AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Recent applications and strategies in nanotechnology for lung diseases

Wenhao Zhong1,§Xinyu Zhang1,§Yunxin Zeng1Dongjun Lin1( )Jun Wu1,2( )
Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China

§ Wenhao Zhong and Xinyu Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Lung diseases, including COVID-19 and lung cancers, is a huge threat to human health. However, for the treatment and diagnosis of various lung diseases, such as pneumonia, asthma, cancer, and pulmonary tuberculosis, are becoming increasingly challenging. Currently, several types of treatments and/or diagnostic methods are used to treat lung diseases; however, the occurrence of adverse reactions to chemotherapy, drug-resistant bacteria, side effects that can be significantly toxic, and poor drug delivery necessitates the development of more promising treatments. Nanotechnology, as an emerging technology, has been extensively studied in medicine. Several studies have shown that nano-delivery systems can significantly enhance the targeting of drug delivery. When compared to traditional delivery methods, several nanoparticle delivery strategies are used to improve the detection methods and drug treatment efficacy. Transporting nanoparticles to the lungs, loading appropriate therapeutic drugs, and the incorporation of intelligent functions to overcome various lung barriers have broad prospects as they can aid in locating target tissues and can enhance the therapeutic effect while minimizing systemic side effects. In addition, as a new and highly contagious respiratory infection disease, COVID-19 is spreading worldwide. However, there is no specific drug for COVID-19. Clinical trials are being conducted in several countries to develop antiviral drugs or vaccines. In recent years, nanotechnology has provided a feasible platform for improving the diagnosis and treatment of diseases, nanotechnology-based strategies may have broad prospects in the diagnosis and treatment of COVID-19. This article reviews the latest developments in nanotechnology drug delivery strategies in the lungs in recent years and studies the clinical application value of nanomedicine in the drug delivery strategy pertaining to the lung.

References

[1]
Azarmi, S.; Roa, W. H.; Löbenberg, R. Targeted delivery of nanoparticles for the treatment of lung diseases. Adv. Drug Deliv. Rev. 2008, 60, 863-875.
[2]
Newman, S. P. Drug delivery to the lungs: Challenges and opportunities. Ther. Deliv. 2017, 8, 647-661.
[3]
Patton, J. S.; Brain, J. D.; Davies, L. A.; Fiegel, J.; Gumbleton, M.; Kim, K. J.; Sakagami, M.; Vanbever, R.; Ehrhardt, C. The particle has landed—characterizing the fate of inhaled pharmaceuticals. J. Aerosol. Med. Pulm. Drug Deliv. 2010, 23 Suppl 2, S71-S87.
[4]
Yu, C. P. Exact analysis of aerosol deposition during steady breathing. Powder Technol. 1978, 21, 55-62.
[5]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394-424.
[6]
di Sant’Agnese, P. A.; Davis, P. B. Research in cystic fibrosis (third of three parts). N. Engl. J. Med. 1976, 295, 597-602.
[7]
Siafakas, N. M.; Vermeire, P.; Pride, N. B.; Paoletti, P.; Gibson, J.; Howard, P.; Yernault, J. C.; Decramer, M.; Higenbottam, T.; Postma, D. S. et al. Optimal assessment and management of chronic obstructive pulmonary disease (COPD). The European respiratory society task force. Eur. Respir. J. 1995, 8, 1398-1420.
[8]
Sevinç, F.; Prins, J. M.; Koopmans, R. P.; Langendijk, P. N. J.; Bossuyt, P. M.; Dankert, J.; Speelman, P. Early switch from intravenous to oral antibiotics: Guidelines and implementation in a large teaching hospital. J. Antimicrob. Chemoth. 1999, 43, 601-606.
[9]
MacGregor, R. R.; Graziani, A. L. Oral administration of antibiotics: A rational alternative to the parenteral route. Clin. Infect. Dis. 1997, 24, 457-467.
[10]
Patton, J. S.; Byron, P. R. Inhaling medicines: Delivering drugs to the body through the lungs. Nat. Rev. Drug Discov. 2007, 6, 67-74.
[11]
Rosen, H.; Abribat, T. The rise and rise of drug delivery. Nat. Rev. Drug Discov. 2005, 4, 381-385.
[12]
Di Marco, M.; Shamsuddin, S.; Razak, K. A.; Aziz, A. A.; Devaux, C.; Borghi, E.; Levy, L.; Sadun, C. Overview of the main methods used to combine proteins with nanosystems: Absorption, bioconjugation, and encapsulation. Int. J. Nanomedicine 2010, 5, 37-49.
[13]
Roger, E.; Lagarce, F.; Garcion, E.; Benoit, J. P. Biopharmaceutical parameters to consider in order to alter the fate of nanocarriers after oral delivery. Nanomedicine 2010, 5, 287-306.
[14]
Chao, P. Y.; Deshmukh, M.; Kutscher, H. L.; Gao, D. Y.; Rajan, S. S.; Hu, P. D.; Laskin, D. L.; Stein, S.; Sinko, P. J. Pulmonary targeting microparticulate camptothecin delivery system: Anticancer evaluation in a rat orthotopic lung cancer model. Anti-Cancer Drugs 2010, 21, 65-76.
[15]
Patton, J. S.; Fishburn, C. S.; Weers, J. G. The lungs as a portal of entry for systemic drug delivery. Proc. Am. Thorac. Soc. 2004, 1, 338-344.
[16]
Sung, J. C.; Pulliam, B. L.; Edwards, D. A. Nanoparticles for drug delivery to the lungs. Trends Biotechnol. 2007, 25, 563-570.
[17]
Dailey, L. A.; Schmehl, T.; Gessler, T.; Wittmar, M.; Grimminger, F.; Seeger, W.; Kissel, T. Nebulization of biodegradable nanoparticles: Impact of nebulizer technology and nanoparticle characteristics on aerosol features. J. Controlled Release 2003, 86, 131-144.
[18]
Geller, D. E.; Pitlick, W. H.; Nardella, P. A.; Tracewell, W. G.; Ramsey, B. W. Pharmacokinetics and bioavailability of aerosolized tobramycin in cystic fibrosis. Chest 2002, 122, 219-226.
[19]
Flume, P. A.; VanDevanter, D. R. Clinical applications of pulmonary delivery of antibiotics. Adv. Drug Deliv. Rev. 2015, 85, 1-6.
[20]
Wenzler, E.; Fraidenburg, D. R.; Scardina, T.; Danziger, L. H. Inhaled antibiotics for gram-negative respiratory infections. Clin. Microbiol. Rev. 2016, 29, 581-632.
[21]
Langton Hewer, S. C.; Smyth, A. R. Antibiotic strategies for eradicating Pseudomonas aeruginosa in people with cystic fibrosis. Cochrane Database. Syst. Rev. 2017, 4, CD004197.
[22]
Cohen-Cymberknoh, M.; Shoseyov, D.; Kerem, E. Managing cystic fibrosis: Strategies that increase life expectancy and improve quality of life. Am. J. Respir. Crit. Care Med. 2011, 183, 1463-1471.
[23]
Mei, L.; Zhu, G. Z.; Qiu, L. P.; Wu, C. C.; Chen, H. P.; Liang, H.; Cansiz, S.; Lv, Y. F.; Zhang, X. B.; Tan, W. H. Self-assembled multifunctional DNA nanoflowers for the circumvention of multidrug resistance in targeted anticancer drug delivery. Nano Res. 2015, 8, 3447-3460.
