AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Layer-dependent charge density wave phase transition stiffness in 1T-TaS2 nanoflakes evidenced by ultrafast carrier dynamics

Rui Wang1( )Junbo Zhou1,4Xinsheng Wang1Liming Xie1,4( )Jimin Zhao2,3,4( )Xiaohui Qiu1,4( )
CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Songshan Lake Materials Laboratory, Dongguan 523808, China
University of Chinese Academy of Sciences, Beijing 100049, China
Show Author Information

Graphical Abstract

Abstract

Novel physical properties emerge when the thickness of charge density wave (CDW) materials is reduced to the atomic level, owing to the significant modification of the electronic band structure and correlation effects. Here, we investigate the layer-dependent CDW phase transition and evolution of the nonequilibrium state of 1T-TaS2 nanoflakes using pump-probe spectroscopy. Both the low-energy single-particle and collective excitation relaxations exhibit sharp changes at ~ 210 K, indicating a phase transition from commensurate CDW to nearly commensurate CDW state. The single particle process reveals that the phase transition stiffness (PTS) is thickness-dependent. Moreover, a small PTS is observed in thin nanoflakes, which is attributed to the reduced thickness that increases the fluctuation and inhibits the nucleation and growth of discommensurations. In addition, the phase mode vanishes when the discommensuration network appears. Our results suggest that the carrier dynamics could be an efficient operational approach to measuring the quantum phase transition in correlated materials.

Electronic Supplementary Material

Download File(s)
12274_2020_3166_MOESM1_ESM.pdf (2.7 MB)

