AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A robust bifunctional catalyst for rechargeable Zn-air batteries: Ultrathin NiFe-LDH nanowalls vertically anchored on soybean- derived Fe-N-C matrix

Meng Zhang1Jiting Zhang1Siyi Ran1Lingxi Qiu1Wei Sun2( )Ying Yu1( )Jisheng Chen1Zhihong Zhu1( )
Institute of Nano-science and Nano-technology, College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China
Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
Show Author Information

Graphical Abstract

Abstract

NiFe layered double hydroxide (NiFe-LDH) nanosheets and metal-nitrogen-carbon materials (M-N-C, M = Ni, Fe, Co, etc.) are supreme catalysts in the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) process, respectively. Nevertheless, the monotonic performance and insufficient stability severely hamper their practical application in rechargeable batteries. Herein, we simultaneously combine ultrathin NiFe-LDH nanowalls with renewable soybean-derived Fe-N-C matrix to obtain a hybrid materials (NiFe-LDH/FeSoy-CNSs-A), which exhibits robust catalytic activities for OER (Ej=10 = 1.53 V vs. RHE) and ORR (E1/2 = 0.91 V vs. RHE), with a top-notch battery parameters and stability in assembled rechargeable Zn-air batteries. Intensive investigations indicate that the vertically dispersed NiFe-LDH nanosheets, Fe-N-C matrix derived from soybean and the strong synergy between them are responsible for the unprecedented OER and ORR performances. The key role of intrinsic N defects involved in the hybrid materials is firstly specified by ultrasoundassisted extraction of soy protein from soybean. The exquisite design can facilitate the utilization of sustainable biomass-derived catalysts, and the mechanism investigations of N defects and oxygenic groups on the structure-activity relationship can stimulate the progress of other functional hybrid electrocatalysts.

Electronic Supplementary Material

Download File(s)
12274_2020_3168_MOESM1_ESM.pdf (2.6 MB)

