AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Broadband and sensitive two-dimensional halide perovskite photodetector for full-spectrum underwater optical communication

Dejian YuFei CaoYu GuZeyao HanJiaxin LiuBo HuangXiaobao Xu( )Haibo Zeng( )
Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Show Author Information

Graphical Abstract

Abstract

Full-spectrum underwater optical communication (UOC) is of great significance for major strategic needs including resource development, scientific exploration, and homeland security. As the core of the full-spectrum UOC system, photodetectors (PDs) are plagued by stringent requirements including a broadband response, intrinsic water resistance, and a high detectivity. In this work, two-dimensional (2D) halide perovskites (HPs) and corresponding PDs are constructed by stearamine (SA), representing the rarely explored long-chain aliphatic amine series, to own waterproofness, ultralow noise, and superior optoelectronic performance, which consequently enable a high suitability for UOC. By dimensionality and composition modulations to extend the absorption onset down to 1.5 eV, a broadband response covering the entire transmission window of water (> 1.55 eV) for full- spectrum UOC can be obtained. Besides, featuring a high responsivity of 3.27 A·W−1, a peak external quantum efficiency (EQE) of 630%, fast rise/decay times of 0.35 ms/0.54 ms, a superior detectivity up to 1.35 × 1012 Jones and the capability to distinguish various waveforms and light intensities, the PDs present sensitive and persistent photoresponse underwater. As a result, proof-of-concept wireless transmission of ASCII codes in water is demonstrated.

Electronic Supplementary Material

Video
12274_2020_3174_MOESM1_ESM.mp4
12274_2020_3174_MOESM2_ESM.mp4
Download File(s)
12274_2020_3174_MOESM3_ESM.pdf (2.1 MB)

