AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

pH-mediated synthesis of monodisperse gold nanorods with quantitative yield and molecular level insight

Reese Gallagher§Xing Zhang§Anthony Altomare§David Lawrence Jr.Nicholas ShawverNinh TranMelanie Beazley( )Gang Chen( )
Department of Chemistry, University of Central Florida, Orlando, 32816, USA

§ Reese Gallagher, Xing Zhang, and Anthony Altomare contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Although gold nanorods (GNRs) have been produced with different dimensions and aspect ratios, the current synthesis methods through seed-mediated growth are far from ideal, for instance, the quality (rod yield) and the quantity (gold conversion) cannot be simultaneously satisfied. More critically, there is no molecular level understanding of the growth mechanism. Here, we solved the problem by employing the stoichiometric ratio of reactants and tuning the reactivity of the reductant through adjusting the initial pH value of the growth solution to achieve both good quality and high quantity simultaneously. We also extended our strategy to other enols besides ascorbic acid, such as phenolic compounds, and found that the optimal pH for GNRs synthesis depends on the structure of the individual compound. The mechanistic insight greatly enriches the toolbox of reductants for GNRs growth and makes it possible to synthesize GNRs at both acidic and basic conditions. An interesting phenomenon is that for most of the phenolic compounds we tested, the morphology of the final products follows the same sphere-rod-sphere trend as the initial pH value of the reaction increases, whether it is under acidic or basic conditions, which cannot be explained by any previously proposed mechanism. The effect of pH is mainly attributed to the regulation of the reduction potential of the reductants, and thus the reaction rate. A model has been proposed to explain the dependence of anisotropic growth of GNRs on the concentration gradient of reactants around the seeds, which is decided by both the reaction rate and diffusion rate.

Electronic Supplementary Material

Download File(s)
12274_2020_3167_MOESM1_ESM.pdf (4.8 MB)

