Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Heterogeneous lamellar-edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation

Baihua Cui1,2,3Zheng Hu4Chang Liu3Siliang Liu3Fangshuai Chen3Shi Hu4Jinfeng Zhang3Wei Zhou4Yida Deng3Zhenbo Qin3Zhong Wu3()Yanan Chen3 ()Lifeng Cui1()Wenbin Hu2,3()
School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
School of Materials Science and Engineering, Tianjin University, Tianjin 300372, China
School of Science, Tianjin University, Tianjin 300072, China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Development of efficient non-precious catalysts for seawater electrolysis is of great significance but challenging due to the sluggish kinetics of oxygen evolution reaction (OER) and the impairment of chlorine electrochemistry at anode. Herein, we report a heterostructure of Ni3S2 nanoarray with secondary Fe-Ni(OH)2 lamellar edges that exposes abundant active sites towards seawater oxidation. The resultant Fe-Ni(OH)2/Ni3S2 nanoarray works directly as a free-standing anodic electrode in alkaline artificial seawater. It only requires an overpotential of 269 mV to afford a current density of 10 mA·cm−2 and the Tafel slope is as low as 46 mV·dec−1. The 27-hour chronopotentiometry operated at high current density of 100 mA·cm−2 shows negligible deterioration, suggesting good stability of the Fe-Ni(OH)2/Ni3S2@NF electrode. Faraday efficiency for oxygen evolution is up to ~ 95%, revealing decent selectivity of the catalyst in saline water. Such desirable catalytic performance could be benefitted from the introduction of Fe activator and the heterostructure that offers massive active and selective sites. The density functional theory (DFT) calculations indicate that the OER has lower theoretical overpotential than Cl2 evolution reaction in Fe sites, which is contrary to that of Ni sites. The experimental and theoretical study provides a strong support for the rational design of high-performance Fe-based electrodes for industrial seawater electrolysis.

Electronic Supplementary Material

Download File(s)
12274_2020_3164_MOESM1_ESM.pdf (3.8 MB)

References

[1]
M. Gong,; H. J. Dai, A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23-39.
[2]
J. L. Liu,; D. D. Zhu,; T. Ling,; A. Vasileff,; S. Z. Qiao, S-NiFe2O4 ultra-small nanoparticle built nanosheets for efficient water splitting in alkaline and neutral pH. Nano Energy 2017, 40, 264-273.
[3]
L. H. Fu,; Y. B. Li,; N. Yao,; F. L. Yang,; G. Z. Cheng,; W. Luo, IrMo nanocatalysts for efficient alkaline hydrogen electrocatalysis. ACS Catal. 2020, 10, 7322-7327.
[4]
S. M. Dou,; J. Xu,; X. Y. Cui,; W. D. Liu,; Z. C. Zhang,; Y. D. Deng,; W. B. Hu,; Y. N. Chen, High-temperature shock enabled nanomanufacturing for energy-related applications. Adv. Energy Mater. 2020, 10, 2001331.
[5]
X. H. Xie,; M. Song,; L. G. Wang,; M. H. Engelhard,; L. L. Luo,; A. Miller,; Y. Y. Zhang,; L. Du,; H. L. Pan,; Z. M. Nie, et al. Electrocatalytic hydrogen evolution in neutral pH solutions: Dual-phase synergy. ACS Catal. 2019, 9, 8712-8718.
[6]
C. Fan,; X. Jiang,; J. Y. Chen,; X. Wang,; S. Y. Qian,; C. Z. Zhao,; L. F. Ding,; D. M. Sun,; Y. W. Tang, Low-load Pt nanoclusters anchored on graphene hollow spheres for efficient hydrogen evolution. Small Struct., in press, .
[7]
T. Reier,; H. N. Nong,; D. Teschner,; R. Schlögl,; P. Strasser, Electrocatalytic oxygen evolution reaction in acidic environments- reaction mechanisms and catalysts. Adv. Energy Mater. 2017, 7, 1601275.
[8]
H. Wu,; Q. Lu,; J. F. Zhang,; J. J. Wang,; X. P. Han,; N. Q. Zhao,; W. B. Hu,; J. J. Li,; Y. N. Chen,; Y. D. Deng, Thermal shock-activated spontaneous growing of nanosheets for overall water splitting. Nano-Micro Lett. 2020, 12, 162.
[9]
J. Zhang,; Z. L. Chen,; C. Liu,; J. Zhao,; S. L. Liu,; D. W. Rao,; A. M. Nie,; Y. N. Chen,; Y. D. Deng,; W. B. Hu, Hierarchical iridium-based multimetallic alloy with double-core-shell architecture for efficient overall water splitting. Sci. China Mater. 2020, 63, 249-257.