References

[1]
A. Ghafoori,; T. Altiok, A mixed integer programming framework for sonar placement to mitigate maritime security risk. J. Transp. Secur. 2012, 5, 253-276.
[2]
P. Braca,; R. Goldhahn,; G. Ferri,; K. D. LePage, Distributed information fusion in multistatic sensor networks for underwater surveillance. IEEE Sens. J. 2016, 16, 4003-4014.
[3]
W. M. Sackett, Use of hydrocarbon sniffing in offshore exploration. J. Geochem. Explor. 1977, 7, 243-254.
[4]
C. C. Kao,; Y. S. Lin,; G. D. Wu,; C. J. Huang, A comprehensive study on the internet of underwater things: Applications, challenges, and channel models. Sensors 2017, 17, 1477.
[5]
D. Kedar,; S. Arnon, Urban optical wireless communication networks: The main challenges and possible solutions. IEEE Commun. Mag. 2004, 42, S2-S7.
[6]
F. Hanson,; S. Radic, High bandwidth underwater optical communication. Appl. Opt. 2008, 47, 277-283.
[7]
H. M. Lu,; Y. J. Li,; T. Uemura,; H. Kim,; S. Serikawa, Low illumination underwater light field images reconstruction using deep convolutional neural networks. Future Gener. Comput. Syst. 2018, 82, 142-148.
[8]
D. M. Kocak,; F. R. Dalgleish,; F. M. Caimi,; Y. Y. Schechner, A focus on recent developments and trends in underwater imaging. Mar. Technol. Soc. J. 2008, 42, 52-67.
[9]
H. Döscher,; J. F. Geisz,; T. G. Deutsch,; J. A. Turner, Sunlight absorption in water—Efficiency and design implications for photoelectrochemical devices. Energy Environ. Sci. 2014, 7, 2951-2956.
[10]
F. Cao,; J. D. Chen,; D. J. Yu,; S. Wang,; X. B. Xu,; J. X. Liu,; Z. Y. Han,; B. Huang,; Y. Gu,; K. L. Choy, et al. Bionic detectors based on low-bandgap inorganic perovskite for selective NIR-I photon detection and imaging. Adv. Mater. 2020, 32, 1905362.
[11]
G. Gu,; M. G. Kane, Moisture induced electron traps and hysteresis in pentacene-based organic thin-film transistors. Appl. Phys. Lett. 2008, 92, 053305.
[12]
K. Hoshino,; B. Yeh,; J. F. Wager, Impact of humidity on the electrical performance of amorphous oxide semiconductor thin-film transistors. J. Soc. Inf. Disp. 2013, 21, 310-316.
[13]
J. Y. Chiang,; Y. C. Chen, Underwater image enhancement by wavelength compensation and dehazing. IEEE Trans. Image Process. 2012, 21, 1756-1769.
[14]
G. C. Xing,; N. Mathews,; S. Y. Sun,; S. S. Lim,; Y. M. Lam,; M. Grätzel,; S. Mhaisalkar,; T. C. Sum, Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 2013, 342, 344-347.
[15]
W. J. Yin,; T. T. Shi,; Y. F. Yan, Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 2014, 26, 4653-4658.
[16]
C. S. Ponseca, Jr.; T. J. Savenije,; M. Abdellah,; K. B. Zheng,; A. Yartsev,; T. Pascher,; T. Harlang,; P. Chabera,; T. Pullerits,; A. Stepanov, et al. Organometal halide perovskite solar cell materials rationalized: Ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. J. Am. Chem. Soc. 2014, 136, 5189-5192.
[17]
Y. Bi,; E. M. Hutter,; Y. J. Fang,; Q. F. Dong,; J. S. Huang,; T. J. Savenije, Charge carrier lifetimes exceeding 15 μs in methylammonium lead iodide single crystals. J. Phys. Chem. Lett. 2016, 7, 923-928.
[18]
E. Alarousu,; A. M. El-Zohry,; J. Yin,; A. A. Zhumekenov,; C. Yang,; E. Alhabshi,; I. Gereige,; A. AlSaggaf,; A. V. Malko,; O. M. Bakr, et al. Ultralong radiative states in hybrid perovskite crystals: Compositions for submillimeter diffusion lengths. J. Phys. Chem. Lett. 2017, 8, 4386-4390.