[24]
Zhou, Q.; Leung, S. S. Y.; Tang, P.; Parumasivam, T.; Loh, Z. H.; Chan, H. K. Inhaled formulations and pulmonary drug delivery systems for respiratory infections. Adv. Drug Deliv. Rev. 2015, 85, 83-99.
[25]
Pérez, B. F.; Méndez, G. A.; Lagos, R. A.; Vargas, M. S. L. Mucociliary clearance system in lung defense. Rev. Med. Chil. 2014, 142, 606-615.
[26]
Hardy, C. L.; LeMasurier, J. S.; Mohamud, R.; Yao, J.; Xiang, S. D.; Rolland, J. M.; O’Hehir, R. E.; Plebanski, M. Differential uptake of nanoparticles and microparticles by pulmonary APC subsets induces discrete immunological imprints. J. Immunol. 2013, 191, 5278-5290.
[27]
d'Angelo, I.; Conte, C.; La Rotonda, M. I.; Miro, A.; Quaglia, F.; Ungaro, F. Improving the efficacy of inhaled drugs in cystic fibrosis: Challenges and emerging drug delivery strategies. Adv. Drug Deliv. Rev. 2014, 75, 92-111.
[28]
Hoffmann, I. M.; Rubin, B. K.; Iskandar, S. S.; Schechter, M. S.; Nagaraj, S. K.; Bitzan, M. M. Acute renal failure in cystic fibrosis: Association with inhaled tobramycin therapy. Pediatr. Pulm. 2002, 34, 375-377.
[29]
Tolker-Nielsen, T. Pseudomonas aeruginosa biofilm infections: From molecular biofilm biology to new treatment possibilities. APMIS 2014, 122, 1-51.
[30]
Allen, T. M.; Cullis, P. R. Drug delivery systems: Entering the mainstream. Science 2004, 303, 1818-1822.
[31]
Koul, A.; Arnoult, E.; Lounis, N.; Guillemont, J.; Andries, K. The challenge of new drug discovery for tuberculosis. Nature 2011, 469, 483-490.
[32]
Raeburn, D.; Underwood, S. L.; Villamil, M. E. Techniques for drug delivery to the airways, and the assessment of lung function in animal models. J. Pharmacol. Toxicol. Methods 1992, 27, 143-159.
[33]
Thompson, D. C. J. D. Pharmacology of therapeutic aerosols. Science 1992, 54, 29-59.
[34]
Courrier, H. M.; Butz, N.; Vandamme, T. F. Pulmonary drug delivery systems: Recent developments and prospects. Crit. Rev. Ther. Drug Carrier Syst. 2002, 19, 425-498.
[35]
Clark, A. J. D. D. S. Sciences formulation of proteins and peptides for inhalation. Science 2002, 2, 73-77.
[36]
Gill, S.; Löbenberg, R.; Ku, T.; Azarmi, S.; Roa, W.; Prenner, E. J. Nanoparticles: Characteristics, mechanisms of action, and toxicity in pulmonary drug delivery—a review. J. Biomed. Nanotechnol. 2007, 3, 107-119.
[37]
Ranney, D. F. Drug targeting to the lungs. Biochem. Pharmacol. 1986, 35, 1063-1069.
[38]
Barnes, P. J. Nocturnal asthma: Mechanisms and treatment. Br. Med. J. 1984, 288, 1397-1398.
[39]
Surendrakumar, K.; Martyn, G. P.; Hodgers, E. C. M.; Jansen, M.; Blair, J. A. Sustained release of insulin from sodium hyaluronate based dry powder formulations after pulmonary delivery to beagle dogs. J. Control. Release 2003, 91, 385-394.
[40]
Cook, R. O.; Pannu, R. K.; Kellaway, I. W. Novel sustained release microspheres for pulmonary drug delivery. J. Control. Release 2005, 104, 79-90.
[41]
Hardy, J. G.; Chadwick, T. S. Sustained release drug delivery to the lungs: An option for the future. Clin. Pharmacokinet. 2000, 39, 1-4.
[42]
Zeng, X. M.; Martin, G. P.; Marriott, C. The controlled delivery of drugs to the lung. Int. J. Pharm. 1995, 124, 149-164.
[43]
Bourzac, K. Nanotechnology: Carrying drugs. Nature 2012, 491, S58-S60.
[44]
Pelaz, B.; Alexiou, C.; Alvarez-Puebla, R. A.; Alves, F.; Andrews, A. M.; Ashraf, S.; Balogh, L. P.; Ballerini, L.; Bestetti, A.; Brendel, C. et al. Diverse applications of nanomedicine. ACS Nano 2017, 11, 2313-2381.
[45]
Vij, N. Nano-based rescue of dysfunctional autophagy in chronic obstructive lung diseases. Expert Opin. Drug Deliv. 2017, 14, 483-489.
[46]
Zhong, W.; Zhang, X.; Zhao, M.; Wu, J.; Lin, D. Advancements in nanotechnology for the diagnosis and treatment of multiple myeloma. Biomater. Sci. 2020, 8, 4692-4711.
[47]
Chen, G. Y.; Roy, I.; Yang, C. H.; Prasad, P. N. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem. Rev. 2016, 116, 2826-2885.
[48]
Singh, A. P.; Biswas, A.; Shukla, A.; Maiti, P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct. Target. Ther. 2019, 4, 33.
[49]
Xu, C. C.; Li, H.; Zhang, K. M.; Binzel, D. W.; Yin, H. R.; Chiu, W.; Guo, P. X. Photo-controlled release of paclitaxel and model drugs from RNA pyramids. Nano Res. 2019, 12, 41-48.
[50]
Ma, Q. L.; Fan, Q.; Xu, J. L.; Bai, J. Y.; Han, X.; Dong, Z. L.; Zhou, X. Z.; Liu, Z.; Gu, Z.; Wang, C. Calming cytokine storm in pneumonia by targeted delivery of TPCA-1 using platelet-derived extracellular vesicles. Matter 2020, 3, 287-301.
[51]
Zhang, X. Y.; Zhao, M. Y.; Cao, N.; Qin, W.; Zhao, M.; Wu, J.; Lin, D. J. Construction of a tumor microenvironment pH-responsive cleavable PEGylated hyaluronic acid nano-drug delivery system for colorectal cancer treatment. Biomater. Sci. 2020, 8, 1885-1896.
[52]
Wagner, V.; Dullaart, A.; Bock, A. K.; Zweck, A. The emerging nanomedicine landscape. Nat. Biotechnol. 2006, 24, 1211-1217.
[53]
Stella, V. J.; Nti-Addae, K. W. Prodrug strategies to overcome poor water solubility. Adv. Drug Deliv. Rev. 2007, 59, 677-694.
[54]
Savjani, K. T.; Gajjar, A. K.; Savjani, J. K. Drug solubility: Importance and enhancement techniques. Int. Scholar. Res. Not. 2012, 2012, 195727.
[55]
De Jong, W. H.; Borm, P. J. A. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine 2008, 3, 133-149.
[56]
Zhang, L.; Pornpattananangkul, D.; Hu, C. M. J.; Huang, C. M. Development of nanoparticles for antimicrobial drug delivery. Curr. Med. Chem. 2010, 17, 585-594.
[57]
Murgia, X.; Loretz, B.; Hartwig, O.; Hittinger, M.; Lehr, C. M. The role of mucus on drug transport and its potential to affect therapeutic outcomes. Adv. Drug Deliv. Rev. 2018, 124, 82-97.
