NH3PbI3. J. Electroanal. Chem. 2018, 810, 11-17.
[40]
Y. Q. Tang,; C. H. Mak,; R. G. Liu,; Z. K. Wang,; L. Ji,; H. S. Song,; C. Y. Tan,; F. Barrière,; H. Y. Hsu, In situ formation of bismuth-based perovskite heterostructures for high-performance cocatalyst-free photocatalytic hydrogen evolution. Adv. Funct. Mater., in press, .
[41]
A. Samet,; A. B. Ahmed,; A. Mlayah,; H. Boughzala,; E. K. Hlil,; Y. Abid, Optical properties and ab initio study on the hybrid organic- inorganic material [(CH3)2NH2]3[BiI6]. J. Mol. Struct. 2010, 977, 72-77.
[42]
G. M. Ingo,; E. Paparazzo,; O. Bagnarelli,; N. Zacchetti, XPS studies on cerium, zirconium and yttrium valence states in plasma- sprayed coatings. Surf. Interface Anal. 1990, 16, 515-519.
[43]
W. W. Lee,; C. S. Lu,; C. W. Chuang,; Y. J. Chen,; J. Y. Fu,; C. W. Siao,; C. C. Chen, Synthesis of bismuth oxyiodides and their composites: Characterization, photocatalytic activity, and degradation mechanisms. RSC Adv. 2015, 5, 23450-23463.
[44]
C. Zheng,; O. Rubel, Unraveling the water degradation mechanism of CH3NH3PbI3. J. Phys. Chem. C 2019, 123, 19385-19394.
[45]
Q. Zhao,; Y. Peng,; Z. X. Huang,; C. Liu,; P. Zhou,; W. N. Li,; S. Wang,; Y. B. Cheng, Recovering MAPbI3-based perovskite films from water-caused permanent degradations by dipping in MAI solution. IEEE J. Photovolt. 2018, 8, 1692-1700.
[46]
C. Seth,; D. Khushalani, Degradation and regeneration of hybrid perovskites. RSC Adv. 2016, 6, 101846-101852.
[47]
O. Horváth,; I. Mikó, Spectra, equilibrium and photoredox chemistry of iodobismuthate(III) complexes in acetonitrile. Inorganica Chim. Acta. 2000, 304, 210-218.
[48]
A. B. Maurer,; K. Hu,; G. J. Meyer, Light excitation of a bismuth iodide complex initiates I-I bond formation reactions of relevance to solar energy conversion. J. Am. Chem. Soc. 2017, 139, 8066-8069.
[49]
H. Nikol,; A. Vogler, Photoluminescence of antimony(III) and bismuth(III) chloride complexes in solution. J. Am. Chem. Soc. 1991, 113, 8988-8990.
[50]
C. Müller,; T. Glaser,; M. Plogmeyer,; M. Sendner,; S. Döring,; A. A. Bakulin,; C. Brzuska,; R. Scheer,; M. S. Pshenichnikov,; W. Kowalsky, et al. Water infiltration in methylammonium lead iodide perovskite: Fast and inconspicuous. Chem. Mater. 2015, 27, 7835-7841.
[51]
P. Musto,; F. E. Karasz,; W. J. MacKnight, Hydrogen bonding in polybenzimidazole/polyimide systems: A Fourier-transform infra-red investigation using low-molecular-weight monofunctional probes. Polymer 1989, 30, 1012-1021.
[52]
X. D. Yan,; Y. Li,; T. Xia, Black titanium dioxide nanomaterials in photocatalysis. Int. J. Photoenergy 2017, 2017, 8529851.
[53]
A. Naldoni,; M. Allieta,; S. Santangelo,; M. Marelli,; F. Fabbri,; S. Cappelli,; C. L. Bianchi,; R. Psaro,; V. Dal Santo, Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J. Am. Chem. Soc. 2012, 134, 7600-7603.
[54]
M. L. Xie,; H. Liu,; F. J. Chun,; W. Deng,; C. Luo,; Z. H. Zhu,; M. Yang,; Y. M. Li,; W. Li,; W. Yan, et al. Aqueous phase exfoliating quasi- 2D CsPbBr3 nanosheets with ultrahigh intrinsic water stability. Small 2019, 15, 1901994.
[55]
G. C. Xi,; K. Xiong,; Q. B. Zhao,; R. Zhang,; H. B. Zhang,; Y. T. Qian, Nucleation-dissolution-recrystallization: A new growth mechanism for t-selenium nanotubes. Cryst. Growth Des. 2006, 6, 577-582.
[56]
A. García-Fernández,; J. M. Bermúdez-García,; S. Castro-García,; A. L. Llamas-Saiz,; R. Artiaga,; J. López-Beceiro,; S. Hu,; W. Ren,; A. Stroppa,; M. Sánchez-Andújar, et al. Phase transition, dielectric properties, and ionic transport in the [(CH3)2NH2]PbI3 organic- inorganic hybrid with 2H-hexagonal perovskite structure. Inorg. Chem. 2017, 56, 4918-4927.