References

[1]
A. W. Tsen,; R. Hovden,; D. Wang,; Y. D. Kim,; J. Okamoto,; K. A. Spoth,; Y. Liu,; W. J. Lu,; Y. P. Sun,; J. C. Hone, et al. Structure and control of charge density waves in two-dimensional 1T-TaS2. Proc. Natl. Acad. Sci. USA 2015, 112, 15054-15059.
[2]
M. Yoshida,; R. Suzuki,; Y. J. Zhang,; M. Nakano,; Y. Iwasa, Memristive phase switching in two-dimensional 1T-TaS2 crystals. Sci. Adv. 2015, 1, e1500606.
[3]
G. X. Liu,; B. Debnath,; T. R. Pope,; T. T. Salguero,; R. K. Lake,; A. A. Balandin, A charge-density-wave oscillator based on an integrated tantalum disulfide-boron nitride-graphene device operating at room temperature. Nat. Nanotechnol. 2016, 11, 845-850.
[4]
Y. J. Yu,; F. Y. Yang,; X. F. Lu,; Y. J. Yan,; Y. H. Cho,; L. G. Ma,; X. H. Niu,; S. Kim,; Y. W. Son,; D. L. Feng, et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol. 2015, 10, 270-276.
[5]
M. J. Hollander,; Y. Liu,; W. J. Lu,; L. J. Li,; Y. P. Sun,; J. A. Robinson,; S. Datta, Electrically driven reversible insulator-metal phase transition in 1T-TaS2. Nano Lett. 2015, 15, 1861-1866.
[6]
W. Wen,; Y. M. Zhu,; C. H. Dang,; W. Chen,; L. M. Xie, Raman spectroscopic and dynamic electrical investigation of multi-state charge-wave-density phase transitions in 1T-TaS2. Nano Lett. 2019, 19, 1805-1813.
[7]
C. Zhu,; Y. Chen,; F. C. Liu,; S. J. Zheng,; X. B. Li,; A. Chaturvedi,; J. D. Zhou,; Q. D. Fu,; Y. M. He,; Q. S. Zeng, et al. Light-tunable 1T-TaS2 charge-density-wave oscillators. ACS Nano 2018, 12, 11203-11210.
[8]
W. Fu,; Y. Chen,; J. H. Lin,; X. W. Wang,; Q. S. Zeng,; J. D. Zhou,; L. Zheng,; H. Wang,; Y. M. He,; H. Y. He, et al. Controlled synthesis of atomically thin 1T-TaS2 for tunable charge density wave phase transitions. Chem. Mater. 2016, 28, 7613-7618.
[9]
T. Hirata,; F. S. Ohuchi, Temperature dependence of the Raman spectra of 1T-TaS2. Solid State Commun. 2001, 117, 361-364.
[10]
X. S. Wang,; H. N. Liu,; J. X. Wu,; J. H. Lin,; W. He,; H. Wang,; X. H. Shi,; K. Suenaga,; L. M. Xie, Chemical growth of 1T-TaS2 monolayer and thin films: Robust charge density wave transitions and high bolometric responsivity. Adv. Mater. 2018, 30, 1800074.
[11]
L. Wang,; J. Wang,; C. L. Liu,; H. Xu,; A. Li,; D. C. Wei,; Y. Q. Liu,; G. Chen,; X. S. Chen,; W. Liu, Distinctive performance of terahertz photodetection driven by charge-density-wave order in CVD-grown tantalum diselenide. Adv. Funct. Mater. 2019, 29, 1905057.
[12]
D. Wu,; Y. C. Ma,; Y. Y. Niu,; Q. M. Liu,; T. Dong,; S. J. Zhang,; J. S. Niu,; H. B. Zhou,; J. Wei,; Y. X. Wang, et al. Ultrabroadband photosensitivity from visible to terahertz at room temperature. Sci. Adv. 2018, 4, eaao3057.
[13]
J. Demsar,; L. Forró,; H. Berger,; D. Mihailovic, Femtosecond snapshots of gap-forming charge-density-wave correlations in quasi- two-dimensional dichalcogenides 1T-TaS2 and 2H-TaSe2. Phys. Rev. B 2002, 66, 041101(R).
[14]
Y. Toda,; K. Tateishi,; S. Tanda, Anomalous coherent phonon oscillations in the commensurate phase of the quasi-two-dimensional 1T-TaS2 compound. Phys. Rev. B 2004, 70, 033106.
[15]
J. Demsar,; K. Biljaković,; D. Mihailovic, Single particle and collective excitations in the one-dimensional charge density wave solid K0.3MoO3 probed in real time by femtosecond spectroscopy. Phys. Rev. Lett. 1999, 83, 800-803.
[16]
K. Tanimura, Photoinduced discommensuration of the commensurate charge-density wave phase 1T-TaS2. Phys. Rev. B 2018, 97, 245115.
[17]
A. Rothwarf,; B. N. Taylor, Measurement of recombination lifetimes in superconductors. Phys. Rev. Lett. 1967, 19, 27-30.
[18]
V. V. Kabanov,; J. Demsar,; B. Podobnik,; D. Mihailovic, Quasiparticle relaxation dynamics in superconductors with different gap structures: Theory and experiments on YBa2Cu3O7-δ. Phys. Rev. B 1999, 59, 1497-1506.
[19]