[10]
S. Dresp,; F. Dionigi,; M. Klingenhof,; P. Strasser. Direct electrolytic splitting of seawater: Opportunities and challenges. ACS Energy Lett. 2019, 4, 933-942.
[11]
L. Yu,; L. B. Wu,; B. McElhenny,; S. W. Song,; D. Luo,; F. H. Zhang,; Y. Yu,; S. Chen,; Z. F. Ren, Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy Environ. Sci., in press, .
[12]
S. Dresp,; T. N. Thanh,; M. Klingenhof,; S. Brückner,; P. Hauke,; P. Strasser, Efficient direct seawater electrolysers using selective alkaline NiFe-LDH as OER catalyst in asymmetric electrolyte feeds. Energy Environ. Sci. 2020, 13, 1725-1729.
[13]
T. P. Keane,; D. G. Nocera, Selective production of oxygen from seawater by oxidic metallate catalysts. ACS Omega 2019, 4, 12860-12864.
[14]
Y. N. Chen,; S. M. Xu,; S. Z. Zhu,; R. J. Jacob,; G. Pastel,; Y. B. Wang,; Y. J. Li,; J. Q. Dai,; F. J. Chen,; H. Xie, et al. Millisecond synthesis of CoS nanoparticles for highly efficient overall water splitting. Nano Res. 2019, 12, 2259-2267.
[15]
C. Y. Hao,; Y. Wu,; Y. J. An,; B. H. Cui,; J. N. Lin,; X. N. Li,; D. H. Wang,; M. H. Jiang,; Z. X. Cheng,; S. Hu, Interface-coupling of CoFe- LDH on MXene as high-performance oxygen evolution catalyst. Mater. Today Energy 2019, 12, 453-462.
[16]
W. M. Tong,; M. Forster,; F. Dionigi,; S. Dresp,; R. S. Erami,; P. Strasser,; A. J. Cowan,; P. Farràs, Electrolysis of low-grade and saline surface water. Nat. Energy 2020, 5, 367-377.
[17]
Y. Kuang,; M. J. Kenney,; Y. T. Meng,; W. H. Hung,; Y. J. Liu,; J. E. Huang,; R. Prasanna,; P. S. Li,; Y. P. Li,; L. Wang, et al. Solar- driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proc. Natl. Acad. Sci. USA 2019, 116, 6624-6629.
[18]
F. Dionigi,; T. Reier,; Z. Pawolek,; M. Gliech,; P. Strasser, Design criteria, operating conditions, and nickel-iron hydroxide catalyst materials for selective seawater electrolysis. ChemSusChem 2016, 9, 962-972.
[19]
T. Okada,; H. Abe,; A. Murakami,; T. Shimizu,; K. Fujii,; T. Wakabayashi,; M. Nakayama, A bilayer structure composed of Mg|Co-MnO2 deposited on a Co(OH)2 film to realize selective oxygen evolution from chloride-containing water. Langmuir 2020, 36, 5227-5235.
[20]
J. G. Vos,; T. A. Wezendonk,; A. W. Jeremiasse,; M. T. M. Koper, MnOx/IrOx as selective oxygen evolution electrocatalyst in acidic chloride solution. J. Am. Chem. Soc. 2018, 140, 10270-10281.
[21]
Y. Q. Zhao,; B. Jin,; Y. Zheng,; H. Y. Jin,; Y. Jiao,; S. Z. Qiao, Charge state manipulation of cobalt selenide catalyst for overall seawater electrolysis. Adv. Energy Mater. 2018, 8, 1801926.
[22]
H. Y. Jin,; X. Liu,; A. Vasileff,; Y. Jiao,; Y. Q. Zhao,; Y. Zheng,; S. Z. Qiao, Single-crystal nitrogen-rich two-dimensional Mo5N6 nanosheets for efficient and stable seawater splitting. ACS Nano 2018, 12, 12761-12769.
[23]
Z. Kato,; M. Sato,; Y. Sasaki,; K. Izumiya,; N. Kumagai,; K. Hashimoto, Electrochemical characterization of degradation of oxygen evolution anode for seawater electrolysis. Electrochim. Acta 2014, 116, 152-157.
[24]
J. Juodkazytė,; B. Šebeka,; I. Savickaja,; M. Petrulevičienė,; S. Butkutė,; V. Jasulaitienė,; A. Selskis,; R. Ramanauskas, Electrolytic splitting of saline water: Durable nickel oxide anode for selective oxygen evolution. Int. J. Hydrogen Energy 2019, 44, 5929-5939.