References

[1]
P. G. Bruce,; S. A. Freunberger,; L. J. Hardwick,; J. M. Tarascon, Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19-29.
[2]
D. Friebel,; M. W. Louie,; M. Bajdich,; K. E. Sanwald,; Y. Cai,; A. M. Wise,; M. J. Cheng,; D. Sokaras,; T. C. Weng,; R. Alonso-Mori, et al. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305-1313.
[3]
J. S. Luo,; J. H. Im,; M. T. Mayer,; M. Schreier,; M. K. Nazeeruddin,; N. G. Park,; S. D. Tilley,; H. J. Fan,; M. Grätzel, Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 2014, 345, 1593-1596.
[4]
J. Yin,; Y. X. Li,; F. Lv,; Q. H. Fan,; Y. Q. Zhao,; Q. L. Zhang,; W. Wang,; F. Y. Cheng,; P. X. Xi,; S. J. Guo, NiO/CoN porous nanowires as efficient bifunctional catalysts for Zn-air batteries. ACS Nano 2017, 11, 2275-2283.
[5]
Z. H. Li,; M. F. Shao,; Q. H. Yang,; Y. Tang,; M. Wei,; D. G. Evans,; X. Duan, Directed synthesis of carbon nanotube arrays based on layered double hydroxides toward highly-efficient bifunctional oxygen electrocatalysis. Nano Energy 2017, 37, 98-107.
[6]
Z. B. Yang,; X. Liang, Self-magnetic-attracted NixFe(1−x)@NixFe(1−x)O nanoparticles on nickel foam as highly active and stable electrocatalysts towards alkaline oxygen evolution reaction. Nano Res. 2020, 13, 461-466.
[7]
D. J. Zhou,; Z. Cai,; Y. M. Bi,; W. L. Tian,; M. Luo,; Q. Zhang,; Q. Zhang,; Q. X. Xie,; J. D. Wang,; Y. P. Li, et al. Effects of redox- active interlayer anions on the oxygen evolution reactivity of NiFe-layered double hydroxide nanosheets. Nano Res. 2018, 11, 1358-1368.
[8]
M. B. Stevens,; L. J. Enman,; E. H. Korkus,; J. Zaffran,; C. D. M. Trang,; J. Asbury,; M. G. Kast,; M. C. Toroker,; S. W. Boettcher, Ternary Ni-Co-Fe oxyhydroxide oxygen evolution catalysts: Intrinsic activity trends, electrical conductivity, and electronic band structure. Nano Res. 2019, 12, 2288-2295.
[9]
X. Long,; J. K. Li,; S. Xiao,; K. Y. Yan,; Z. L. Wang,; H. N. Chen,; S. H. Yang, A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 7584-7588.
[10]
J. X. Feng,; L. X. Ding,; S. H. Ye,; X. J. He,; H. Xu,; Y. X. Tong,; G. R. Li, Co(OH)2@PANI hybrid nanosheets with 3D networks as high- performance electrocatalysts for hydrogen evolution reaction. Adv. Mater. 2015, 27, 7051-7057.
[11]
S. Dresp,; F. Luo,; R. Schmack,; S. Kühl,; M. Gliech,; P. Strasser, An efficient bifunctional two-component catalyst for oxygen reduction and oxygen evolution in reversible fuel cells, electrolyzers and rechargeable air electrodes. Energy Environ. Sci. 2016, 9, 2020-2024.
[12]
C. Tang,; H. S. Wang,; H. F. Wang,; Q. Zhang,; G. L. Tian,; J. Q. Nie,; F. Wei, Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity. Adv. Mater. 2015, 27, 4516-4522.
[13]
L. Tan,; Z. B. Su,; R. Q. Yang,; J. Tao,; D. D. Zhao,; Z. Zhang,; F. S. Wen, Oxygen evolution catalytic performance of quantum dot nickel-iron double hydroxide/reduced graphene oxide composites. Mater. Lett. 2018, 231, 24-27.
[14]
T. R. Zhan,; X. L. Liu,; S. S. Lu,; W. G. Hou, Nitrogen doped NiFe layered double hydroxide/reduced graphene oxide mesoporous nanosphere as an effective bifunctional electrocatalyst for oxygen reduction and evolution reactions. Appl. Catal. B 2017, 205, 551-558.
[15]
