AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Visualizing nonlinear resonance in nanomechanical systems via single-electron tunneling

Xinhe Wang1,2,§Lin Cong2,§Dong Zhu3Zi Yuan2Xiaoyang Lin1Weisheng Zhao1Zaiqiao Bai4Wenjie Liang5Ximing Sun6Guang-Wei Deng3,7( )Kaili Jiang2( )
Fert Beijing Research Institute, School of Microelectronics & Beijing Advanced Innovation Centre for Big Data and Brain Computing (BDBC), Beihang University, Beijing 100191, China
State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, China
Key Laboratory of Quantum Information, CAS, University of Science and Technology of China, Hefei 230026, China
Department of Physics, Beijing Normal University, Beijing 100875, China
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering, Tsinghua University, Beijing 100084, China
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China

§ Xinhe Wang and Lin Cong contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Numerous reports have elucidated the importance of mechanical resonators comprising quantum-dot-embedded carbon nanotubes (CNTs) for studying the effects of single-electron transport. However, there is a need to investigate the single-electron transport that drives a large amplitude into a nonlinear regime. Herein, a CNT hybrid device has been investigated, which comprises a gate-defined quantum dot that is embedded into a mechanical resonator under strong actuation conditions. The Coulomb peak positions synchronously oscillate with the mechanical vibrations, enabling a single-electron "chopper" mode. Conversely, the vibration amplitude of the CNT versus its frequency can be directly visualized via detecting the time-averaged single-electron tunneling current. To understand this phenomenon, a general formula is derived for this time-averaged single-electron tunneling current, which agrees well with the experimental results. By using this visualization method, a variety of nonlinear motions of a CNT mechanical oscillator have been directly recorded, such as Duffing nonlinearity, parametric resonance, and double-, fractional-, mixed- frequency excitations. This approach opens up burgeoning opportunities for investigating and understanding the nonlinear motion of a nanomechanical system and its interactions with electron transport in quantum regimes.

Electronic Supplementary Material

Video
12274_2020_3165_MOESM2_ESM.mp4
Download File(s)
12274_2020_3165_MOESM1_ESM.pdf (937 KB)