[25]
L. Yu,; Q. Zhu,; S. W. Song,; B. McElhenny,; D. Z. Wang,; C. Z. Wu,; Z. J. Qin,; J. M. Bao,; Y. Yu,; S. Chen, et al. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 2019, 10, 5106.
[26]
W. H. Huang,; C. Y. Lin, Iron phosphate modified calcium iron oxide as an efficient and robust catalyst in electrocatalyzing oxygen evolution from seawater. Faraday Discuss. 2019, 215, 205-215.
[27]
Y. Q. Zhao,; B. Jin,; A. Vasileff,; Y. Jiao,; S. Z. Qiao, Interfacial nickel nitride/sulfide as a bifunctional electrode for highly efficient overall water/seawater electrolysis. J. Mater. Chem. A 2019, 7, 8117-8121.
[28]
H. J. Song,; H. Yoon,; B. Ju,; D. Y. Lee,; D. W. Kim, Electrocatalytic selective oxygen evolution of carbon-coated Na2Co1−xFexP2O7 nanoparticles for alkaline seawater electrolysis. ACS Catal. 2020, 10, 702-709.
[29]
J. X. Feng,; H. Xu,; Y. T. Dong,; S. H. Ye,; Y. X. Tong,; G. R. Li, FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 3694-3698.
[30]
T. B. Yuan,; Z. Hu,; Y. X. Zhao,; J. J. Fang,; J. Lv,; Q. H. Zhang,; Z. B. Zhuang,; L. Gu,; S. Hu, Two-dimensional amorphous SnOx from liquid metal: Mass production, phase transfer, and electrocatalytic CO2 reduction toward formic acid. Nano Lett. 2020, 20, 2916-2922.
[31]
L. L. Feng,; G. T. Yu,; Y. Y. Wu,; G. D. Li,; H. Li,; Y. H. Sun,; T. Asefa,; W. Chen,; X. X. Zou. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 2015, 137, 14023-14026.
[32]
X. Y. Lu,; C. Zhao, Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6, 6616.
[33]
M. X. Chen,; S. L. Lu,; X. Z. Fu,; J. L. Luo, Core-shell structured NiFeSn@NiFe (oxy)hydroxide nanospheres from an electrochemical strategy for electrocatalytic oxygen evolution reaction. Adv. Sci. 2020, 7, 1903777.
[34]
M. Fang,; D. Han,; W. B. Xu,; Y. Shen,; Y. M. Lu,; P. J. Cao,; S. Han,; W. Y. Xu,; D. L. Zhu,; W. J. Liu, et al. Surface-guided formation of amorphous mixed-metal oxyhydroxides on ultrathin MnO2 nanosheet arrays for efficient electrocatalytic oxygen evolution. Adv. Energy Mater. 2020, 10, 2001059.
[35]
B. H. Cui,; M. Zhang,; Y. X. Zhao,; S. Hu, Heterogenization of few- layer MoS2 with highly crystalline 3D Ni3S2 nanoframes effectively synergizes the electrocatalytic hydrogen generation in alkaline medium. Mater. Today Energy 2019, 13, 85-92.
[36]
J. L. Bantignies,; S. Deabate,; A. Righi,; S. Rols,; P. Hermet,; J. L. Sauvajol,; F. Henn, New insight into the vibrational behavior of nickel hydroxide and oxyhydroxide using inelastic neutron scattering, far/mid-infrared and Raman spectroscopies. J. Phys. Chem. C 2008, 112, 2193-2201.
[37]
L. B. Zong,; X. Chen,; S. M. Dou,; K. C. Fan,; Z. M. Wang,; W. J. Zhang,; Y. M. Du,; J. Xu,; X. F. Jia,; Q. Zhang, et al. Stable confinement of Fe/Fe3C in Fe, N-codoped carbon nanotube towards robust zinc-air batteries. Chin. Chem. Lett., in press, .
[38]
H. F. Liang,; A. N. Gandi,; C. Xia,; M. N. Hedhili,; D. H. Anjum,; U. Schwingenschlögl,; H. N. Alshareef, Amorphous NiFe-OH/NiFeP electrocatalyst fabricated at low temperature for water oxidation applications. ACS Energy Lett. 2017, 2, 1035-1042.
[39]
C. Liu,; Z. L. Chen,; D. W. Rao,; J. F. Zhang,; Y. W. Liu,; Y. N. Chen,; Y. D. Deng,; W. B. Hu, Behavior of gold-enhanced electrocatalytic performance of NiPtAu hollow nanocrystals for alkaline methanol oxidation. Sci. China Mater. 2020, in press, .