Q. Wang,; L. Shang,; R. Shi,; X. Zhang,; Y. F. Zhao,; G. I. N. Waterhouse,; L. Z. Wu,; C. H. Tung,; T. R. Zhang, NiFe layered double hydroxide nanoparticles on Co, N-codoped carbon nanoframes as efficient bifunctional catalysts for rechargeable zinc-air batteries. Adv. Energy Mater. 2017, 7, 1700467.
[16]
M. Gong,; Y. G. Li,; H. L. Wang,; Y. Y. Liang,; J. Z. Wu,; J. G. Zhou,; J. Wang,; T. Regier,; F. Wei,; H. J. Dai, An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452-8455.
[17]
W. Ma,; R. Z. Ma,; C. X. Wang,; J. B. Liang,; X. H. Liu,; K. C. Zhou,; T. Sasaki, A superlattice of alternately stacked Ni-Fe hydroxide nanosheets and graphene for efficient splitting of water. ACS Nano 2015, 9, 1977-1984.
[18]
X. J. Cui,; P. J. Ren,; D. H. Deng,; J. Deng,; X. H. Bao, Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy Environ. Sci. 2016, 9, 123-129.
[19]
D. Tang,; J. Liu,; X. Y. Wu,; R. H. Liu,; X. Han,; Y. Z. Han,; H. Huang,; Y. Liu,; Z. H. Kang, Carbon quantum dot/NiFe layered double- hydroxide composite as a highly efficient electrocatalyst for water oxidation. ACS Appl. Mater. Interfaces 2014, 6, 7918-7925.
[20]
Y. Ma,; Y. C. Wang,; D. H. Xie,; Y. Gu,; H. M. Zhang,; G. Z. Wang,; Y. X. Zhang,; H. J. Zhao,; P. K. Wong, NiFe-layered double hydroxide nanosheet arrays supported on carbon cloth for highly sensitive detection of nitrite. ACS Appl. Mater. Interfaces 2018, 10, 6541-6551.
[21]
C. Y. Su,; H. Cheng,; W. Li,; Z. Q. Liu,; N. Li,; Z. F. Hou,; F. Q. Bai,; H. X. Zhang,; T. Y. Ma, Atomic modulation of FeCo-nitrogen-carbon bifunctional oxygen electrodes for rechargeable and flexible all- solid-state zinc-air battery. Adv. Energy Mater. 2017, 7, 1602420.
[22]
G. A. Ferrero,; K. Preuss,; A. Marinovic,; A. B. Jorge,; N. Mansor,; D. J. L. Brett,; A. B. Fuertes,; M. Sevilla,; M. M. Titirici, Fe-N- doped carbon capsules with outstanding electrochemical performance and stability for the oxygen reduction reaction in both acid and alkaline conditions. ACS Nano 2016, 10, 5922-5932.
[23]
X. Liu,; H. Liu,; C. Chen,; L. L. Zou,; Y. Li,; Q. Zhang,; B. Yang,; Z. Q. Zou,; H. Yang, Fe2N nanoparticles boosting FeNx moieties for highly efficient oxygen reduction reaction in Fe-N-C porous catalyst. Nano Res. 2019, 12, 1651-1657.
[24]
Y. S. Xu,; L. P. Zhu,; X. X. Cui,; M. Y. Zhao,; Y. L. Li,; L. L. Chen,; W. C. Jiang,; T. Jiang,; S. G. Yang,; Y. Wang, Graphitizing N-doped mesoporous carbon nanospheres via facile single atom iron growth for highly efficient oxygen reduction reaction. Nano Res. 2020, 13, 752-758.
[25]
T. T. Sun,; Y. L. Li,; T. T. Cui,; L. B. Xu,; Y. G. Wang,; W. X. Chen,; P. P. Zhang,; T. Y. Zheng,; X. Z. Fu,; S. L. Zhang, et al. Engineering of coordination environment and multiscale structure in single-site copper catalyst for superior electrocatalytic oxygen reduction. Nano Lett. 2020, 20, 6206-6214.
[26]
H. S. Shang,; W. M. Sun,; R. Sui,; J. J. Pei,; L. R. Zheng,; J. C. Dong,; Z. L. Jiang,; D. N. Zhou,; Z. B. Zhuang,; W. X. Chen, et al. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443-5450.
[27]
Y. G. Li,; M. Gong,; Y. Y. Liang,; J. Feng,; J. E. Kim,; H. L. Wang,; G. S. Hong,; B. Zhang,; H. J. Dai, Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat. Commun. 2013, 4, 1805.
[28]
D. M. Kang,; Q. L. Liu,; J. J. Gu,; Y. S. Su,; W. Zhang,; D. Zhang, “Egg-box”-assisted fabrication of porous carbon with small mesopores for high-rate electric double layer capacitors. ACS Nano 2015, 9, 11225-11233.
