AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Integrated hetero-nanoelectrodes for plasmon-enhanced electrocatalysis of hydrogen evolution

Wenyu Jiang1,2Xianxin Wu2,3Jinquan Chang1,2Yanhong Ma1Luting Song1Zhexue Chen1,2Cheng Liang1,2Xinfeng Liu2,3Yong Zhang1,2( )
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
Show Author Information

Graphical Abstract

Abstract

Hetero-nanostructures of plasmonic metals and semiconductors have attracted increasing attention in the field of photocatalysis. However, most of the hetero-nanostructured catalysts are randomly arranged and therefore require comprehensive structural design for optimizing their properties. Herein, we report the robust construction of hierarchical hetero-nanostructures where gold (Au) nanorods and molybdenum disulfide (MoS2) quantum sheets (QSs) are integrated in highly ordered arrays. Such construction is achieved through porous anodic alumina (PAA) template-assisted electrodeposition. The as-fabricated hetero-nanostructures demonstrate exciting electrocatalysis towards hydrogen evolution reaction (HER). Both plasmon-induced hot-electron injection and plasmonic scattering/reabsorption mechanisms are determinative to the enhanced electrocatalytic performances. Notably, broadband photoresponses of HER activity in the visible range are observed, indicating their superiority compared with random systems. Such integrated hetero-nanoelectrodes could provide a powerful platform for conversion and utilization of solar energy, meanwhile would greatly prompt the production and exploration of ordered nanoelectrodes.

Electronic Supplementary Material

Download File(s)
12274_2020_3171_MOESM1_ESM.pdf (2.1 MB)