[19]
M. A. Green,; A. Ho-Baillie,; H. J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506-514.
[20]
Q. S. Shan,; J. Z. Song,; Y. S. Zou,; J. H. Li,; L. M. Xu,; J. Xue,; Y. H. Dong,; B. N. Han,; J. W. Chen,; H. B. Zeng, High performance metal halide perovskite light-emitting diode: From material design to device optimization. Small 2017, 13, 1701770.
[21]
C. H. Kang,; I. Dursun,; G. Y. Liu,; L. Sinatra,; X. B. Sun,; M. W. Kong,; J. Pan,; P. Maity,; E. N. Ooi,; T. K. Ng, et al. High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication. Light Sci. Appl. 2019, 8, 94.
[22]
I. Dursun,; C. Shen,; M. R. Parida,; J. Pan,; S. P. Sarmah,; D. Priante,; N. Alyami,; J. K. Liu,; M. I. Saidaminov,; M. S. Alias, et al. Perovskite nanocrystals as a color converter for visible light communication. ACS Photonics 2016, 3, 1150-1156.
[23]
F. Cao,; D. J. Yu,; W. B. Ma,; X. B. Xu,; B. Cai,; Y. M. Yang,; S. N. Liu,; L. H. He,; Y. B. Ke,; S. Lan, et al. Shining emitter in a stable host: Design of halide perovskite scintillators for X-ray imaging from commercial concept. ACS Nano 2020, 14, 5183-5193.
[24]
P. H. Wangyang,; C. H. Gong,; G. F. Rao,; K. Hu,; X. P. Wang,; C. Y. Yan,; L. P. Dai,; C. Y. Wu,; J. Xiong, Recent advances in halide perovskite photodetectors based on different dimensional materials. Adv. Opt. Mater. 2018, 6, 1701302.
[25]
B. Yang,; F. Y. Zhang,; J. S. Chen,; S. Q. Yang,; X. S. Xia,; T. Pullerits,; W. Q. Deng,; K. L. Han, Ultrasensitive and fast all- inorganic perovskite-based photodetector via fast carrier diffusion. Adv. Mater. 2017, 29, 1703758.
[26]
C. X. Bao,; Z. L. Chen,; Y. J. Fang,; H. T. Wei,; Y. H. Deng,; X. Xiao,; L. L. Li,; J. S. Huang, Low-noise and large-linear-dynamic-range photodetectors based on hybrid-perovskite thin-single-crystals. Adv. Mater. 2017, 29, 1703209.
[27]
R. Dong,; Y. J. Fang,; J. Chae,; J. Dai,; Z. G. Xiao,; Q. F. Dong,; Y. B. Yuan,; A. Centrone,; X. C. Zeng,; J. S. Huang, High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites. Adv. Mater. 2015, 27, 1912-1918.
[28]
Y. J. Fang,; J. S. Huang, Resolving weak light of sub-picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction. Adv. Mater. 2015, 27, 2804-2810.
[29]
L. Ji,; H. Y. Hsu,; J. C. Lee,; A. J. Bard,; E. T. Yu, High-performance photodetectors based on solution-processed epitaxial grown hybrid halide perovskites. Nano Lett. 2018, 18, 994-1000.
[30]
J. K. Meyers,; S. Kim,; D. J. Hill,; E. E. M. Cating,; L. J. Williams,; A. S. Kumbhar,; J. R. McBride,; J. M. Papanikolas,; J. F. Cahoon, Self-catalyzed vapor-liquid-solid growth of lead halide nanowires and conversion to hybrid perovskites. Nano Lett. 2017, 17, 7561-7568.
[31]
X. W. Fu,; N. Dong,; G. Lian,; S. Lv,; T. Y. Zhao,; Q. L. Wang,; D. L. Cui,; C. P. Wong, High-quality CH3NH3PbI3 films obtained via a pressure-assisted space-confined solvent-engineering strategy for ultrasensitive photodetectors. Nano Lett. 2018, 18, 1213-1220.
[32]
N. Ganesh,; R. Shivanna,; R. H. Friend,; K. S. Narayan, Wavelength- dependent charge carrier dynamics for single pixel color sensing using graded perovskite structures. Nano Lett. 2019, 19, 6577-6584.