[40]
J. W. Li,; R. Q. Lian,; J. Y. Wang,; S. He,; S. P. Jiang,; Z. B. Rui, Oxygen vacancy defects modulated electrocatalytic activity of iron-nickel layered double hydroxide on Ni foam as highly active electrodes for oxygen evolution reaction. Electrochim. Acta 2020, 331, 135395.
[41]
F. S. Chen,; C. Liu,; B. H. Cui,; S. M. Dou,; J. Xu,; S. L. Liu,; H. Zhang,; Y. D. Deng,; Y. N. Chen,; W. B. Hu, Regulated synthesis of eutectic Ni3S2/NiS nanorods for quasi-solid-state hybrid supercapacitors with high energy density. J. Power Sources, 2021, 482, 228910.
[42]
Z. B. Yang,; X. Liang, Self-magnetic-attracted NixFe(1−x)@NixFe(1−x)O nanoparticles on nickel foam as highly active and stable electrocatalysts towards alkaline oxygen evolution reaction. Nano Res. 2020, 13, 461-466.
[43]
G. Liu,; X. S. Gao,; K. F. Wang,; D. Y. He,; J. P. Li, Mesoporous nickel-iron binary oxide nanorods for efficient electrocatalytic water oxidation. Nano Res. 2017, 10, 2096-2105.
[44]
D. Friebel,; M. W. Louie,; M. Bajdich,; K. E. Sanwald,; Y. Cai,; A. M. Wise,; M. J. Cheng,; D. Sokaras,; T. C. Weng,; R. Alonso-Mori, et al. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305-1313.
[45]
S. Lee,; L. C. Bai,; X. L. Hu. Deciphering iron-dependent activity in oxygen evolution catalyzed by nickel-iron layered double hydroxide. Angew. Chem. 2020, 132, 8149-8154.
[46]
M. K. Bates,; Q. Y. Jia,; H. Doan,; W. T. Liang,; S. Mukerjee, Charge- transfer effects in Ni-Fe and Ni-Fe-Co mixed-metal oxides for the alkaline oxygen evolution reaction. ACS Catal. 2016, 6, 155-161.
[47]
L. Z. Zhuang,; Y. Jia,; T. W. He,; A. J. Du,; X. C. Yan,; L. Ge,; Z. H. Zhu,; X. D. Yao, Tuning oxygen vacancies in two-dimensional iron- cobalt oxide nanosheets through hydrogenation for enhanced oxygen evolution activity. Nano Res., 2018, 11, 3509-3518.
[48]
Q. X. Xie,; Z. Cai,; P. S. Li,; D. J. Zhou,; Y. M. Bi,; X. Y. Xiong,; E. Y. Hu,; Y. P. Li,; Y. Kuang,; X. M. Sun, Layered double hydroxides with atomic-scale defects for superior electrocatalysis. Nano Res.2018, 11, 4524-4534.
[49]
M. Görlin,; J. F. de Araujo,; H. Schmies,; D. Bernsmeier,; S. Dresp,; M. Gliech,; Z. Jusys,; P. Chernev,; R. Kraehnert,; H. Dau, et al. Tracking catalyst redox states and reaction dynamics in Ni-Fe oxyhydroxide oxygen evolution reaction electrocatalysts: The role of catalyst support and electrolyte pH. J. Am. Chem. Soc. 2017, 139, 2070-2082.
[50]
Y. S. Jin,; S. L. Huang,; X. Yue,; H. Y. Du,; P. K. Shen, Mo- and Fe- modified Ni(OH)2/NiOOH nanosheets as highly active and stable electrocatalysts for oxygen evolution reaction. ACS Catal. 2018, 8, 2359-2363.
[51]
J. F. Zhang,; J. Y. Liu,; L. F. Xi,; Y. F. Yu,; N. Chen,; S. H. Sun,; W. C. Wang,; K. M. Lange,; B. Zhang, Single-atom Au/NiFe layered double hydroxide electrocatalyst: Probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 3876-3879.
[52]
S. H. Hsu,; J. W. Miao,; L. P. Zhang,; J. J. Gao,; H. M. Wang,; H. B. Tao,; S. F. Hung,; A. Vasileff,; S. Z. Qiao,; B. Liu, An earth-abundant catalyst-based seawater photoelectrolysis system with 17.9% solar-to-hydrogen efficiency. Adv. Mater. 2018, 30, 1707261.
Nano Research
Pages 1149-1155
Cite this article:
Cui B, Hu Z, Liu C, et al. Heterogeneous lamellar-edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation. Nano Research, 2021, 14(4): 1149-1155. https://doi.org/10.1007/s12274-020-3164-3
Topics:
Metrics & Citations  
Article History
Copyright
Return