References

[1]
A. W. Barnard,; M. Zhang,; G. S. Wiederhecker,; M. Lipson,; P. L. McEuen, Real-time vibrations of a carbon nanotube. Nature 2019, 566, 89-93.
[2]
M. H. Matheny,; L. G. Villanueva,; R. B. Karabalin,; J. E. Sader,; M. L. Roukes, Nonlinear mode-coupling in nanomechanical systems. Nano Lett. 2013, 13, 1622-1626.
[3]
A. Eichler,; J. Moser,; M. I. Dykman,; A. Bachtold, Symmetry breaking in a mechanical resonator made from a carbon nanotube. Nat. Commun. 2013, 4, 2843.
[4]
A. W. Barnard,; V. Sazonova,; A. M. van der Zande,; P. L. McEuen, Fluctuation broadening in carbon nanotube resonators. Proc. Natl. Acad. Sci. USA 2012, 109, 19093-19096.
[5]
O. Maillet,; X. Zhou,; R. Gazizulin,; A. M. Cid,; M. Defoort,; O. Bourgeois,; E. Collin, Nonlinear frequency transduction of nanomechanical Brownian motion. Phys. Rev. B 2017, 96, 165434.
[6]
K. Willick,; X. W. Tang,; J. Baugh, Probing the non-linear transient response of a carbon nanotube mechanical oscillator. Appl. Phys. Lett. 2017, 111, 223108.
[7]
B. Lassagne,; Y. Tarakanov,; J. Kinaret,; D. Garcia-Sanchez,; A. Bachtold, Coupling mechanics to charge transport in carbon nanotube mechanical resonators. Science 2009, 325, 1107-1110.
[8]
G. A. Steele,; A. K. Hüttel,; B. Witkamp,; M. Poot,; H. B. Meerwaldt,; L. P. Kouwenhoven,; H. S. J. van der Zant, Strong coupling between single-electron tunneling and nanomechanical motion. Science 2009, 325, 1103-1107.
[9]
K. J. G. Götz,; D. R. Schmid,; F. J. Schupp,; P. L. Stiller,; C. Strunk,; A. K. Hüttel, Nanomechanical characterization of the Kondo charge dynamics in a carbon nanotube. Phys. Rev. Lett. 2018, 120, 246802.
[10]
Y. T. Wen,; N. Ares,; T. Pei,; G. A. D. Briggs,; E. A. Laird, Measuring carbon nanotube vibrations using a single-electron transistor as a fast linear amplifier. Appl. Phys. Lett. 2018, 113, 153101.
[11]
P. Häkkinen,; A. Isacsson,; A. Savin,; J. Sulkko,; P. Hakonen, Charge sensitivity enhancement via mechanical oscillation in suspended carbon nanotube devices. Nano Lett. 2015, 15, 1667-1672.
[12]
G. Micchi,; R. Avriller,; F. Pistolesi, Mechanical signatures of the current blockade instability in suspended carbon nanotubes. Phys. Rev. Lett. 2015, 115, 206802.
[13]
A. Benyamini,; A. Hamo,; S. V. Kusminskiy,; F. von Oppen,; S. Ilani, Real-space tailoring of the electron-phonon coupling in ultraclean nanotube mechanical resonators. Nat. Phys. 2014, 10, 151-156.
[14]
A. Castellanos-Gomez,; H. B. Meerwaldt,; W. J. Venstra,; H. S. J. van der Zant,; G. A. Steele, Strong and tunable mode coupling in carbon nanotube resonators. Phys. Rev. B 2012, 86, 041402(R).
[15]
Y. T. Wen,; N. Ares,; F. J. Schupp,; T. Pei,; G. A. D. Briggs,; E. A. Laird, A coherent nanomechanical oscillator driven by single-electron tunnelling. Nat. Phys. 2020, 16, 75-82.
[16]
S. Blien,; P. Steger,; N. Hüttner,; R. Graaf,; A. K. Hüttel, Quantum capacitance mediated carbon nanotube optomechanics. Nat. Commun. 2020, 11, 1636.
[17]
C. Urgell,; W. Yang,; S. L. De Bonis,; C. Samanta,; M. J. Esplandiu,; Q. Dong,; Y. Jin,; A. Bachtold, Cooling and self-oscillation in a nanotube electromechanical resonator. Nat. Phys. 2020, 16, 32-37.
[18]
R. Lifshitz,; M. C. Cross, Nonlinear dynamics of nanomechanical resonators. In Nonlinear Dynamics of Nanosystems; G. Radons,; B. Rumpf,; H. G. Schuster,, Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2010; pp 221-266.
[19]
A. H. Nayfeh,; D. T. Mook, Nonlinear Oscillations; John Wiley & Sons: New York, 1995.
[20]
G. W. Deng,; D. Zhu,; X. H. Wang,; C. L. Zou,; J. T. Wang,; H. O. Li,; G. Cao,; D. Liu,; Y. Li,; M. Xiao, et al. Strongly coupled nanotube electromechanical resonators. Nano Lett. 2016, 16, 5456-5462.