References

[1]
G. González-Rubio,; P. Díaz-Núñez,; A. Rivera,; A. Prada,; G. Tardajos,; J. González-Izquierdo,; L. Bañares,; P. Llombart,; L. G. Macdowell,; M. A. Palafox, Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances. Science 2017, 358, 640-644.
[2]
S. E. Lohse,; C. J. Murphy, The quest for shape control: A history of gold nanorod synthesis. Chem. Mater. 2013, 25, 1250-1261.
[3]
H. J. Chen,; L. Shao,; Q. Li,; J. F. Wang, Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 2013, 42, 2679-2724.
[4]
L. Vigderman,; B. P. Khanal,; E. R. Zubarev, Functional gold nanorods: Synthesis, self-assembly, and sensing applications. Adv. Mater. 2012, 24, 4811-4841.
[5]
X. H. Huang,; S. Neretina,; M. A. El-Sayed, Gold nanorods: From synthesis and properties to biological and biomedical applications. Adv. Mater. 2009, 21, 4880-4910.
[6]
J. Pérez-Juste,; I. Pastoriza-Santos,; L. M. Liz-Marzán,; P. Mulvaney, Gold nanorods: Synthesis, characterization and applications. Coord. Chem. Rev. 2005, 249, 1870-1901.
[7]
J. B. Zeng,; Y. Zhang,; T. Zeng,; R. Aleisa,; Z. W. Qiu,; Y. Z. Chen,; J. K. Huang,; D. W. Wang,; Z. F. Yan,; Y. D. Yin, Anisotropic plasmonic nanostructures for colorimetric sensing. Nano Today 2020, 32, 100855.
[8]
C. Martín-Sánchez,; G. González-Rubio,; P. Mulvaney,; A. Guerrero- Martínez,; L. M. Liz-Marzán,; F. Rodríguez, Monodisperse gold nanorods for high-pressure refractive index sensing. J. Phys. Chem. Lett. 2019, 10, 1587-1593.
[9]
C. Hanske,; E. H. Hill,; D. Vila-Liarte,; G. González-Rubio,; C. Matricardi,; A. Mihi,; L. M. Liz-Marzán, Solvent-assisted self-assembly of gold nanorods into hierarchically organized plasmonic mesostructures. ACS Appl. Mater. Interfaces 2019, 11, 11763-11771.
[10]
D. J. de Aberasturi,; A. B. Serrano-Montes,; L. M. Liz-Marzán, Modern applications of plasmonic nanoparticles: From energy to health. Adv. Opt. Mater. 2015, 3, 602-617.
[11]
H. A. Atwater,; A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 205-213.
[12]
S. Lal,; N. K. Grady,; J. Kundu,; C. S. Levin,; J. B. Lassiter,; N. J. Halas, Tailoring plasmonic substrates for surface enhanced spectroscopies. Chem. Soc. Rev. 2008, 37, 898-911.
[13]
J. A. Webb,; R. Bardhan, Emerging advances in nanomedicine with engineered gold nanostructures. Nanoscale 2014, 6, 2502-2530.
[14]
Y. S. Chen,; Y. Zhao,; S. J. Yoon,; S. S. Gambhir,; S. Emelianov, Miniature gold nanorods for photoacoustic molecular imaging in the second near-infrared optical window. Nat. Nanotechnol. 2019, 14, 465-472.
[15]
L. Scarabelli,; A. Sánchez-Iglesias,; J. Pérez-Juste,; L. M. Liz-Marzán, A “Tips and Tricks” practical guide to the synthesis of gold nanorods. J. Phys. Chem. Lett. 2015, 6, 4270-4279.
[16]
S. L. Pan,; M. Chen,; H. L. Li, Aqueous gold sols of rod-shaped particles prepared by the template method. Colloid. Surf. A-Physicochem. Eng. Asp. 2001, 180, 55-62.
[17]
Y. Y. Yu,; S. S. Chang,; C. L. Lee,; C. R. C. Wang, Gold nanorods: Electrochemical synthesis and optical properties. J. Phys. Chem. B 1997, 101, 6661-6664.
[18]
C. J. Johnson,; E. Dujardin,; S. A. Davis,; C. J. Murphy,; S. Mann, Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. J. Mater. Chem. 2002, 12, 1765-1770.
[19]
B. D. Busbee,; S. O. Obare,; C. J. Murphy, An improved synthesis of high-aspect-ratio gold nanorods. Adv. Mater. 2003, 15, 414-416.
[20]
W. X. Ye,; K. Krüger,; A. Sánchez-Iglesias,; I. García,; X. Y. Jia,; J. Sutter,; S. Celiksoy,; B. Foerster,; L. M. Liz-Marzán,; R. Ahijado-Guzmán, et al. CTAB stabilizes silver on gold nanorods. Chem. Mater. 2020, 32, 1650-1656.
[21]
B. Nikoobakht,; M. A. El-Sayed, Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957-1962.
[22]
T. K. Sau,; C. J. Murphy, Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 2004, 20, 6414-6420.
[23]
G. González-Rubio,; V. Kumar,; P. Llombart,; P. Díaz-Núñez,; E. Bladt,; T. Altantzis,; S. Bals,; O. Peña-Rodríguez,; E. G. Noya,; L. G. MacDowell, et al. Disconnecting symmetry breaking from seeded growth for the reproducible synthesis of high quality gold nanorods. ACS Nano 2019, 13, 4424-4435.
[24]
K. I. Requejo,; A. V. Liopo,; E. R. Zubarev, Gold nanorod synthesis with small thiolated molecules. Langmuir 2020, 36, 3758-3769.
[25]
X. C. Ye,; L. H. Jin,; H. Caglayan,; J. Chen,; G. Z. Xing,; C. Zheng,; V. Doan-Nguyen,; Y. J. Kang,; N. Engheta,; C. R. Kagan, et al. Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. ACS Nano 2012, 6, 2804-2817.
[26]
L. Vigderman,; E. R. Zubarev, High-yield synthesis of gold nanorods with longitudinal SPR peak greater than 1,200 nm using hydroquinone as a reducing agent. Chem. Mater. 2013, 25, 1450-1457.
[27]
L. Scarabelli,; M. Grzelczak,; L. M. Liz-Marzán, Tuning gold nanorod synthesis through prereduction with salicylic acid. Chem. Mater. 2013, 25, 4232-4238.
[28]
S. R. Jackson,; J. R. McBride,; S. J. Rosenthal,; D. W. Wright, Where’s the silver? Imaging trace silver coverage on the surface of gold nanorods. J. Am. Chem. Soc. 2014, 136, 5261-5263.