[58]
Murgia, X.; Pawelzyk, P.; Schaefer, U. F.; Wagner, C.; Willenbacher, N.; Lehr, C. M. Size-limited penetration of nanoparticles into porcine respiratory mucus after aerosol deposition. Biomacromolecules 2016, 17, 1536-1542.
[59]
Ho, D. K.; Costa, A.; De Rossi, C.; de Souza Carvalho-Wodarz, C.; Loretz, B.; Lehr, C. M. Polysaccharide submicrocarrier for improved pulmonary delivery of poorly soluble anti-infective ciprofloxacin: Preparation, characterization, and influence of size on cellular uptake. Mol. Pharmaceutics 2018, 15, 1081-1096.
[60]
Markman, J. L.; Rekechenetskiy, A.; Holler, E.; Ljubimova, J. Y. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv. Drug Deliv. Rev. 2013, 65, 1866-1879.
[61]
Zhu, X.; Radovic-Moreno, A. F.; Wu, J.; Langer, R.; Shi, J. J. Nanomedicine in the management of microbial infection —overview and perspectives. Nano Today 2014, 9, 478-498.
[62]
Abed, N.; Couvreur, P. Nanocarriers for antibiotics: A promising solution to treat intracellular bacterial infections. Int. J. Antimicrob. Agents 2014, 43, 485-496.
[63]
Champion, J. A.; Katare, Y. K.; Mitragotri, S. Particle shape: A new design parameter for micro- and nanoscale drug delivery carriers. J. Controlled Release 2007, 121, 3-9.
[64]
Gao, W. W.; Thamphiwatana, S.; Angsantikul, P.; Zhang, L. F. Nanoparticle approaches against bacterial infections. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2014, 6, 532-547.
[65]
Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7-34.
[66]
Barenholz, Y. Doxil®--the first FDA-approved nano-drug: Lessons learned. J. Control. Release 2012, 160, 117-134.
[67]
Numico, G.; Castiglione, F.; Granetto, C.; Garrone, O.; Mariani, G.; Di Costanzo, G.; La Ciura, P.; Gasco, M.; Ostellino, O.; Porcile, G. et al. Single-agent pegylated liposomal doxorubicin (Caelix®) in chemotherapy pretreated non-small cell lung cancer patients: A pilot trial. Lung Cancer 2002, 35, 59-64.
[68]
Patlakas, G.; Bouros, D.; Tsantekidou-Pozova, S.; Koukourakis, M. I. Triplet chemotherapy with docetaxel, gemcitabine and liposomal doxorubicin, supported with subcutaneous amifostine and hemopoietic growth factors, in advanced non-small cell lung cancer. Anticancer Res. 2005, 25, 1427-1431.
[69]
Leighl, N. B.; Goss, G. D.; Lopez, P. G.; Burkes, R. L.; Dancey, J. E.; Rahim, Y. H.; Rudinskas, L. C.; Pouliot, J. F.; Rodgers, A.; Pond, G. R. et al. Phase II study of pegylated liposomal doxorubicin HCl (Caelyx) in combination with cyclophosphamide and vincristine as second-line treatment of patients with small cell lung cancer. Lung Cancer 2006, 52, 327-332.
[70]
Xu, C. N.; Wang, Y. B.; Guo, Z. P.; Chen, J.; Lin, L.; Wu, J. Y.; Tian, H. Y.; Chen, X. S. Pulmonary delivery by exploiting doxorubicin and cisplatin co-loaded nanoparticles for metastatic lung cancer therapy. J. Control. Release 2019, 295, 153-163.
[71]
Hoch, U.; Staschen, C. M.; Johnson, R. K.; Eldon, M. A. Nonclinical pharmacokinetics and activity of etirinotecan pegol (NKTR-102), a long-acting topoisomerase 1 inhibitor, in multiple cancer models. Cancer Chemother. Pharm. 2014, 74, 1125-1137.
[72]
Jameson, G. S.; Hamm, J. T.; Weiss, G. J.; Alemany, C.; Anthony, S.; Basche, M.; Ramanathan, R. K.; Borad, M. J.; Tibes, R.; Cohn, A. et al. A multicenter, phase I, dose-escalation study to assess the safety, tolerability, and pharmacokinetics of etirinotecan pegol in patients with refractory solid tumors. Clin. Cancer Res. 2013, 19, 268-278.
[73]
Aggarwal, C.; Cohen, R. B.; Yu, E.; Hwang, W. T.; Bauml, J. M.; Alley, E.; Evans, T. L.; Langer, C. J. Etirinotecan pegol (NKTR-102) in third-line treatment of patients with metastatic or recurrent non-small-cell lung cancer: Results of a phase II study. Clin. Lung Cancer 2018, 19, 157-162.
[74]
Zhang, H. J. Onivyde for the therapy of multiple solid tumors. OncoTargets Ther. 2016, 9, 3001-3007.
[75]
Leonard, S.; Lee, H.; Klinz, S.; Paz, N.; Fitzgerald, J.; Hendriks, B. P1.07-006 Preclinical support for evaluation of irinotecan liposome injection (nal-IRI, MM-398) in small cell lung cancer: Topic: Drug treatment alone and in combination with radiotherapy. J. Thorac. Oncol. 2017, 12, S699.
[76]
Landesman-Milo, D.; Ramishetti, S.; Peer, D. Nanomedicine as an emerging platform for metastatic lung cancer therapy. Cancer Metastasis Rev. 2015, 34, 291-301.
[77]
Zhang, Y. F.; Huang, Y. X.; Li, S. Polymeric micelles: Nanocarriers for cancer-targeted drug delivery. AAPS PharmSciTech. 2014, 15, 862-871.
[78]
Gupta, N.; Hatoum, H.; Dy, G. K. First line treatment of advanced non-small-cell lung cancer-specific focus on albumin bound paclitaxel. Int. J. Nanomedicine 2014, 9, 209-221.
[79]
Pazdur, R. J. N. C. I. a. t. N. I. o. H. R. A. FDA approval for paclitaxel albumin-stabilized nanoparticle formulation. National Cancer Institute at the National Institutes of Health 2012, 24, 2013.
[80]
Jiménez-López, J.; El-Hammadi, M. M.; Ortiz, R.; Cayero-Otero, M. D.; Cabeza, L.; Perazzoli, G.; Martin-Banderas, L.; Baeyens, J. M.; Prados, J.; Melguizo, C. A novel nanoformulation of PLGA with high non-ionic surfactant content improves in vitro and in vivo PTX activity against lung cancer. Pharmacol. Res. 2019, 141, 451-465.
[81]
Yang, Y.; Huang, Z. W.; Li, J. Y.; Mo, Z. R.; Huang, Y.; Ma, C.; Wang, W. H.; Pan, X.; Wu, C. B. PLGA porous microspheres dry powders for codelivery of afatinib-loaded solid lipid nanoparticles and paclitaxel: Novel therapy for EGFR tyrosine kinase inhibitors resistant nonsmall cell lung cancer. Adv. Healthc. Mater. 2019, 8, 1900965.
[82]
Ormerod, M. G.; Orr, R. M.; Peacock, J. H. The role of apoptosis in cell killing by cisplatin: A flow cytometric study. Br. J. Cancer 1994, 69, 93-100.