R. V. Yusupov,; T. Mertelj,; J. H. Chu,; I. R. Fisher,; D. Mihailovic, Single-particle and collective mode couplings associated with 1- and 2-directional electronic ordering in metallic RTe3 (R = Ho,Dy,Tb). Phys. Rev. Lett. 2008, 101, 246402.
[20]
Y. C. Tian,; W. H. Zhang,; F. S. Li,; Y. L. Wu,; Q. Wu,; F. Sun,; G. Y. Zhou,; L. L. Wang,; X. C. Ma,; Q. K. Xue, et al. Ultrafast dynamics evidence of high temperature superconductivity in single unit cell FeSe on SrTiO3. Phys. Rev. Lett. 2016, 116, 107001.
[21]
D. E. Moncton,; F. J. DiSalvo,; J. D. Axe,; L. J. Sham,; B. R. Patton, Charge-density wave stacking order in 1T-Ta1−xZrxSe2: Interlayer interactions and impurity (Zr) effects. Phys. Rev. B 1976, 14, 3432-3437.
[22]
M. Yoshida,; Y. J. Zhang,; J. T. Ye,; R. Suzuki,; Y. Imai,; S. Kimura,; A. Fujiwara,; Y. Iwasa, Controlling charge-density-wave states in nano-thick crystals of 1T-TaS2. Sci. Rep. 2014, 4, 7302.
[23]
H. J. Zeiger,; J. Vidal,; T. K. Cheng,; E. P. Ippen,; G. Dresselhaus,; M. S. Dresselhaus, Theory for displacive excitation of coherent phonons. Phys. Rev. B 1992, 45, 768-778.
[24]
I. Lutsyk,; M. Rogala,; P. Dabrowski,; P. Krukowski,; P. J. Kowalczyk,; A. Busiakiewicz,; D. A. Kowalczyk,; E. Lacinska,; J. Binder,; N. Olszowska, et al. Electronic structure of commensurate, nearly commensurate, and incommensurate phases of 1T-TaS2 by angle- resolved photoelectron spectroscopy, scanning tunneling spectroscopy, and density functional theory. Phys. Rev. B 2018, 98, 195425.
[25]
S. Hellmann,; M. Beye,; C. Sohrt,; T. Rohwer,; F. Sorgenfrei,; H. Redlin,; M. Kalläne,; M. Marczynski-Bühlow,; F. Hennies,; M. Bauer, et al. Ultrafast melting of a charge-density wave in the mott insulator 1T-TaS2. Phys. Rev. Lett. 2010, 105, 187401.
[26]
H. C. Lin,; W. T. Huang,; K. Zhao,; S. Qiao,; Z. Liu,; J. Wu,; X. Chen,; S. H. Ji, Scanning tunneling spectroscopic study of monolayer 1T-TaS2 and 1T-TaSe2. Nano Res. 2020, 13, 133-137.
[27]
B. Dardel,; M. Grioni,; D. Malterre,; P. Weibel,; Y. Baer,; F. Lévy, Temperature-dependent pseudogap and electron localization in 1T-TaS2. Phys. Rev. B 1992, 45, 1462-1465.
[28]
B. Dardel,; M. Grioni,; D. Malterre,; P. Weibel,; Y. Baer,; F. Lévy, Spectroscopic signatures of phase transitions in a charge-density- wave system: 1T-TaS2. Phys. Rev. B 1992, 46, 7407-7412.
[29]
M. Eichberger,; H. Schäfer,; M. Krumova,; M. Beyer,; J. Demsar,; H. Berger,; G. Moriena,; G. Sciaini,; R. J. D. Miller, Snapshots of cooperative atomic motions in the optical suppression of charge density waves. Nature 2010, 468, 799-802.
[30]
S. Kolekar,; M. Bonilla,; Y. J. Ma,; H. C. Diaz,; M. Batzill, Layer- and substrate-dependent charge density wave criticality in 1T-TiSe2. 2D Mater. 2018, 5, 015006.
[31]
P. M. Coelho,; K. Lasek,; K. N. Cong,; J. F. Li,; W. Niu,; W. Q. Liu,; I. I. Oleynik,; M. Batzill, Monolayer modification of VTe2 and its charge density wave. J. Phys. Chem. Lett. 2019, 10, 4987-4993.
[32]
R. Y. Chen,; B. F. Hu,; T. Dong,; N. L. Wang, Revealing multiple charge-density-wave orders in TbTe3 by optical conductivity and ultrafast pump-probe experiments. Phys. Rev. B 2014, 89, 075114.
[33]
M. Ausloos,; A. A. Varlamov, Fluctuation Phenomena in High Temperature Superconductors; Springer: Dordrecht, 1997.
[34]
B. Giambattista,; C. G. Slough,; W. W. McNairy,; R. V. Coleman, Scanning tunneling microscopy of atoms and charge-density waves in 1T-TaS2, 1T-TaSe2, and 1T-VSe2. Phys. Rev. B 1990, 41, 10082-10103.
Nano Research
Pages 1162-1166
Cite this article:
Wang R, Zhou J, Wang X, et al. Layer-dependent charge density wave phase transition stiffness in 1T-TaS2 nanoflakes evidenced by ultrafast carrier dynamics. Nano Research, 2021, 14(4): 1162-1166. https://doi.org/10.1007/s12274-020-3166-1
Topics:

809

Views

5

Crossref

N/A

Web of Science

6

Scopus

1

CSCD

Altmetrics

Received: 01 September 2020
Revised: 30 September 2020
Accepted: 08 October 2020
Published: 30 October 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return