[29]
W. J. Wan,; X. J. Liu,; H. Y. Li,; X. Y. Peng,; D. S. Xi,; J. Luo, 3D carbon framework-supported coni nanoparticles as bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Appl. Catal. B 2019, 240, 193-200.
[30]
J. Ding,; H. L. Wang,; Z. Li,; K. Cui,; D. Karpuzov,; X. H. Tan,; A. Kohandehghan,; D. Mitlin, Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors. Energy Environ. Sci. 2015, 8, 941-955.
[31]
S. Y. Gao,; H. Y. Liu,; K. R. Geng,; X. J. Wei, Honeysuckles-derived porous nitrogen, sulfur, dual-doped carbon as high-performance metal-free oxygen electroreduction catalyst. Nano Energy 2015, 12, 785-793.
[32]
Y. J. Ding,; Y. C. Niu,; J. Yang,; L. Ma,; J. G. Liu,; Y. J. Xiong,; H. X. Xu, A metal-amino acid complex-derived bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Small 2016, 12, 5414-5421.
[33]
X. Gong,; S. S. Liu,; C. Y. Ouyang,; P. Strasser,; R. Z. Yang, Nitrogen- and phosphorus-doped biocarbon with enhanced electrocatalytic activity for oxygen reduction. ACS Catal. 2015, 5, 920-927.
[34]
C. Z. Guo,; W. L. Liao,; C. G. Chen, Design of a non-precious metal electrocatalyst for alkaline electrolyte oxygen reduction by using soybean biomass as the nitrogen source of electrocatalytically active center structures. J. Power Sources 2014, 269, 841-847.
[35]
Y. Y. Liu,; J. M. Ruan,; S. B. Sang,; Z. C. Zhou,; Q. M. Wu, Iron and nitrogen co-doped carbon derived from soybeans as efficient electro-catalysts for the oxygen reduction reaction. Electrochim. Acta 2016, 215, 388-397.
[36]
Y. L. Zhai,; C. Z. Zhu,; E. K. Wang,; S. J. Dong, Energetic carbon- based hybrids: Green and facile synthesis from soy milk and extraordinary electrocatalytic activity towards ORR. Nanoscale 2014, 6, 2964-2970.
[37]
K. Vilkhu,; R. Mawson,; L. Simons,; D. Bates, Applications and opportunities for ultrasound assisted extraction in the food industry —a review. Innovat. Food Sci. Emerg. Technol. 2008, 9, 161-169.
[38]
K. E. Preece,; N. Hooshyar,; A. J. Krijgsman,; P. J. Fryer,; N. J. Zuidam, Pilot-scale ultrasound-assisted extraction of protein from soybean processing materials shows it is not recommended for industrial usage. J. Food Eng. 2017, 206, 1-12.
[39]
B. Karki,; B. P. Lamsal,; S. Jung,; J. van Leeuwen,; A. L. Pometto III,; D. Grewell,; S. K. Khanal, Enhancing protein and sugar release from defatted soy flakes using ultrasound technology. J. Food Eng. 2010, 96, 270-278.
[40]
X. Y. Lu,; W. L. Yim,; B. H. R. Suryanto,; C. Zhao, Electrocatalytic oxygen evolution at surface-oxidized multiwall carbon nanotubes. J. Am. Chem. Soc. 2015, 137, 2901-2907.
[41]
W. Wang,; Y. C. Liu,; J. Li,; J. Luo,; L. Fu,; S. L. Chen, NiFe LDH nanodots anchored on 3D macro/mesoporous carbon as a high- performance orr/oer bifunctional electrocatalyst. J. Mater. Chem. A 2018, 6, 14299-14306.
[42]
M. L. Yan,; K. Mao,; P. X. Cu,; C. Chen,; J. Zhao,; X. Z. Wang,; L. J. Yang,; H. Yang,; Q. Wu,; Z. Hu, In situ construction of porous hierarchical (Ni3−xFex)FeN/Ni heterojunctions toward efficient electrocatalytic oxygen evolution. Nano Res. 2020, 13, 328-334.
[43]
X. W. Yu,; M. Zhang,; W. J. Yuan,; G. Q. Shi, A high-performance three-dimensional Ni-Fe layered double hydroxide/graphene electrode for water oxidation. J. Mater. Chem. A 2015, 3, 6921-6928.