[83]
Sears, C. R.; Cooney, S. A.; Chin-Sinex, H.; Mendonca, M. S.; Turchi, J. J. DNA damage response (DDR) pathway engagement in cisplatin radiosensitization of non-small cell lung cancer. DNA Rep. 2016, 40, 35-46.
[84]
Sun, M.; He, L.; Fan, Z.; Tang, R. P.; Du, J. Z. Effective treatment of drug-resistant lung cancer via a nanogel capable of reactivating cisplatin and enhancing early apoptosis. Biomaterials 2020, 257, 120252.
[85]
Iyer, R.; Nguyen, T.; Padanilam, D.; Xu, C. C.; Saha, D.; Nguyen, K. T.; Hong, Y. Glutathione-responsive biodegradable polyurethane nanoparticles for lung cancer treatment. J. Control. Release 2020, 321, 363-371.
[86]
Stathopoulos, G. P.; Boulikas, T. Lipoplatin formulation review article. J. Drug Deliv. 2012, 2012, 581363.
[87]
Kaltsas, K.; Anevlavis, S.; Pataka, A.; Kouliatsis, G.; Pozova, S.; Bouros, D.; Froudarakis, M. A phase II trial of lipoplatin and gemcitabine in patients with NSCLC previously treated with platinum-based chemotherapy. Eur. Respir. Soc. 2016, 48, OA3344.
[88]
Chan, M. H.; Huang, W. T.; Wang, J.; Liu, R. S.; Hsiao, M. Next- generation cancer-specific hybrid theranostic nanomaterials: MAGE-A3 NIR persistent luminescence nanoparticles conjugated to afatinib for in situ suppression of lung adenocarcinoma growth and metastasis. Adv. Sci. 2020, 7, 1903741.
[89]
Fehrenbacher, L.; Spira, A.; Ballinger, M.; Kowanetz, M.; Vansteenkiste, J.; Mazieres, J.; Park, K.; Smith, D.; Artal-Cortes, A.; Lewanski, C. et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): A multicentre, open-label, phase 2 randomised controlled trial. Lancet 2016, 387, 1837-1846.
[90]
Garon, E. B.; Rizvi, N. A.; Hui, R. N.; Leighl, N.; Balmanoukian, A. S.; Eder, J. P.; Patnaik, A.; Aggarwal, C.; Gubens, M.; Horn, L. et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med. 2015, 372, 2018-2028.
[91]
Liu, B.; Cao, W.; Qiao, G. L.; Yao, S. Y.; Pan, S. J.; Wang, L. R.; Yue, C. X.; Ma, L. J.; Liu, Y. L.; Cui, D. X. Effects of gold nanoprism- assisted human PD-L1 siRNA on both gene down-regulation and photothermal therapy on lung cancer. Acta Biomater. 2019, 99, 307-319.
[92]
Duman, F. D.; Akkoc, Y.; Demirci, G.; Bavili, N.; Kiraz, A.; Gozuacik, D.; Acar, H. Y. Bypassing pro-survival and resistance mechanisms of autophagy in EGFR-positive lung cancer cells by targeted delivery of 5FU using theranostic Ag2S quantum dots. J. Mater. Chem. B. 2019, 7, 7363-7376.
[93]
Reda, M.; Ngamcherdtrakul, W.; Gu, S. D.; Bejan, D. S.; Siriwon, N.; Gray, J. W.; Yantasee, W. PLK1 and EGFR targeted nanoparticle as a radiation sensitizer for non-small cell lung cancer. Cancer Lett. 2019, 467, 9-18.
[94]
Bregoli, L.; Movia, D.; Gavigan-Imedio, J. D.; Lysaght, J.; Reynolds, J.; Prina-Mello, A. Nanomedicine applied to translational oncology: A future perspective on cancer treatment. Nanomedicine 2016, 12, 81-103.
[95]
Seidi, K.; Neubauer, H. A.; Moriggl, R.; Jahanban-Esfahlan, R.; Javaheri, T. Tumor target amplification: Implications for nano drug delivery systems. J. Control. Release 2018, 275, 142-161.
[96]
Chang, S. S.; O'Keefe, D. S.; Bacich, D. J.; Reuter, V. E.; Heston, W. D. W.; Gaudin, P. B. Prostate-specific membrane antigen is produced in tumor-associated neovasculature. Clin. Cancer Res. 1999, 5, 2674-2681.
[97]
Hrkach, J.; Von Hoff, D.; Mukkaram Ali, M.; Andrianova, E.; Auer, J.; Campbell, T.; De Witt, D.; Figa, M.; Figueiredo, M.; Horhota, A. et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci. Transl. Med. 2012, 4, 128ra39.
[98]
Von Hoff, D. D.; Mita, M. M.; Ramanathan, R. K.; Weiss, G. J.; Mita, A. C.; LoRusso, P. M.; Burris III, H. A.; Hart, L. L.; Low, S. C.; Parsons, D. M. et al. Phase I study of PSMA-targeted docetaxel- containing nanoparticle BIND-014 in patients with advanced solid tumors. Clin. Cancer Res. 2016, 22, 3157-3163.
[99]
Viteri, S.; Rosell, R. An innovative mesothelioma treatment based on miR-16 mimic loaded EGFR targeted minicells (TargomiRs). Transl. Lung Cancer Res. 2018, 7, S1-S4.
[100]
Reid, G.; Kao, S. C.; Pavlakis, N.; Brahmbhatt, H.; MacDiarmid, J.; Clarke, S.; Boyer, M.; van Zandwijk, N. Clinical development of TargomiRs, a miRNA mimic-based treatment for patients with recurrent thoracic cancer. Epigenomics 2016, 8, 1079-1085.
[101]
Kao, S. C.; Fulham, M.; Wong, K.; Cooper, W.; Brahmbhatt, H.; MacDiarmid, J.; Pattison, S.; Sagong, J. O.; Huynh, Y.; Leslie, F. et al. A significant metabolic and radiological response after a novel targeted MicroRNA-based treatment approach in malignant pleural mesothelioma. Am. J. Respir. Crit. Care Med. 2015, 191, 1467-1469.
[102]
Moro, M.; Di Paolo, D.; Milione, M.; Centonze, G.; Bornaghi, V.; Borzi, C.; Gandellini, P.; Perri, P.; Pastorino, U.; Ponzoni, M. et al. Coated cationic lipid-nanoparticles entrapping miR-660 inhibit tumor growth in patient-derived xenografts lung cancer models. J. Control. Release 2019, 308, 44-56.
[103]
Lu, C.; Stewart, D. J.; Lee, J. J.; Ji, L.; Ramesh, R.; Jayachandran, G.; Nunez, M. I.; Wistuba, I. I.; Erasmus, J. J.; Hicks, M. E. et al. Phase I clinical trial of systemically administered TUSC2(FUS1)- nanoparticles mediating functional gene transfer in humans. PLoS One 2012, 7, e34833.
[104]
Sharma, S.; Srivastava, M. K.; Harris-White, M.; Lee, J. M.; Dubinett, S. MUC1 peptide vaccine mediated antitumor activity in non-small cell lung cancer. Expert Opin. Biol. Ther. 2011, 11, 987-990.
[105]
Butts, C.; Murray, N.; Maksymiuk, A.; Goss, G.; Marshall, E.; Soulières, D.; Cormier, Y.; Ellis, P.; Price, A.; Sawhney, R. et al. Randomized phase IIB trial of BLP25 liposome vaccine in stage IIIB and IV non-small-cell lung cancer. J. Clin. Oncol. 2005, 23, 6674-6681.