[57]
W. Zhang,; H. Y. Ye,; R. Graf,; H. W. Spiess,; Y. F. Yao,; R. Q. Zhu,; R. G. Xiong, Tunable and switchable dielectric constant in an amphidynamic crystal. J. Am. Chem. Soc. 2013, 135, 5230-5233.
[58]
N. K. Noel,; M. Congiu,; A. J. Ramadan,; S. Fearn,; D. P. McMeekin,; J. B. Patel,; M. B. Johnston,; B. Wenger,; H. J. Snaith, Unveiling the influence of pH on the crystallization of hybrid perovskites, delivering low voltage loss photovoltaics. Joule 2017, 1, 328-343.
[59]
H. K. Seo,; G. S. Kim,; S. G. Ansari,; Y. S. Kim,; H. S. Shin,; K. H. Shim,; E. K. Suh, A study on the structure/phase transformation of titanate nanotubes synthesized at various hydrothermal temperatures. Sol. Energy Mater. Sol. Cells 2008, 92, 1533-1539.
[60]
J. Kim,; L. T. Duy,; B. Ahn,; H. Seo, Pre-oxidation effects on properties of bismuth telluride thermoelectric composites compacted by spark plasma sintering. J. Asian Ceram. Soc. 2020, 8, 211-221.
[61]
D. M. Fabian,; S. Ardo, Hybrid organic-inorganic solar cells based on bismuth iodide and 1,6-hexanediammonium dication. J. Mater. Chem. A 2016, 4, 6837-6841.
[62]
N. B. Yi,; S. Wang,; Z. H. Duan,; K. Y. Wang,; Q. H. Song,; S. M. Xiao, Tailoring the performances of lead halide perovskite devices with electron-beam irradiation. Adv. Mater. 2017, 29, 1701636.
[63]
Z. Y. Dang,; J. Shamsi,; F. Palazon,; M. Imran,; Q. A. Akkerman,; S. Park,; G. Bertoni,; M. Prato,; R. Brescia,; L. Manna, In situ transmission electron microscopy study of electron beam-induced transformations in colloidal cesium lead halide perovskite nanocrystals. ACS Nano 2017, 11, 2124-2132.
[64]
J. Liu,; Y. Liu,; N. Y. Liu,; Y. Z. Han,; X. Zhang,; H. Huang,; Y. Lifshitz,; S. T. Lee,; J. Zhong,; Z. H. Kang, Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970-974.
[65]
J. Even,; L. Pedesseau,; J. M. Jancu,; C. Katan, Importance of spin-orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications. J. Phys. Chem. Lett. 2013, 4, 2999-3005.
[66]
P. Umari,; E. Mosconi,; F. De Angelis, Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci. Rep. 2014, 4, 4467.
[67]
J. Liang,; C. X. Wang,; Y. R. Wang,; Z. R. Xu,; Z. P. Lu,; Y. Ma,; H. F. Zhu,; Y. Hu,; C. C. Xiao,; X. Yi, et al. All-inorganic perovskite solar cells. J. Am. Chem. Soc. 2016, 138, 15829-15832.
[68]
M. Grätzel, Photoelectrochemical cells. Nature 2001, 414, 338-344.
[69]
H. Hagiwara,; I. Nozawa,; K. Hayakawa,; T. Ishihara, Hydrogen production by photocatalytic water splitting of aqueous hydrogen iodide over Pt/alkali metal tantalates. Sustain. Energy Fuels 2019, 3, 3021-3028.
[70]
D. C. Powers,; B. L. Anderson,; S. J. Hwang,; T. M. Powers,; L. M. Pérez,; M. B. Hall,; S. L. Zheng,; Y. S. Chen,; D. G. Nocera, Photocrystallographic observation of halide-bridged intermediates in halogen photoeliminations. J. Am. Chem. Soc. 2014, 136, 15346-15355.
[71]
C. Han,; X. L. Zhu,; J. S. Martin,; Y. X. Lin,; S. Spears,; Y. Yan, Recent progress in engineering metal halide perovskites for efficient visible- light-driven photocatalysis. ChemSusChem 2020, 13, 4005-4025.
Nano Research
Pages 1116-1125
Cite this article:
Zhao H, Chordiya K, Leukkunen P, et al. Dimethylammonium iodide stabilized bismuth halide perovskite photocatalyst for hydrogen evolution. Nano Research, 2021, 14(4): 1116-1125. https://doi.org/10.1007/s12274-020-3159-0
Topics:

996

Views

51

Downloads

43

Crossref

0

Web of Science

42

Scopus

0

CSCD

Altmetrics

Received: 24 August 2020
Revised: 30 September 2020
Accepted: 04 October 2020
Published: 01 April 2021
© The Author(s) 2020

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/

Return