[44]
G. T. Fu,; X. X. Yan,; Y. F. Chen,; L. Xu,; D. M. Sun,; J. M. Lee,; Y. W. Tang, Boosting bifunctional oxygen electrocatalysis with 3D graphene aerogel-supported Ni/MnO particles. Adv. Mater. 2018, 30, 1704609.
[45]
L. Jiang,; J. W. Yan,; L. X. Hao,; R. Xue,; G. Q. Sun,; B. L. Yi, High rate performance activated carbons prepared from ginkgo shells for electrochemical supercapacitors. Carbon 2013, 56, 146-154.
[46]
X. M. Sun,; Z. Liu,; K. Welsher,; J. T. Robinson,; A. Goodwin,; S. Zaric,; H. J. Dai, Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203-212.
[47]
S. P. Lonkar,; J. M. Raquez,; P. Dubois, One-pot microwave-assisted synthesis of graphene/layered double hydroxide (LDH) nanohybrids. Nano-Micro Lett. 2015, 7, 332-340.
[48]
D. C. Marcano,; D. V. Kosynkin,; J. M. Berlin,; A. Sinitskii,; Z. Z. Sun,; A. Slesarev,; L. B. Alemany,; W. Lu,; J. M. Tour, Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806-4814.
[49]
S. L. Ma,; S. M. Islam,; Y. Shim,; Q. Y. Gu,; P. L. Wang,; H. Li,; G. B. Sun,; X. J. Yang,; M. G. Kanatzidis, Highly efficient iodine capture by layered double hydroxides intercalated with polysulfides. Chem. Mater. 2014, 26, 7114-7123.
[50]
Y. X. Yan,; H. B. Yao,; L. B. Mao,; A. M. Asiri,; K. A. Alamry,; H. M. Marwani,; S. H. Yu, Micrometer-thick graphene oxide-layered double hydroxide nacre-inspired coatings and their properties. Small 2016, 12, 745-755.
[51]
Y. M. Ni,; L. H. Yao,; Y. Wang,; B. Liu,; M. H. Cao,; C. W. Hu, Construction of hierarchically porous graphitized carbon-supported NiFe layered double hydroxides with a core-shell structure as an enhanced electrocatalyst for the oxygen evolution reaction. Nanoscale 2017, 9, 11596-11604.
[52]
C. Yu,; X. T. Han,; Z. B. Liu,; C. T. Zhao,; H. W. Huang,; J. Yang,; Y. Y. Niu,; J. S. Qiu, An effective graphene confined strategy to construct active edge sites-enriched nanosheets with enhanced oxygen evolution. Carbon 2018, 126, 437-442.
[53]
L. L. Fan,; P. F. Liu,; X. C. Yan,; L. Gu,; Z. Z. Yang,; H. G. Yang,; S. L. Qiu,; X. D. Yao, Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. Nat. Commun. 2016, 7, 10667.
[54]
J. T. Kloprogge,; L. Hickey,; R. L. Frost, FT-Raman and FT-IR spectroscopic study of synthetic Mg/Zn/Al-hydrotalcites. J. Raman Spectrosc. 2004, 35, 967-974.
[55]
M. A. Oliver-Tolentino,; J. Vázquez-Samperio,; A. Manzo-Robledo,; R. de Guadalupe González-Huerta,; J. L. Flores-Moreno,; D. Ramírez- Rosales,; A. Guzmán-Vargas, An approach to understanding the electrocatalytic activity enhancement by superexchange interaction toward OER in alkaline media of Ni-Fe LDH. J. Phys. Chem. C 2014, 118, 22432-22438.
[56]
Y. Y. Wang,; C. J. Jiang,; Y. Le,; B. Cheng,; J. G. Yu, Hierarchical honeycomb-like Pt/NiFe-LDH/rGO nanocomposite with excellent formaldehyde decomposition activity. Chem. Eng. J. 2019, 365, 378-388.
[57]
Y. Q. Zheng,; B. Cheng,; W. You,; J. G. Yu,; W. Ho, 3D hierarchical graphene oxide-NiFe LDH composite with enhanced adsorption affinity to congo red, methyl orange and Cr (Vi) ions. J. Hazard. Mater. 2019, 369, 214-225.
[58]