[106]
Wu, Y. L.; Park, K.; Soo, R. A.; Sun, Y.; Tyroller, K.; Wages, D.; Ely, G.; Yang, J. C. H.; Mok, T. INSPIRE: A phase III study of the BLP25 liposome vaccine (L-BLP25) in Asian patients with unresectable stage III non-small cell lung cancer. BMC Cancer 2011, 11, 430.
[107]
Griesenbach, U.; Pytel, K. M.; Alton, E. W. F. W. Cystic fibrosis gene therapy in the UK and elsewhere. Hum. Gene Ther. 2015, 26, 266-275.
[108]
Hardee, C. L.; Arévalo-Soliz, L. M.; Hornstein, B. D.; Zechiedrich, L. Advances in non-viral DNA vectors for gene therapy. Genes 2017, 8, 65.
[109]
Konstan, M. W.; Davis, P. B.; Wagener, J. S.; Hilliard, K. A.; Stern, R. C.; Milgram, L. J. H.; Kowalczyk, T. H.; Hyatt, S. L.; Fink, T. L.; Gedeon, C. R. et al. Compacted DNA nanoparticles administered to the nasal mucosa of cystic fibrosis subjects are safe and demonstrate partial to complete cystic fibrosis transmembrane regulator reconstitution. Hum. Gene Ther. 2004, 15, 1255-1269.
[110]
McLachlan, G.; Davidson, H.; Holder, E.; Davies, L. A.; Pringle, I. A.; Sumner-Jones, S. G.; Baker, A.; Tennant, P.; Gordon, C.; Vrettou, C. et al. Pre-clinical evaluation of three non-viral gene transfer agents for cystic fibrosis after aerosol delivery to the ovine lung. Gene Ther. 2011, 18, 996-1005.
[111]
Alton, E. W. F. W.; Boyd, A. C.; Cheng, S. H.; Davies, J. C.; Davies, L. A.; Dayan, A.; Gill, D. R.; Griesenbach, U.; Higgins, T.; Hyde, S. C. et al. Toxicology study assessing efficacy and safety of repeated administration of lipid/DNA complexes to mouse lung. Gene Ther. 2014, 21, 89-95.
[112]
Alton, E. W. F. W.; Baker, A.; Baker, E.; Boyd, A. C.; Cheng, S. H.; Coles, R. L.; Collie, D. D. S.; Davidson, H.; Davies, J. C.; Gill, D. R. et al. The safety profile of a cationic lipid-mediated cystic fibrosis gene transfer agent following repeated monthly aerosol administration to sheep. Biomaterials 2013, 34, 10267-10277.
[113]
Alton, E. W. F. W.; Boyd, A. C.; Cheng, S. H.; Cunningham, S.; Davies, J. C.; Gill, D. R.; Griesenbach, U.; Higgins, T.; Hyde, S. C.; Innes, J. A. et al. A randomised, double-blind, placebo-controlled phase IIB clinical trial of repeated application of gene therapy in patients with cystic fibrosis. Thorax 2013, 68, 1075-1077.
[114]
Alton, E. W. F. W.; Armstrong, D. K.; Ashby, D.; Bayfield, K. J.; Bilton, D.; Bloomfield, E. V.; Boyd, A. C.; Brand, J.; Buchan, R.; Calcedo, R. et al. Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: A randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Res. Med. 2015, 3, 684-691.
[115]
Robinson, E.; MacDonald, K. D.; Slaughter, K.; McKinney, M.; Patel, S.; Sun, C.; Sahay, G. Lipid nanoparticle-delivered chemically modified mRNA restores chloride secretion in cystic fibrosis. Mol. Ther. 2018, 26, 2034-2046.
[116]
Haque, A. K. M. A.; Dewerth, A.; Antony, J. S.; Riethmüller, J.; Schweizer, G. R.; Weinmann, P.; Latifi, N.; Yasar, H.; Pedemonte, N.; Sondo, E. et al. Chemically modified hCFTR mRNAs recuperate lung function in a mouse model of cystic fibrosis. Sci. Rep. 2018, 8, 16776.
[117]
Tagalakis, A. D.; Munye, M. M.; Ivanova, R.; Chen, H. P.; Smith, C. M.; Aldossary, A. M.; Rosa, L. Z.; Moulding, D.; Barnes, J. L.; Kafetzis, K. N. et al. Effective silencing of ENaC by siRNA delivered with epithelial-targeted nanocomplexes in human cystic fibrosis cells and in mouse lung. Thorax 2018, 73, 847-856.
[118]
Osman, G.; Rodriguez, J.; Chan, S. Y.; Chisholm, J.; Duncan, G.; Kim, N.; Tatler, A. L.; Shakesheff, K. M.; Hanes, J.; Suk, J. S. et al. PEGylated enhanced cell penetrating peptide nanoparticles for lung gene therapy. J. Control. Release 2018, 285, 35-45.
[119]
Leal, J.; Peng, X. J.; Liu, X. Q.; Arasappan, D.; Wylie, D. C.; Schwartz, S. H.; Fullmer, J. J.; McWilliams, B. C.; Smyth, H. D. C.; Ghosh, D. Peptides as surface coatings of nanoparticles that penetrate human cystic fibrosis sputum and uniformly distribute in vivo following pulmonary delivery. J. Control. Release 2020, 322, 457-469.
[120]
Garbuzenko, O. B.; Kbah, N.; Kuzmov, A.; Pogrebnyak, N.; Pozharov, V.; Minko, T. Inhalation treatment of cystic fibrosis with lumacaftor and ivacaftor co-delivered by nanostructured lipid carriers. J. Control. Release 2019, 296, 225-231.
[121]
Paranjpe, M.; Müller-Goymann, C. C. Nanoparticle-mediated pulmonary drug delivery: A review. Int. J. Mol. Sci. 2014, 15, 5852-5873.
[122]
Moreno-Sastre, M.; Pastor, M.; Salomon, C. J.; Esquisabel, A.; Pedraz, J. L. Pulmonary drug delivery: A review on nanocarriers for antibacterial chemotherapy. J. Antimicrob. Chemother. 2015, 70, 2945-2955.
[123]
Günday Türeli, N.; Torge, A.; Juntke, J.; Schwarz, B. C.; Schneider- Daum, N.; Türeli, A. E.; Lehr, C. M.; Schneider, M. Ciprofloxacin- loaded PLGA nanoparticles against cystic fibrosis P. aeruginosa lung infections. Eur. J. Pharm. Biopharm. 2017, 117, 363-371.
[124]
Ernst, J.; Klinger-Strobel, M.; Arnold, K.; Thamm, J.; Hartung, A.; Pletz, M. W.; Makarewicz, O.; Fischer, D. Polyester-based particles to overcome the obstacles of mucus and biofilms in the lung for tobramycin application under static and dynamic fluidic conditions. Eur. J. Pharm. Biopharm. 2018, 131, 120-129.
[125]
Mirza, S.; Clay, R. D.; Koslow, M. A.; Scanlon, P. D. COPD guidelines: A Review of the 2018 GOLD Report. Mayo Clin. Proc. 2018, 93, 1488-1502.
[126]
da Silva, A. L.; Cruz, F. F.; Rocco, P. R. M.; Morales, M. M. New perspectives in nanotherapeutics for chronic respiratory diseases. Biophys. Rev. 2017, 9, 793-803.