References

[1]
M. R. Begley,; D. S. Gianola,; T. R. Ray, Bridging functional nanocomposites to robust macroscale devices. Science 2019, 364, eaav4299.
[2]
R. B. Jiang,; B. X. Li,; C. H. Fang,; J. F. Wang, Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications. Adv. Mater. 2014, 26, 5274-5309.
[3]
H. L. Tan,; F. F. Abdi,; Y. H. Ng, Heterogeneous photocatalysts: An overview of classic and modern approaches for optical, electronic, and charge dynamics evaluation. Chem. Soc. Rev. 2019, 48, 1255-1271.
[4]
X. G. Liang,; R. T0 Dong,; J. C. Ho, Self-assembly of colloidal spheres toward fabrication of hierarchical and periodic nanostructures for technological applications. Adv. Mater. Technol. 2019, 4, 1800541.
[5]
H. Y. Hsueh,; C. T. Yao,; R. M. Ho, Well-ordered nanohybrids and nanoporous materials from gyroid block copolymer templates. Chem. Soc. Rev. 2015, 44, 1974-2018.
[6]
Y. Zhang,; B. Ashall,; G. Doyle,; D. Zerulla,; G. U. Lee, Highly ordered Fe-Au heterostructured nanorod arrays and their exceptional near-infrared plasmonic signature. Langmuir 2012, 28, 17101-17107.
[7]
Y. H. Ma,; W. Y. Jiang,; Y. Q. Xu,; Y. Zhang, Multisegmented metallic nanorods: Sub-10 nm growth, nanoscale manipulation, and subwavelength imaging. Adv. Mater. 2019, 31, 1804958.
[8]
Y. Zhang; Q. Wang,; B. Ashall,; D. Zerulla,; G. U. Lee, Magnetic- plasmonic dual modulated FePt-Au ternary heterostructured nanorods as a promising nano-bioprobe. Adv. Mater. 2012, 24, 2485-2490.
[9]
Y. Zhang,; M. DaSilva,; B. Ashall,; G. Doyle,; D. Zerulla,; T. D. Sands,; G. U. Lee, Magnetic manipulation and optical imaging of an active plasmonic single-particle Fe-Au nanorod. Langmuir 2011, 27, 15292-15298.
[10]
M. Valenti,; M. P. Jonsson,; G. Biskos,; A. Schmidt-Ott,; W. A. Smith, Plasmonic nanoparticle-semiconductor composites for efficient solar water splitting. J. Mater. Chem. A 2016, 4, 17891-17912.
[11]
X. H. Li,; J. M. Zhu,; B. Q. Wei, Hybrid nanostructures of metal/ two-dimensional nanomaterials for plasmon-enhanced applications. Chem. Soc. Rev. 2016, 45, 3145-3187.
[12]
M. Hong,; J. P. Shi,; Y. H. Huan,; Q. Xie,; Y. F. Zhang, Microscopic insights into the catalytic mechanisms of monolayer MoS2 and its heterostructures in hydrogen evolution reaction. Nano Res. 2019, 12, 2140-2149.
[13]
Y. H. Sun,; H. F. Zhao,; D. Zhou,; Y. C. Zhu,; H. Y. Ye,; Y. A. Moe,; R. M. Wang, Direct observation of epitaxial alignment of Au on MoS2 at atomic resolution. Nano Res. 2019, 12, 947-954.
[14]
S. Jang,; E. Hwang,; Y. Lee,; S. Lee,; J. H. Cho, Multifunctional graphene optoelectronic devices capable of detecting and storing photonic signals. Nano Lett. 2015, 15, 2542-2547.
[15]
B. Lee,; J. Park,; G. H. Han,; H. S. Ee,; C. H. Naylor,; W. J. Liu,; A. T. C. Johnson,; R. Agarwal, Fano resonance and spectrally modified photoluminescence enhancement in monolayer MoS2 integrated with plasmonic nanoantenna Array. Nano Lett. 2015, 15, 3646-3653.
[16]
Z. Y. Yin,; B. Chen,; M. Bosman,; X. H. Cao,; J. Z. Chen,; B. Zheng,; H. Zhang, Au nanoparticle-modified MoS2 nanosheet-based photoelectrochemical cells for water splitting. Small 2014, 10, 3537-3543.
[17]
Y. Shi,; J. Wang,; C. Wang,; T. T. Zhai,; W. J. Bao,; J. J. Xu,; X. H. Xia,; H. Y. Chen, Hot electron of Au nanorods activates the electrocatalysis of hydrogen evolution on MoS2 nanosheets. J. Am. Chem. Soc. 2015, 137, 7365-7370.
[18]
P. Zhang,; M. Fujitsuka,; T. Majima, Hot electron-driven hydrogen evolution using anisotropic gold nanostructure assembled monolayer MoS2. Nanoscale 2017, 9, 1520-1526.
[19]
Q. Y. Lin,; J. A. Mason,; Z. Y. Li,; W. J. Zhou,; M. N. O’Brien,; K. A. Brown,; M. R. Jones,; S. Butun,; B. Lee,; V. P. Dravid, et al. Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly. Science 2018, 359, 669-672.
[20]
W. Y. Jiang,; Y. H. Ma,; J. Zhao,; L. L. Li,; Y. Q. Xu,; H. B. Guo,; L. T. Song,; Z. X. Chen,; Y. Zhang, Robust assembly of colloidal nanoparticles for controlled-reflectance surface construction. ACS Appl. Mater. Interfaces 2019, 11, 23773-23779.
[21]
Y. Zhang,; J. J. Wang,; K. E. Ballantine,; P. R. Eastham,; W. J. Blau, Hybrid plasmonic nanostructures with unconventional nonlinear optical properties. Adv. Opt. Mater. 2014, 2, 331-337.
[22]