[21]
R. F. Zhang,; Z. Y. Ning,; Y. Y. Zhang,; Q. S. Zheng,; Q. Chen,; H. H. Xie,; Q. Zhang,; W. Z. Qian,; F. Wei, Superlubricity in centimetres- long double-walled carbon nanotubes under ambient conditions. Nat. Nanotechnol. 2013, 8, 912-916.
[22]
S. Sapmaz,; P. Jarillo-Herrero,; L. P. Kouwenhoven,; H. S. J. van der Zant, Quantum dots in carbon nanotubes. Semicond. Sci. Technol. 2006, 21, S52-S63.
[23]
Y. Zhang,; G. Liu,; C. N. Lau, Phase diffusion in single-walled carbon nanotube Josephson transistors. Nano Res. 2008, 1, 145-151.
[24]
D. Zhu,; X. H. Wang,; W. C. Kong,; G. W. Deng,; J. T. Wang,; H. O. Li,; G. Cao,; M. Xiao,; K. L. Jiang,; X. C. Dai, et al. Coherent phonon Rabi oscillations with a high-frequency carbon nanotube phonon cavity. Nano Lett. 2017, 17, 915-921.
[25]
A. K. Hüttel,; H. B. Meerwaldt,; G. A. Steele,; M. Poot,; B. Witkamp,; L. P. Kouwenhoven,; H. S. J. van der Zant, Single electron tunnelling through high-Q single-wall carbon nanotube NEMS resonators. Phys. Status Solidi B 2010, 247, 2974-2979.
[26]
D. R. Koenig,; E. M. Weig,; J. P. Kotthaus, Ultrasonically driven nanomechanical single-electron shuttle. Nat. Nanotechnol. 2008, 3, 482-485.
[27]
Z. W. Shi,; H. L. Lu,; L. C. Zhang,; R. Yang,; Y. Wang,; D. H. Liu,; H. M. Guo,; D. X. Shi,; H. J. Gao,; E. G. Wang, et al. Studies of graphene-based nanoelectromechanical switches. Nano Res. 2012, 5, 82-87.
[28]
X. H. Wang,; D. Zhu,; X. H. Yang,; L. Yuan,; H. O. Li,; J. T. Wang,; M. Chen,; G. W. Deng,; W. J. Liang,; Q. Q. Li, et al. Stressed carbon nanotube devices for high tunability, high quality factor, single mode GHz resonators. Nano Res. 2018, 11, 5812-5822.
[29]
A. Eichler,; M. del Álamo Ruiz,; J. A. Plaza,; A. Bachtold, Strong coupling between mechanical modes in a nanotube resonator. Phys. Rev. Lett. 2012, 109, 025503.
[30]
I. Kozinsky,; H. W. C. Postma,; I. Bargatin,; M. L. Roukes, Tuning nonlinearity, dynamic range, and frequency of nanomechanical resonators. Appl. Phys. Lett. 2006, 88, 253101.
[31]
J. F. Rhoads,; S. W. Shaw,; K. L. Turner, Nonlinear dynamics and its applications in micro- and nanoresonators. J. Dyn. Sys., Meas., Control 2010, 132, 034001.
[32]
H. Okamoto,; A. Gourgout,; C. Y. Chang,; K. Onomitsu,; I. Mahboob,; E. Y. Chang,; H. Yamaguchi, Coherent phonon manipulation in coupled mechanical resonators. Nat. Phys. 2013, 9, 480-484.
[33]
T. Faust,; J. Rieger,; M. J. Seitner,; J. P. Kotthaus,; E. M. Weig, Coherent control of a classical nanomechanical two-level system. Nat. Phys. 2013, 9, 485-488.
[34]
C. Y. Chen,; D. H. Zanette,; D. A. Czaplewski,; S. Shaw,; D. López, Direct observation of coherent energy transfer in nonlinear micromechanical oscillators. Nat. Commun. 2017, 8, 15523.
[35]
M. J. Woolley,; G. J. Milburn,; C. M. Caves, Nonlinear quantum metrology using coupled nanomechanical resonators. New J. Phys. 2008, 10, 125018.
[36]
C. W. J. Beenakker, Theory of coulomb-blockade oscillations in the conductance of a quantum dot. Phys. Rev. B 1991, 44, 1646-1656.
Nano Research
Pages 1156-1161
Cite this article:
Wang X, Cong L, Zhu D, et al. Visualizing nonlinear resonance in nanomechanical systems via single-electron tunneling. Nano Research, 2021, 14(4): 1156-1161. https://doi.org/10.1007/s12274-020-3165-2
Topics:

968

Views

9

Crossref

N/A

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 12 August 2020
Revised: 08 October 2020
Accepted: 08 October 2020
Published: 30 October 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return