[127]
Wu, L.; Shan, W.; Zhang, Z. R.; Huang, Y. Engineering nanomaterials to overcome the mucosal barrier by modulating surface properties. Adv. Drug Deliv. Rev. 2018, 124, 150-163.
[128]
Ramos, F. L.; Krahnke, J. S.; Kim, V. Clinical issues of mucus accumulation in COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2014, 9, 139-150.
[129]
Zhang, X.; Zhang, W. T.; Liu, L. Z.; Yang, M.; Huang, L. J.; Chen, K.; Wang, R.; Yang, B. W.; Zhang, D. D.; Wang, J. L. Antibiotic- loaded MoS2 nanosheets to combat bacterial resistance via biofilm inhibition. Nanotechnology 2017, 28, 225101.
[130]
Dua, K.; Shukla, S. D.; Tekade, R. K.; Hansbro, P. M. Whether a novel drug delivery system can overcome the problem of biofilms in respiratory diseases? Drug Deliv. Transl. Res. 2017, 7, 179-187.
[131]
Dua, K.; de Jesus Andreoli Pinto, T.; Chellappan, D. K.; Gupta, G.; Bebawy, M.; Hansbro, P. M. Advancements in nano drug delivery systems: A challenge for biofilms in respiratory diseases. Panminerva Med. 2018, 60, 35-36.
[132]
Mamary, A. J.; Criner, G. J. Tiotropium bromide for chronic obstructive pulmonary disease. Expert Rev. Respir. Med. 2009, 3, 211-220.
[133]
Quon, B. S.; Goss, C. H.; Ramsey, B. W. Inhaled antibiotics for lower airway infections. Ann. Am. Thorac. Soc. 2014, 11, 425-434.
[134]
Varshosaz, J.; Ghaffari, S.; Mirshojaei, S. F.; Jafarian, A.; Atyabi, F.; Kobarfard, F.; Azarmi, S. Biodistribution of amikacin solid lipid nanoparticles after pulmonary delivery. BioMed Res. Int. 2013, 2013, 136859.
[135]
Kato, H.; Hagihara, M.; Hirai, J.; Sakanashi, D.; Suematsu, H.; Nishiyama, N.; Koizumi, Y.; Yamagishi, Y.; Matsuura, K.; Mikamo, H. Evaluation of amikacin pharmacokinetics and pharmacodynamics for optimal initial dosing regimen. Drugs R&D 2017, 17, 177-187.
[136]
Li, Z. B.; Luo, G. H.; Hu, W. P.; Hua, J. L.; Geng, S. Y.; Chu, P. K.; Zhang, J.; Wang, H. Y.; Yu, X. F. Mediated drug release from nanovehicles by black phosphorus quantum dots for efficient therapy of chronic obstructive pulmonary disease. Angew. Chem., Int. Ed. 2020, .
[137]
Chikuma, K.; Arima, K.; Asaba, Y.; Kubota, R.; Asayama, S.; Sato, K.; Kawakami, H. The potential of lipid-polymer nanoparticles as epigenetic and ROS control approaches for COPD. Free Radical Res. 2019, .
[138]
Mohamed, A.; Kunda, N. K.; Ross, K.; Hutcheon, G. A.; Saleem, I. Y. Polymeric nanoparticles for the delivery of miRNA to treat chronic obstructive pulmonary disease (COPD). Eur. J. Pharm. Biopharm. 2019, 136, 1-8.
[139]
Vij, N.; Min, T.; Marasigan, R.; Belcher, C. N.; Mazur, S.; Ding, H.; Yong, K. T.; Roy, I. Development of PEGylated PLGA nanoparticle for controlled and sustained drug delivery in cystic fibrosis. J. Nanobiotechnol. 2010, 8, 22.
[140]
Roy, I.; Vij, N. Nanodelivery in airway diseases: Challenges and therapeutic applications. Nanomedicine 2010, 6, 237-244.
[141]
Vij, N. Nano-based theranostics for chronic obstructive lung diseases: Challenges and therapeutic potential. Expert. Opin. Drug Deliv. 2011, 8, 1105-1109.
[142]
Vij, N.; Min, T.; Bodas, M.; Gorde, A.; Roy, I. Neutrophil targeted nano-drug delivery system for chronic obstructive lung diseases. Nanomedicine 2016, 12, 2415-2427.
[143]
Barnes, P. J.; Burney, P. G. J.; Silverman, E. K.; Celli, B. R.; Vestbo, J.; Wedzicha, J. A.; Wouters, E. F. Chronic obstructive pulmonary disease. Nat. Rev. Dis. Primers 2015, 1, 15076.
[144]
Andreeva, E.; Pokhaznikova, M.; Lebedev, A.; Moiseeva, I.; Kuznetsova, O.; Degryse, J. M. Spirometry is not enough to diagnose COPD in epidemiological studies: A follow-up study. Npj Prim. Care Respir. Med. 2017, 27, 62.
[145]
Fens, N.; Zwinderman, A. H.; van der Schee, M. P.; de Nijs, S. B.; Dijkers, E.; Roldaan, A. C.; Cheung, D.; Bel, E. H.; Sterk, P. J. Exhaled breath profiling enables discrimination of chronic obstructive pulmonary disease and asthma. Am. J. Respir. Crit. Care Med. 2009, 180, 1076-1082.
[146]
Dragonieri, S.; Annema, J. T.; Schot, R.; van der Schee, M. P. C.; Spanevello, A.; Carratú, P.; Resta, O.; Rabe, K. F.; Sterk, P. J. An electronic nose in the discrimination of patients with non-small cell lung cancer and COPD. Lung Cancer 2009, 64, 166-170.
[147]
Sibila, O.; Garcia-Bellmunt, L.; Giner, J.; Merino, J. L.; Suarez- Cuartin, G.; Torrego, A.; Solanes, I.; Castillo, D.; Valera, J. L.; Cosio, B. G. et al. Identification of airway bacterial colonization by an electronic nose in chronic obstructive pulmonary disease. Respir. Med. 2014, 108, 1608-1614.
[148]
Anusha, S.; CP, B.; Mohan, C. D.; Mathai, J.; Rangappa, S.; Mohan, S.; Chandra; Paricharak, S.; Mervin, L.; Fuchs, J. E. et al. A nano-MgO and ionic liquid-catalyzed ‘green’ synthesis protocol for the development of adamantyl-imidazolo-thiadiazoles as anti- tuberculosis agents targeting sterol 14α-demethylase (CYP51). PLoS One 2015, 10, e0139798.
[149]
Sharma, R.; Kaur, A.; Sharma, A. K.; Dilbaghi, N.; Sharma, A. K. Nano-based anti-tubercular drug delivery and therapeutic interventions in tuberculosis. Curr. Drug Targets 2017, 18, 72-86.
[150]
Nasiruddin, M.; Neyaz, M. K.; Das, S. Nanotechnology-based approach in tuberculosis treatment. Tuberc. Res Treat. 2017, 2017, 4920209.
[151]
Shojaei, T. R.; Mohd Salleh, M. A.; Tabatabaei, M.; Ekrami, A.; Motallebi, R.; Rahmani-Cherati, T.; Hajalilou, A.; Jorfi, R. Development of sandwich-form biosensor to detect Mycobacterium tuberculosis complex in clinical sputum specimens. Braz. J. Infect. Dis. 2014, 18, 600-608.
[152]
Wang, S. Q.; Inci, F.; De Libero, G.; Singhal, A.; Demirci, U. Point-of-care assays for tuberculosis: Role of nanotechnology/ microfluidics. Biotechnol. Adv. 2013, 31, 438-449.