[33]
M. Shoaib,; X. H. Zhang,; X. X. Wang,; H. Zhou,; T. Xu,; X. Wang,; X. L. Hu,; H. W. Liu,; X. P. Fan,; W. H. Zheng, et al. Directional growth of ultralong CsPbBr3 perovskite nanowires for high-performance photodetectors. J. Am. Chem. Soc. 2017, 139, 15592-15595.
[34]
C. X. Bao,; J. Yang,; S. Bai,; W. D. Xu,; Z. B. Yan,; Q. Y. Xu,; J. M. Liu,; W. J. Zhang,; F. Gao, High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications. Adv. Mater. 2018, 30, 1803422.
[35]
D. J. Yu,; F. Cao,; Y. L. Shen,; X. H. Liu,; Y. Zhu,; H. B. Zeng, Dimensionality and interface engineering of 2D homologous perovskites for boosted charge-carrier transport and photodetection performances. J. Phys. Chem. Lett. 2017, 8, 2565-2572.
[36]
F. Cao,; D. J. Yu,; X. M. Li,; Y. Zhu,; Z. G. Sun,; Y. L. Shen,; Y. Wu,; Y. Wei,; H. B. Zeng, Highly stable and flexible photodetector arrays based on low dimensional CsPbBr3 microcrystals and on-paper pencil-drawn electrodes. J. Mater. Chem. C 2017, 5, 7441-7445.
[37]
D. J. Yu,; B. Cai,; F. Cao,; X. M. Li,; X. H. Liu,; Y. Zhu,; J. P. Ji,; Y. Gu,; H. B. Zeng, Cation exchange-induced dimensionality construction: From monolayered to multilayered 2D single crystal halide perovskites. Adv. Mater. Interfaces 2017, 4, 1700441.
[38]
B. E. Cohen,; M. Wierzbowska,; L. Etgar, High efficiency quasi 2D lead bromide perovskite solar cells using various barrier molecules. Sustainable Energy Fuels 2017, 1, 1935-1943.
[39]
K. B. Zheng,; Y. N. Chen,; Y. Sun,; J. S. Chen,; P. Chábera,; R. Schaller,; M. J. Al-Marri,; S. E. Canton,; Z. Q. Liang,; T. Pullerits, Inter-phase charge and energy transfer in Ruddlesden-Popper 2D perovskites: Critical role of the spacing cations. J. Mater. Chem. A 2018, 6, 6244-6250.
[40]
H. Kim,; J. S. Han,; J. Choi,; S. Y. Kim,; H. W. Jang, Halide perovskites for applications beyond photovoltaics. Small Methods 2018, 2, 1700310.
[41]
F. Zhang,; H. Z. Zhong,; C. Chen,; X. G. Wu,; X M. Hu,; H. L. Huang,; J. B. Han,; B. S. Zou,; Y. P. Dong, Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: Potential alternatives for display technology. ACS Nano 2015, 9, 4533-4542.
[42]
D. J. Yu,; P. Wang,; F. Cao,; Y. Gu,; J. X. Liu,; Z. Y. Han,; B. Huang,; Y. S. Zou,; X. B. Xu,; H. B. Zeng, Two-dimensional halide perovskite as β-ray scintillator for nuclear radiation monitoring. Nat. Commun. 2020, 11, 3395.
[43]
Z. Yuan,; Y. Shu,; Y. Tian,; Y. Xin,; B. W. Ma, A facile one-pot synthesis of deep blue luminescent lead bromide perovskite microdisks. Chem. Commun. 2015, 51, 16385-16388.
[44]
D. J. Yu,; C. Y. Yin,; F. Cao,; Y. Zhu,; J. P. Ji,; B. Cai,; X. H. Liu,; X. Y. Wang,; H. B. Zeng, Enhancing optoelectronic properties of low- dimensional halide perovskite via ultrasonic-assisted template refinement. ACS Appl. Mater. Interfaces 2017, 9, 39602-39609.
[45]
F. Cao,; D. J. Yu,; X. B. Xu,; B. Cai,; Y. Gu,; Y. H. Dong,; Y. L. Shen,; H. B. Zeng, Water-assisted synthesis of blue chip excitable 2D halide perovskite with green-red dual emissions for white LEDs. Small Methods 2019, 3, 1900365.
[46]
T. Yuko,; A. Keisuke,; R. Masahiro,; S. Kohei, Systematic studies on chain lengths, halide species, and well thicknesses for lead halide layered perovskite thin films. Bull. Chem. Soc. Jpn. 2006, 79, 1607-1613.