[29]
A. Gole,; C. J. Murphy, Seed-mediated synthesis of gold nanorods: Role of the size and nature of the seed. Chem. Mater. 2004, 16, 3633-3640.
[30]
S. E. Lohse,; N. D. Burrows,; L. Scarabelli,; L. M. Liz-Marzán,; C. J. Murphy, Anisotropic noble metal nanocrystal growth: The role of halides. Chem. Mater. 2014, 26, 34-43.
[31]
Q. S. Wei,; J. Ji,; J. C. Shen, pH controlled synthesis of high aspect- ratio gold nanorods. J. Nanosci. Nanotechnol. 2008, 8, 5708-5714.
[32]
H. H. Chang,; C. J. Murphy, Mini gold nanorods with tunable plasmonic peaks beyond 1,000 nm. Chem. Mater. 2018, 30, 1427-1435.
[33]
J. W. Metch,; N. D. Burrows,; C. J. Murphy,; A. Pruden,; P. J. Vikesland, Metagenomic analysis of microbial communities yields insight into impacts of nanoparticle design. Nat. Nanotechnol. 2018, 13, 253-259.
[34]
J. G. Hinman,; J. R. Eller,; W. Lin,; J. Li,; J. H. Li,; C. J. Murphy, Oxidation state of capping agent affects spatial reactivity on gold nanorods. J. Am. Chem. Soc. 2017, 139, 9851-9854.
[35]
J. Kumar,; H. Eraña,; E. López-Martínez,; N. Claes,; V. F. Martin,; D. M. Solis,; S. Bals,; A. L. Cortajarena,; J. Castilla,; L. M. Liz-Marzán, Detection of amyloid fibrils in Parkinson’s disease using plasmonic chirality. Proc. Natl. Acad. Sci. USA 2018, 115, 3225-3230.
[36]
A. Espinosa,; J. Kolosnjaj-Tabi,; A. Abou-Hassan,; A. P. Sangnier,; A. Curcio,; A. K. A. Silva,; R. Di Corato,; S. Neveu,; T. Pellegrino,; L. M. Liz-Marzán, et al. Magnetic (hyper)thermia or photothermia? Progressive comparison of iron oxide and gold nanoparticles heating in water, in cells, and in vivo. Adv. Funct. Mater. 2018, 28, 1803660.
[37]
Y. J. Tu,; D. Njus,; H. B. Schlegel, A theoretical study of ascorbic acid oxidation and HOO·/O2·− radical scavenging. Org. Biomol. Chem. 2017, 15, 4417-4431.
[38]
X. Zhang,; R. Gallagher,; D. He,; G. Chen, pH regulated synthesis of monodisperse penta-twinned gold nanoparticles with high yield. Chem. Mater. 2020, 32, 5626-5633.
[39]
J. Cheng,; L. Ge,; B. Xiong,; Y. He, Investigation of pH effect on gold nanorod synthesis. J. Chin. Chem. Soc. 2011, 58, 822-827.
[40]
D. Xu,; J. C. Mao,; Y. He,; E. S. Yeung, Size-tunable synthesis of high-quality gold nanorods under basic conditions by using H2O2 as the reducing agent. J. Mater. Chem. C 2014, 2, 4989-4996.
[41]
H. Y. Wu,; W. L. Huang,; M. H. Huang, Direct high-yield synthesis of high aspect ratio gold nanorods. Cryst. Growth Des. 2007, 7, 831-835.
[42]
M. J. Walsh,; W. M. Tong,; H. Katz-Boon,; P. Mulvaney,; J. Etheridge,; A. M. Funston, A mechanism for symmetry breaking and shape control in single-crystal gold nanorods. Acc. Chem. Res. 2017, 50, 2925-2935.
[43]
Z. Y. Cheng,; J. Ren,; Y. Z. Li,; W. B. Chang,; Z. D. Chen, Phenolic antioxidants: Electrochemical behavior and the mechanistic elements underlying their anodic oxidation reaction. Redox Rep. 2002, 7, 395-402.
[44]
Z. Y. Cheng,; Y. Z. Li, Reducing power: The measure of antioxidant activities of reductant compounds? Redox Rep. 2004, 9, 213-217.
[45]
S. Steenken,; P. Neta, One-electron redox potentials of phenols. Hydroxy- and aminophenols and related compounds of biological interest. J. Phys. Chem. 1982, 86, 3661-3667.
[46]
S. Si,; C. Leduc,; M. H. Delville,; B. Lounis, Short gold nanorod growth revisited: The critical role of the bromide counterion. ChemPhysChem 2012, 13, 193-202.
[47]
X. C. Ye,; C. Zheng,; J. Chen,; Y. Z. Gao,; C. B. Murray, Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Lett. 2013, 13, 765-771.
[48]
E. Carbó-Argibay,; B. Rodríguez-González,; S. Gómez-Graña,; A. Guerrero-Martínez,; I. Pastoriza-Santos,; J. Pérez-Juste,; L. M. Liz-Marzán, The crystalline structure of gold nanorods revisited: Evidence for higher-index lateral facets. Angew. Chem., Int. Ed. 2010, 122, 9587-9590.
[49]
R. A. Marcus, On the theory of oxidation-reduction reactions involving electron transfer. I. J. Chem. Phys. 1956, 24, 966-978.
[50]
X. Peng, Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals. Adv. Mater. 2003, 15, 459-463.
[51]
Z. A. Peng,; X. G. Peng, Mechanisms of the shape evolution of CdSe nanocrystals. J. Am. Chem. Soc. 2001, 123, 1389-1395.
[52]
Y. N. Xia,; X. H. Xia,; H. C. Peng, Shape-controlled synthesis of colloidal metal nanocrystals: Thermodynamic versus kinetic products. J. Am. Chem. Soc. 2015, 137, 7947-7966.
Nano Research
Pages 1167-1174
Cite this article:
Gallagher R, Zhang X, Altomare A, et al. pH-mediated synthesis of monodisperse gold nanorods with quantitative yield and molecular level insight. Nano Research, 2021, 14(4): 1167-1174. https://doi.org/10.1007/s12274-020-3167-0
Topics:

787

Views

18

Crossref

N/A

Web of Science

18

Scopus

2

CSCD

Altmetrics

Received: 29 June 2020
Revised: 09 October 2020
Accepted: 09 October 2020
Published: 02 November 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return