[153]
Yang, H.; Qin, L. H.; Wang, Y. L.; Zhang, B. B.; Liu, Z. H.; Ma, H.; Lu, J. M.; Huang, X. C.; Shi, D. L.; Hu, Z. Y. Detection of Mycobacterium tuberculosis based on H37Rv binding peptides using surface functionalized magnetic microspheres coupled with quantum dots—a nano detection method for Mycobacterium tuberculosis. Int. J. Nanomed. 2015, 10, 77-88.
[154]
Cadena, A. M.; Fortune, S. M.; Flynn, J. A. L. Heterogeneity in tuberculosis. Nat. Rev. Immunol. 2017, 17, 691-702.
[155]
Ellis, T.; Chiappi, M.; García-Trenco, A.; Al-Ejji, M.; Sarkar, S.; Georgiou, T. K.; Shaffer, M. S. P.; Tetley, T. D.; Schwander, S.; Ryan, M. P. et al. Multimetallic microparticles increase the potency of rifampicin against intracellular Mycobacterium tuberculosis. ACS Nano 2018, 12, 5228-5240.
[156]
Hwang, A. A.; Lee, B. Y.; Clemens, D. L.; Dillon, B. J.; Zink, J. I.; Horwitz, M. A. pH-responsive isoniazid-loaded nanoparticles markedly improve tuberculosis treatment in Mice. Small 2015, 11, 5066-5078.
[157]
Machelart, A.; Salzano, G.; Li, X.; Demars, A.; Debrie, A. S.; Menendez-Miranda, M.; Pancani, E.; Jouny, S.; Hoffmann, E.; Deboosere, N. et al. Intrinsic antibacterial activity of nanoparticles made of β-cyclodextrins potentiates their effect as drug nanocarriers against tuberculosis. ACS Nano 2019, 13, 3992-4007.
[158]
Pi, J.; Shen, L.; Yang, E. Z.; Shen, H. B.; Huang, D.; Wang, R.; Hu, C. M.; Jin, H.; Cai, H. H.; Cai, J. Y. et al. Macrophage-targeted isoniazid-selenium nanoparticles promote antimicrobial immunity and synergize bactericidal destruction of tuberculosis bacilli. Angew. Chem., Int. Ed. 2020, 59, 3226-3234.
[159]
Welin, A.; Björnsdottir, H.; Winther, M.; Christenson, K.; Oprea, T.; Karlsson, A.; Forsman, H.; Dahlgren, C.; Bylund, J. CFP-10 from Mycobacterium tuberculosis selectively activates human neutrophils through a pertussis toxin-sensitive chemotactic receptor. Infect. Immun. 2015, 83, 205-213.
[160]
Feng, T. T.; Shou, C. M.; Shen, L.; Qian, Y.; Wu, Z. G.; Fan, J.; Zhang, Y. Z.; Tang, Y. W.; Wu, N. P.; Lu, H. Z. et al. Novel monoclonal antibodies to ESAT-6 and CFP-10 antigens for ELISA-based diagnosis of pleural tuberculosis. Int. J. Tuberc. Lung Dis. 2011, 15, 804-810.
[161]
Liu, C.; Lyon, C. J.; Bu, Y.; Deng, Z. A.; Walters, E.; Li, Y.; Zhang, L. Q.; Hesseling, A. C.; Graviss, E. A.; Hu, Y. Clinical evaluation of a blood assay to diagnose paucibacillary tuberculosis via bacterial antigens. Clin. Chem. 2018, 64, 791-800.
[162]
Liu, C.; Zhao, Z.; Fan, J.; Lyon, C. J.; Wu, H. J.; Nedelkov, D.; Zelazny, A. M.; Olivier, K. N.; Cazares, L. H.; Holland, S. M. et al. Quantification of circulating Mycobacterium tuberculosis antigen peptides allows rapid diagnosis of active disease and treatment monitoring. Prac. Natl. Acad. Sci. USA 2017, 114, 3969-3974.
[163]
Phan, L. M. T.; Rafique, R.; Baek, S. H.; Nguyen, T. P.; Park, K. Y.; Kim, E. B.; Kim, J. G.; Park, J. P.; Kailasa, S. K.; Kim, H. J. et al. Gold-copper nanoshell dot-blot immunoassay for naked-eye sensitive detection of tuberculosis specific CFP-10 antigen. Biosens. Bioelectron. 2018, 121, 111-117.
[164]
Meers, P.; Neville, M.; Malinin, V.; Scotto, A. W.; Sardaryan, G.; Kurumunda, R.; Mackinson, C.; James, G.; Fisher, S.; Perkins, W. R. Biofilm penetration, triggered release and in vivo activity of inhaled liposomal amikacin in chronic Pseudomonas aeruginosa lung infections. J. Antimicrob. Chemother. 2008, 61, 859-868.
[165]
Ehsan, Z.; Clancy, J. P. Management of Pseudomonas aeruginosa infection in cystic fibrosis patients using inhaled antibiotics with a focus on nebulized liposomal amikacin. Future Microbiol. 2015, 10, 1901-1912.
[166]
Waters, V.; Ratjen, F. Inhaled liposomal amikacin. Expert Rev. Respir. Med. 2014, 8, 401-409.
[167]
Costa-Gouveia, J.; Pancani, E.; Jouny, S.; Machelart, A.; Delorme, V.; Salzano, G.; Iantomasi, R.; Piveteau, C.; Queval, C. J.; Song, O. R. et al. Combination therapy for tuberculosis treatment: Pulmonary administration of ethionamide and booster co-loaded nanoparticles. Sci. Rep. 2017, 7, 5390.
[168]
Serisier, D. J.; Bilton, D.; De Soyza, A.; Thompson, P. J.; Kolbe, J.; Greville, H. W.; Cipolla, D.; Bruinenberg, P.; Gonda, I. Inhaled, dual release liposomal ciprofloxacin in non-cystic fibrosis bronchiectasis (ORBIT-2): A randomised, double-blind, placebo-controlled trial. Thorax 2013, 68, 812-817.
[169]
Doroudian, M.; MacLoughlin, R.; Poynton, F.; Prina-Mello, A.; Donnelly, S. C. Nanotechnology based therapeutics for lung disease. Thorax 2019, 74, 965-976.
[170]
Hamblin, K. A.; Wong, J. P.; Blanchard, J. D.; Atkins, H. S. The potential of liposome-encapsulated ciprofloxacin as a tularemia therapy. Front. Cell. Infect. Microbiol. 2014, 4, 79.
[171]
Wong, J. P.; Yang, H. M.; Blasetti, K. L.; Schnell, G.; Conley, J.; Schofield, L. N. Liposome delivery of ciprofloxacin against intracellular Francisella tularensis infection. J. Control. Release 2003, 92, 265-273.
[172]
Haworth, C.; Wanner, A.; Froehlich, J.; O'Neal, T.; Davis, A.; Gonda, I.; O’Donnell, A. Inhaled liposomal ciprofloxacin in patients with bronchiectasis and chronic Pseudomonas aeruginosa infection: Results from two parallel phase III trials (ORBIT-3 and-4). Am. J. Respir. Crit. Care Med. 2017, 195, A7604
[173]
Ho, D. K.; Murgia, X.; De Rossi, C.; Christmann, R.; Hüfner de Mello Martins, A. G.; Koch, M.; Andreas, A.; Herrmann, J.; Müller, R.; Empting, M. et al. Squalenyl hydrogen sulfate nanoparticles for simultaneous delivery of tobramycin and an alkylquinolone quorum sensing inhibitor enable the eradication of P. aeruginosa biofilm infections. Angew. Chem., Int. Ed. 2020, 59, 10292-10296.