R. Li,; J. S. Xu,; J. W. Ba,; Y. R. Li,; C. H. Liang,; T. Tang, Facile synthesis of nanometer-sized NiFe layered double hydroxide/ nitrogen-doped graphite foam hybrids for enhanced electrocatalytic oxygen evolution reactions. Int. J. Hydrogen Energy 2018, 43, 7956-7963.
[59]
Z. Y. Wu,; X. X. Xu,; B. C. Hu,; H. W. Liang,; Y. Lin,; L. F. Chen,; S. H. Yu, Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped carbon nanofibers for efficient electrocatalysis. Angew. Chem., Int. Ed. 2015, 54, 8179-8183.
[60]
J. T. Zhang,; M. Zhang,; Y. Zeng,; J. S. Chen,; L. X. Qiu,; H. Zhou,; C. J. Sun,; Y. Yu,; C. Z. Zhu,; Z. H. Zhu, Single Fe atom on hierarchically porous S, N-codoped nanocarbon derived from porphyra enable boosted oxygen catalysis for rechargeable Zn-air batteries. Small 2019, 15, 1900307.
[61]
Y. Y. Meng,; D. Voiry,; A. Goswami,; X. X. Zou,; X. X. Huang,; M. Chhowalla,; Z. W. Liu,; T. Asefa, N-, O-, and S-tridoped nanoporous carbons as selective catalysts for oxygen reduction and alcohol oxidation reactions. J. Am. Chem. Soc. 2014, 136, 13554-13557.
[62]
H. G. Zhang,; S. Hwang,; M. Y. Wang,; Z. X. Feng,; S. Karakalos,; L. L. Luo,; Z. Qiao,; X. H. Xie,; C. M. Wang,; D. Su, et al. Single atomic iron catalysts for oxygen reduction in acidic media: Particle size control and thermal activation. J. Am. Chem. Soc. 2017, 139, 14143-14149.
[63]
M. Zhang,; H. Y. Cheng,; Z. N. Gong,; J. T. Zhang,; X. Liu,; B. B. Wang,; L. N. Ban,; Y. Zeng,; Z. H. Zhu, Fabrication of chitosan- 18β-glycyrrhetinic acid modified titanium implants with nanorod arrays for suppression of osteosarcoma growth and improvement of osteoblasts activity. Adv. Funct. Mater. 2017, 27, 1703932.
[64]
Y. Hou,; M. R. Lohe,; J. Zhang,; S. H. Liu,; X. D. Zhuang,; X. L. Feng, Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: An efficient 3D electrode for overall water splitting. Energy Environ. Sci. 2016, 9, 478-483.
[65]
M. W. Louie,; A. T. Bell, An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329-12337.
[66]
H. J. Song,; H. Yoon,; B. Ju,; G. H. Lee,; D. W. Kim, 3D architectures of quaternary Co-Ni-S-P/graphene hybrids as highly active and stable bifunctional electrocatalysts for overall water splitting. Adv. Energy Mater. 2018, 8, 1802319.
[67]
Y. Jia,; L. Z. Zhang,; G. P. Gao,; H. Chen,; B. Wang,; J. Z. Zhou,; M. T. Soo,; M. Hong,; X. C. Yan,; G. R. Qian, et al. A heterostructure coupling of exfoliated Ni-Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting. Adv. Mater. 2017, 29, 1700017.
[68]
Y. Dong,; P. X. Zhang,; Y. L. Kou,; Z. Y. Yang,; Y. P. Li,; X. M. Sun, A first-principles study of oxygen formation over NiFe-layered double hydroxides surface. Catal. Lett. 2015, 145, 1541-1548.
[69]
M. S. Burke,; L. J. Enman,; A. S. Batchellor,; S. H. Zou,; S. W. Boettcher, Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: Activity trends and design principles. Chem. Mater. 2015, 27, 7549-7558.
[70]
X. Z. Su,; Y. Wang,; J. Zhou,; S. Q. Gu,; J. Li,; S. Zhang, Operando spectroscopic identification of active sites in NiFe Prussian blue analogues as electrocatalysts: Activation of oxygen atoms for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 11286-11292.
[71]
C. Q. Dong,; T. Y. Kou,; H. Gao,; Z. Q. Peng,; Z. H. Zhang, Eutectic-derived mesoporous Ni-Fe-O nanowire network catalyzing oxygen evolution and overall water splitting. Adv. Energy Mater. 2018, 8, 1701347.