C. C. Han,; Y. Zhang,; P. Gao,; S. L. Chen,; X. F. Liu,; Y. Mi,; J. Q. Zhang,; Y. H. Ma,; W. Y. Jiang,; J. Q. Chang, High-yield production of MoS2 and WS2 quantum sheets from their bulk materials. Nano Lett. 2017, 17, 7767-7772.
[23]
Y. Q. Xu,; S. L. Chen,; Z. P. Dou,; Y. H. Ma,; Y. Mi,; W. N. Du,; Y. Liu,; J. Q. Zhang,; J. Q. Chang,; C. Liang, et al. Robust production of 2D quantum sheets from bulk layered materials. Mater. Horiz. 2019, 6, 1416-1424.
[24]
A. V. Kabashin,; P. Evans,; S. Pastkovsky,; W. Hendren,; G. A. Wurtz,; R. Atkinson,; R. Pollard,; V. A. Podolskiy,; A. V. Zayats, Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 2009, 8, 867-871.
[25]
Y. Li,; J. D. Cain,; E. D. Hanson,; A. A. Murthy,; S. Q. Hao,; F. Y. Shi,; Q. Q. Li,; C. Wolverton,; X. Q. Chen,; V. P. Dravid, Au@MoS2 core-shell heterostructures with strong light-matter interactions. Nano Lett. 2016, 16, 7696-7702.
[26]
P. Zhang,; T. Wang,; J. L. Gong, Mechanistic understanding of the plasmonic enhancement for solar water splitting. Adv. Mater. 2015, 27, 5328-5342.
[27]
L. Mascaretti,; A. Dutta,; Š. Kment,; V. M. Shalaev,; A. Boltasseva,; R. Zboril,; A. Naldoni, Plasmon-enhanced photoelectrochemical water splitting for efficient renewable energy storage. Adv. Mater. 2019, 31, 1805513.
[28]
X. M. Zhang,; Y. L. Chen,; R. S. Liu,; D. P. Tsai, Plasmonic photocatalysis. Rep. Prog. Phys. 2013, 76, 046401.
[29]
T. S. Sreeprasad,; P. Nguyen,; N. Kim,; V. Berry, Controlled, defect- guided, metal-nanoparticle incorporation onto MoS2 via chemical and microwave routes: Electrical, thermal, and structural properties. Nano Lett. 2013, 13, 4434-4441.
[30]
Y. M. Kang,; Y. L. Gong,; Z. J. Hu,; Z. W. Li,; Z. W. Qiu,; X. Zhu,; P. M. Ajayan,; Z. Fang, Plasmonic hot electron enhanced MoS2 photocatalysis in hydrogen evolution. Nanoscale 2015, 7, 4482-4488.
[31]
J. P. Shi,; D. L. Ma,; G. F. Han,; Y. Zhang,; Q. Q. Ji,; T. Gao,; J. Y. Sun,; X. J. Song,; C. Li,; Y. S. Zhang, et al. Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction. ACS Nano 2014, 8, 10196-10204.
[32]
T. Y. Wang,; L. Liu,; Z. W. Zhu,; P. Papakonstantinou,; J. B. Hu,; H. Y. Liu,; M. X. Li, Enhanced electrocatalytic activity for hydrogen evolution reaction from self-assembled monodispersed molybdenum sulfidenanoparticles on an Au electrode. Energy Environ. Sci. 2013, 6, 625-633.
[33]
B. L. Li,; H. L. Zou,; J. K. Tian,; G. Chen,; X. H. Wang,; H. Duan,; X. L. Li,; Y. Shi,; J. R. Chen,; L. J. Li, et al. Principle of proximity: Plasmonic hot electrons motivate donator-adjacent semiconductor defects with enhanced electrocatalytic hydrogen evolution. Nano Energy 2019, 60, 689-700.
[34]
S. S. Wang,; L. Jiao,; Y. Y. Qian,; W. C. Hu,; G. Y. Xu,; C. Wang,; H. L. Jiang, Boosting electrocatalytic hydrogen evolution over metal- organic frameworks by plasmon-induced hot-electron injection. Angew. Chem., Int. Ed. 2019, 58, 10713-10717.
[35]
N. Zhang,; C. Han,; X. Z. Fu,; Y. J. Xu, Function-oriented engineering of metal-based nanohybrids for photoredox catalysis: Exerting plasmonic effect and beyond. Chem 2018, 4, 1832-1861.
[36]
S. Linic,; P. Christopher,; D. B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911-921.
[37]
C. Clavero, Plasmon-induced hot-electron generation at nanoparticle/ metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics 2014, 8, 95-103.
[38]
J. Su,; L. P. Feng,; Y. Zhang,; Z. T. Liu, The modulation of Schottky barriers of metal-MoS2 contacts via BN-MoS2 heterostructures. Phys. Chem. Chem. Phys. 2016, 18, 16882-16889.
[39]
H. Yang,; L. Q. He,; Y. W. Hu,; X. H. Lu,; G. R. Li,; B. J. Liu,; B. Ren,; Y. X. Tong,; P. P. Fang, Quantitative detection of photothermal and photoelectrocatalytic effects induced by SPR from Au@Pt nanoparticles. Angew. Chem., Int. Ed. 2015, 54, 11462-11466.
Nano Research
Pages 1195-1201
Cite this article:
Jiang W, Wu X, Chang J, et al. Integrated hetero-nanoelectrodes for plasmon-enhanced electrocatalysis of hydrogen evolution. Nano Research, 2021, 14(4): 1195-1201. https://doi.org/10.1007/s12274-020-3171-4
Topics:

856

Views

21

Crossref

N/A

Web of Science

21

Scopus

3

CSCD

Altmetrics

Received: 13 July 2020
Revised: 01 October 2020
Accepted: 10 October 2020
Published: 15 November 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return