[47]
N. Kitazawa, Preparation and optical properties of nanocrystalline (C6H5C2H4NH3)2PbI4-doped PMMA films. J. Mater. Sci. 1998, 33, 1441-1444.
[48]
T. Ishihara,; J. Takahashi,; T. Goto, Optical properties due to electronic transitions in two-dimensional semiconductors (CnH2n+1NH3)2PbI4. Phys. Rev. B 1990, 42, 11099-11107.
[49]
J. Even,; L. Pedesseau,; M. A. Dupertuis,; J. M. Jancu,; C. Katan, Electronic model for self-assembled hybrid organic/perovskite semiconductors: Reverse band edge electronic states ordering and spin-orbit coupling. Phys. Rev. B 2012, 86, 205301.
[50]
L. Protesescu,; S. Yakunin,; M. I. Bodnarchuk,; F. Krieg,; R. Caputo,; C. H. Hendon,; R. X. Yang,; A. Walsh,; M. V. Kovalenko, Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692-3696.
[51]
D. N. Minh,; J. Kim,; J. Hyon,; J. H. Sim,; H. H. Sowlih,; C. Seo,; J. Nam,; S. Eom,; S. Suk,; S. Lee, et al. Room-temperature synthesis of widely tunable formamidinium lead halide perovskite nanocrystals. Chem. Mater. 2017, 29, 5713-5719.
[52]
Y. Tong,; F. Ehrat,; W. Vanderlinden,; C. Cardenas-Daw,; J. K. Stolarczyk,; L. Polavarapu,; A. S. Urban, Dilution-induced formation of hybrid perovskite nanoplatelets. ACS Nano 2016, 10, 10936-10944.
[53]
L. T. Dou,; A. B. Wong,; Y. Yu,; M. L. Lai,; N. Kornienko,; S. W. Eaton,; A. Fu,; C. G. Bischak,; J. Ma,; T. N. Ding, et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science 2015, 349, 1518-1521.
[54]
K. Tanaka,; T. Takahashi,; T. Kondo,; K. Umeda,; K. Ema,; T. Umebayashi,; K. Asai,; K. Uchida,; N. Miura, Electronic and excitonic structures of inorganic-organic perovskite-type quantum-well crystal (C4H9NH3)2PbBr4. Jpn. J. Appl. Phys. 2005, 44, 5923-5932.
[55]
Z. Z. Chen,; Y. W. Guo,; E. Wertz,; J. Shi, Merits and challenges of Ruddlesden-Popper soft halide perovskites in electro-optics and optoelectronics. Adv. Mater. 2019, 31, 1803514.
[56]
C. C. Stoumpos,; D. H. Cao,; D. J. Clark,; J. Young,; J. M. Rondinelli,; J. I. Jang,; J. T. Hupp,; M. G. Kanatzidis, Ruddlesden-popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 2016, 28, 2852-2867.
[57]
Z. Wang,; Z. J. Shi,; T. T. Li,; Y. H. Chen,; W. Huang, Stability of perovskite solar cells: A prospective on the substitution of the A cation and X anion. Angew. Chem., Int. Ed. 2017, 56, 1190-1212.
[58]
Z. Yuan,; Y. Shu,; Y. Xin,; B. W. Ma, Highly luminescent nanoscale quasi-2D layered lead bromide perovskites with tunable emissions. Chem. Commun. 2016, 52, 3887-3890.
[59]
L. Zhang,; M. G. Ju,; W. Z. Liang, The effect of moisture on the structures and properties of lead halide perovskites: A first-principles theoretical investigation. Phys. Chem. Chem. Phys. 2016, 18, 23174-23183.
[60]
J. V. Passarelli,; D. J. Fairfield,; N. A. Sather,; M. P. Hendricks,; H. Sai,; C. L. Stern,; S. I. Stupp, Enhanced out-of-plane conductivity and photovoltaic performance in n = 1 layered perovskites through organic cation design. J. Am. Chem. Soc. 2018, 140, 7313-7323.
[61]
J. L. Yan,; W. M. Qiu,; G. Wu,; P. Heremans,; H. Z. Chen, Recent progress in 2D/quasi-2D layered metal halide perovskites for solar cells. J. Mater. Chem. A 2018, 6, 11063-11077.
[62]
B. Saparov,; D. B. Mitzi, Organic-inorganic perovskites: Structural versatility for functional materials design. Chem. Rev. 2016, 116, 4558-4596.