[72]
L. Trotochaud,; S. L. Young,; J. K. Ranney,; S. W. Boettcher, Nickel- iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 136, 6744-6753.
[73]
M. B. Stevens,; C. D. M. Trang,; L. J. Enman,; J. Deng,; S. W. Boettcher, Reactive Fe-sites in Ni/Fe (oxy)hydroxide are responsible for exceptional oxygen electrocatalysis activity. J. Am. Chem. Soc. 2017, 139, 11361-11364.
[74]
J. F. Xie,; J. P. Xin,; R. X. Wang,; X. D. Zhang,; F. C. Lei,; H. C. Qu,; P. Hao,; G. W. Cui,; B. Tang,; Y. Xie, Sub-3 nm pores in two-dimensional nanomesh promoting the generation of electroactive phase for robust water oxidation. Nano Energy 2018, 53, 74-82.
[75]
H. Han,; J. W. Paik,; M. Ham,; K. M. Kim,; J. K. Park,; Y. K. Jeong, Atomic layer deposition-assisted fabrication of Co-nanoparticle/ N-doped carbon nanotube hybrids as efficient electrocatalysts for the oxygen evolution reaction. Small 2020, 16, 2002427.
[76]
G. T. Fu,; Z. M. Cui,; Y. F. Chen,; Y. T. Li,; Y. W. Tang,; J. B. Goodenough, Ni3Fe-N doped carbon sheets as a bifunctional electrocatalyst for air cathodes. Adv. Energy Mater. 2017, 7, 1601172.
[77]
D. J. Zhou,; Z. Cai,; X. D. Lei,; W. L. Tian,; Y. M. Bi,; Y. Jia,; N. N. Han,; T. F. Gao,; Q. Zhang,; Y. Kuang, et al. NiCoFe-layered double hydroxides/N-doped graphene oxide array colloid composite as an efficient bifunctional catalyst for oxygen electrocatalytic reactions. Adv. Energy Mater. 2018, 8, 1701905.
[78]
A. M. Gómez-Marín,; J. M. Feliu,; E. Ticianelli, Oxygen reduction on platinum surfaces in acid media: Experimental evidence of a CECE/DISP initial reaction path. ACS Catal. 2019, 9, 2238-2251.
[79]
S. K. Singh,; K. Takeyasu,; J. Nakamura, Active sites and mechanism of oxygen reduction reaction electrocatalysis on nitrogen-doped carbon materials. Adv. Mater 2019, 31, 1804297.
[80]
J. Y. Liu,; H. Xu,; H. P. Li,; Y. H. Song,; J. J. Wu,; Y. J. Gong,; L. Xu,; S. Q. Yuan,; H. M. Li,; P. M. Ajayan, In-situ formation of hierarchical 1D-3D hybridized carbon nanostructure supported nonnoble transition metals for efficient electrocatalysis of oxygen reaction. Appl. Catal. B 2019, 243, 151-160.
[81]
Q. B. Liu,; L. Du,; G. T. Fu,; Z. M. Cui,; Y. T. Li,; D. Dang,; X. Gao,; Q. Zheng,; J. B. Goodenough, Structurally ordered Fe3Pt nanoparticles on robust nitride support as a high performance catalyst for the oxygen reduction reaction. Adv. Energy Mater. 2019, 9, 1803040.
[82]
K. Kordek,; L. X. Jiang,; K. C. Fan,; Z. J. Zhu,; L. Xu,; M. Al-Mamun,; Y. H. Dou,; S. Chen,; P. R. Liu,; H. J. Yin, et al. Two-step activated carbon cloth with oxygen-rich functional groups as a high- performance additive-free air electrode for flexible zinc-air batteries. Adv. Energy Mater. 2019, 9, 1802936.
Nano Research
Pages 1175-1186
Cite this article:
Zhang M, Zhang J, Ran S, et al. A robust bifunctional catalyst for rechargeable Zn-air batteries: Ultrathin NiFe-LDH nanowalls vertically anchored on soybean- derived Fe-N-C matrix. Nano Research, 2021, 14(4): 1175-1186. https://doi.org/10.1007/s12274-020-3168-z
Topics:

962

Views

52

Crossref

N/A

Web of Science

45

Scopus

11

CSCD

Altmetrics

Received: 04 August 2020
Revised: 08 October 2020
Accepted: 09 October 2020
Published: 26 November 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return