[63]
Z. J. Tan,; Y. Wu,; H. Hong,; J. B. Yin,; J. C. Zhang,; L. Lin,; M. Z. Wang,; X. Sun,; L. Z. Sun,; Y. C. Huang, et al. Two-dimensional (C4H9NH3)2PbBr4 perovskite crystals for high-performance photodetector. J. Am. Chem. Soc. 2016, 138, 16612-16615.
[64]
C. Q. Ma,; M. F. Lo,; C. S. Lee, Stabilization of organometallic halide perovskite nanocrystals in aqueous solutions and their applications in copper ion detection. Chem. Commun. 2018, 54, 5784-5787.
[65]
Y. P. Fu,; T. Wu,; J. Wang,; J. Y. Zhai,; M. J. Shearer,; Y. Z. Zhao,; R. J. Hamers,; E. J. Kan,; K. M. Deng,; X. Y. Zhu, et al. Stabilization of the metastable lead iodide perovskite phase via surface functionalization. Nano Lett. 2017, 17, 4405-4414.
[66]
J. A. Steele,; H. F. Yuan,; C. Y. X. Tan,; M. Keshavarz,; C. Steuwe,; M. B. J. Roeffaers,; J. Hofkens, Direct laser writing of δ- to α-phase transformation in formamidinium lead iodide. ACS Nano 2017, 11, 8072-8083.
[67]
Y. F. Shi,; J. Xi,; T. Lei,; F. Yuan,; J. F. Dai,; C. X. Ran,; H. Dong,; B. Jiao,; X. Hou,; Z. X. Wu, Rubidium doping for enhanced performance of highly efficient formamidinium-based perovskite light- emitting diodes. ACS Appl. Mater. Interfaces 2018, 10, 9849-9857.
[68]
J. Chun-Ren Ke,; A. S. Walton,; D. J. Lewis,; A. Tedstone,; P. O’Brien,; A. G. Thomas,; W. R. Flavell, In situ investigation of degradation at organometal halide perovskite surfaces by X-ray photoelectron spectroscopy at realistic water vapour pressure. Chem. Commun. 2017, 53, 5231-5234.
[69]
Y. C. Liu,; J. K. Sun,; Z. Yang,; D. Yang,; X. D. Ren,; H. Xu,; Z. P. Yang,; S. Z. Liu, 20-mm-large single-crystalline formamidinium-perovskite wafer for mass production of integrated photodetectors. Adv. Opt. Mater. 2016, 4, 1829-1837.
[70]
X. Gong,; M. H. Tong,; Y. J. Xia,; W. Z. Cai,; J. S. Moon,; Y. Cao,; G. Yu,; C. L. Shieh,; B. Nilsson,; A. J. Heeger, High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 2009, 325, 1665-1667.
[71]
W. Tian,; H. P. Zhou,; L. Li, Hybrid organic-inorganic perovskite photodetectors. Small 2017, 13, 1702107.
[72]
S. Chen,; G. Q. Shi, Two-dimensional materials for halide perovskite- based optoelectronic devices. Adv. Mater. 2017, 29, 1605448.
[73]
Y. H. Dong,; Y. S. Zou,; J. Z. Song,; X. F. Song,; H. B. Zeng, Recent progress of metal halide perovskite photodetectors. J. Mater. Chem. C 2017, 5, 11369-11394.
[74]
Y. H. Dong,; Y. Gu,; Y. S. Zou,; J. Z. Song,; L. M. Xu,; J. H. Li,; J. Xue,; X. M. Li,; H. B. Zeng, Improving all-inorganic perovskite photodetectors by preferred orientation and plasmonic effect. Small 2016, 12, 5622-5632.
[75]
J. W. Lu,; X. X. Sheng,; G. Q. Tong,; Z. W. Yu,; X. L. Sun,; L. W. Yu,; X. X. Xu,; J. Z. Wang,; J. Xu,; Y. Shi, et al. Ultrafast solar-blind ultraviolet detection by inorganic perovskite CsPbX3 quantum dots radial junction architecture. Adv. Mater. 2017, 29, 1700400.
[76]
C. Liu,; K. Wang,; P. C. Du,; E. M. Wang,; X. Gong,; A. J. Heeger, Ultrasensitive solution-processed broad-band photodetectors using CH3NH3PbI3 perovskite hybrids and PbS quantum dots as light harvesters. Nanoscale 2015, 7, 16460-16469.
[77]
C. X. Bao,; W. D. Zhu,; J. Yang,; F. M. Li,; S. Gu,; Y. R. Q. Wang,; T. Yu,; J. Zhu,; Y. Zhou,; Z. G. Zou, Highly flexible self-powered organolead trihalide perovskite photodetectors with gold nanowire networks as transparent electrodes. ACS Appl. Mater. Interfaces 2016, 8, 23868-23875.
[78]
H. Deng,; X. K. Yang,; D. D. Dong,; B. Li,; D. Yang,; S. J. Yuan,; K. K. Qiao,; Y. B. Cheng,; J. Tang,; H. S. Song, Flexible and semitransparent organolead triiodide perovskite network photodetector arrays with high stability. Nano Lett. 2015, 15, 7963-7969.
[79]
A. Waleed,; M. M. Tavakoli,; L. L. Gu,; S. Hussain,; D. Q. Zhang,; S. Poddar,; Z. Y. Wang,; R. J. Zhang,; Z. Y. Fan, All inorganic cesium lead iodide perovskite nanowires with stabilized cubic phase at room temperature and nanowire array-based photodetectors. Nano Lett. 2017, 17, 4951-4957.
[80]
J. Z. Song,; L. M. Xu,; J. H. Li,; J. Xue,; Y. H. Dong,; X. M. Li,; H. B. Zeng, Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices. Adv. Mater. 2016, 28, 4861-4869.
[81]
H. L. Zhu,; J. Q. Cheng,; D. Zhang,; C. J. Liang,; C. J. Reckmeier,; H. Huang,; A. L. Rogach,; W. C. H. Choy, Room-temperature solution-processed NiOx:PbI2 nanocomposite structures for realizing high-performance perovskite photodetectors. ACS Nano 2016, 10, 6808-6815.
[82]
P. A. Shaikh,; D. Shi,; J. R. D. Retamal,; A. D. Sheikh,; M. A. Haque,; C. F. Kang,; J. H. He,; O. M. Bakr,; T. Wu, Schottky junctions on perovskite single crystals: Light-modulated dielectric constant and self-biased photodetection. J. Mater. Chem. C 2016, 4, 8304-8312.
[83]
L. Shen,; Y. J. Fang,; D. Wang,; Y. Bai,; Y. H. Deng,; M. M. Wang,; Y. F. Lu,; J. S. Huang, A self-powered, sub-nanosecond-response solution-processed hybrid perovskite photodetector for time-resolved photoluminescence-lifetime detection. Adv. Mater. 2016, 28, 10794-10800.
[84]
R. Zhang,; W. Z. Cai,; T. G. Bi,; N. Zarifi,; T. Terpstra,; C. Zhang,; Z. V. Verdeny,; E. Zurek,; S. Deemyad, Effects of nonhydrostatic stress on structural and optoelectronic properties of methylammonium lead bromide perovskite. J. Phys. Chem. Lett. 2017, 8, 3457-3465.
[85]
G. J. Xiao,; Y. Cao,; G. Y. Qi,; L. R. Wang,; C. Liu,; Z. W. Ma,; X. Y. Yang,; Y. M. Sui,; W. T. Zheng,; B. Zou, Pressure effects on structure and optical properties in cesium lead bromide perovskite nanocrystals. J. Am. Chem. Soc. 2017, 139, 10087-10094.
[86]
L. Zhang,; Q. X. Zeng,; K. Wang, Pressure-induced structural and optical properties of inorganic halide perovskite CsPbBr3. J. Phys. Chem. Lett. 2017, 8, 3752-3758.
[87]
Y. Nagaoka,; K. Hills-Kimball,; R. Tan,; R. P. Li,; Z. W. Wang,; O. Chen, Nanocube superlattices of cesium lead bromide perovskites and pressure-induced phase transformations at atomic and mesoscale levels. Adv. Mater. 2017, 29, 1606666.
Nano Research
Pages 1210-1217
Cite this article:
Yu D, Cao F, Gu Y, et al. Broadband and sensitive two-dimensional halide perovskite photodetector for full-spectrum underwater optical communication. Nano Research, 2021, 14(4): 1210-1217. https://doi.org/10.1007/s12274-020-3174-1
Topics:

957

Views

72

Crossref

N/A

Web of Science

73

Scopus

4

CSCD

Altmetrics

Received: 04 March 2020
Revised: 10 October 2020
Accepted: 10 October 2020
Published: 02 November 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return