[174]
Gao, Y. F.; Wang, J.; Chai, M. Y.; Li, X.; Deng, Y. Y.; Jin, Q.; Ji, J. Size and charge adaptive clustered nanoparticles targeting the biofilm microenvironment for chronic lung infection management. ACS Nano 2020, 14, 5686-5699.
[175]
Wang, Y.; Yuan, Q.; Feng, W.; Pu, W. D.; Ding, J.; Zhang, H. J.; Li, X. Y.; Yang, B.; Dai, Q.; Cheng, L. et al. Targeted delivery of antibiotics to the infected pulmonary tissues using ROS-responsive nanoparticles. J. Nanobiotechnol. 2019, 17, 103.
[176]
Zhang, C. Y.; Lin, W. J.; Gao, J.; Shi, X. T.; Davaritouchaee, M.; Nielsen, A. E.; Mancini, R. J.; Wang, Z. J. pH-responsive nanoparticles targeted to lungs for improved therapy of acute lung inflammation/injury. ACS Appl. Mater. Interfaces 2019, 11, 16380-16390.
[177]
Shirkhani, K.; Teo, I.; Armstrong-James, D.; Shaunak, S. Nebulised amphotericin B-polymethacrylic acid nanoparticle prophylaxis prevents invasive aspergillosis. Nanomedicine 2015, 11, 1217-1226.
[178]
Tang, Y. X.; Wu, S.; Lin, J. Q.; Cheng, L. T.; Zhou, J.; Xie, J.; Huang, K. X.; Wang, X. Y.; Yu, Y.; Chen, Z. B. et al. Nanoparticles targeted against cryptococcal pneumonia by interactions between chitosan and its peptide ligand. Nano Lett. 2018, 18, 6207-6213.
[179]
Qiu, L. X.; Hu, B. C.; Chen, H. B.; Li, S. S.; Hu, Y. Q.; Zheng, Y.; Wu, X. X. Antifungal efficacy of itraconazole-loaded TPGS-b-(PCL- ran-PGA) nanoparticles. Int. J. Nanomedicine 2015, 10, 1415-1423.
[180]
Wang, J.; Li, P. Y.; Yu, Y.; Fu, Y. H.; Jiang, H. Y.; Lu, M.; Sun, Z. P.; Jiang, S. B.; Lu, L.; Wu, M. X. Pulmonary surfactant-biomimetic nanoparticles potentiate heterosubtypic influenza immunity. Science 2020, 367, eaau0810.
[181]
Sanchez-Guzman, D.; Le Guen, P.; Villeret, B.; Sola, N.; Le Borgne, R.; Guyard, A.; Kemmel, A.; Crestani, B.; Sallenave, J. M.; Garcia-Verdugo, I. Silver nanoparticle-adjuvanted vaccine protects against lethal influenza infection through inducing BALT and IgA- mediated mucosal immunity. Biomaterials 2019, 217, 119308.
[182]
Kim, H.; Park, M.; Hwang, J.; Kim, J. H.; Chung, D. R.; Lee, K. S.; Kang, M. Development of label-free colorimetric assay for MERS-CoV using gold nanoparticles. ACS Sens. 2019, 4, 1306-1312.
[183]
Layqah, L. A.; Eissa, S. An electrochemical immunosensor for the corona virus associated with the Middle East respiratory syndrome using an array of gold nanoparticle-modified carbon electrodes. Microchim. Acta 2019, 186, 224.
[184]
Holgate, S. T.; Wenzel, S.; Postma, D. S.; Weiss, S. T.; Renz, H.; Sly, P. D. Asthma. Nat. Rev. Dis. Primers 2015, 1, 15025.
[185]
Huang, C. L.; Wang, Y. M.; Li, X. W.; Ren, L. L.; Zhao, J. P.; Hu, Y.; Zhang, L.; Fan, G. H.; Xu, J. Y.; Gu, X. Y. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497-506.
[186]
Wang, D. W.; Hu, B.; Hu, C.; Zhu, F. F.; Liu, X.; Zhang, J.; Wang, B. B.; Xiang, H.; Cheng, Z. S.; Xiong, Y. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020, 323, 1061-1069.
[187]
Zhou, P.; Yang, X. L.; Wang, X. G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H. R.; Zhu, Y.; Li, B.; Huang, C. L. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270-273.
[188]
Zhu, N.; Zhang, D. Y.; Wang, W. L.; Li, X. W.; Yang, B.; Song, J. D.; Zhao, X.; Huang, B. Y.; Shi, W. F.; Lu, R. J. et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727-733.
[189]
Wu, F.; Zhao, S.; Yu, B.; Chen, Y. M.; Wang, W.; Song, Z. G.; Hu, Y.; Tao, Z. W.; Tian, J. H.; Pei, Y. Y. et al. A new coronavirus associated with human respiratory disease in China. Nature 2020, 579, 265-269.
[190]
Udugama, B.; Kadhiresan, P.; Kozlowski, H. N.; Malekjahani, A.; Osborne, M.; Li, V. Y. C.; Chen, H. M.; Mubareka, S.; Gubbay, J. B.; Chan, W. C. W. Diagnosing COVID-19: The disease and tools for detection. ACS nano. 2020, 14, 3822-3835.
[191]
Moitra, P.; Alafeef, M.; Dighe, K.; Frieman, M. B.; Pan, D. Selective naked-eye detection of SARS-CoV-2 mediated by n gene targeted antisense oligonucleotide capped plasmonic nanoparticles. ACS Nano 2020, 14, 7617-7627.
[192]
Chen, Z. H.; Zhang, Z. G.; Zhai, X. M.; Li, Y. Y.; Lin, L.; Zhao, H.; Bian, L.; Li, P.; Yu, L.; Wu, Y. S. et al. Rapid and sensitive detection of anti-SARS-CoV-2 IgG, using lanthanide-doped nanoparticles-based lateral flow immunoassay. Anal. Chem. 2020, 92, 7226-7231.
[193]
Yadavalli, T.; Shukla, D. Role of metal and metal oxide nanoparticles as diagnostic and therapeutic tools for highly prevalent viral infections. Nanomedicine 2017, 13, 219-230.
[194]
Quesada-González, D.; Merkoçi, A. Nanomaterial-based devices for point-of-care diagnostic applications. Chem. Soc. Rev. 2018, 47, 4697-4709.
[195]
Maltez-da Costa, M.; de la Escosura-Muñiz, A.; Nogués, C.; Barrios, L.; Ibáñez, E.; Merkoçi, A. Simple monitoring of cancer cells using nanoparticles. Nano Lett. 2012, 12, 4164-4171.
[196]
Seo, G.; Lee, G.; Kim, M. J.; Baek, S. H.; Choi, M.; Ku, K. B.; Lee, C. S.; Jun, S.; Park, D.; Kim, H. G. et al. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano 2020, 14, 5135-5142.
[197]
Szunerits, S.; Barras, A.; Khanal, M.; Pagneux, Q.; Boukherroub, R. Nanostructures for the inhibition of viral infections. Molecules 2015, 20, 14051-14081.
[198]
Fahmi, M. Z.; Sukmayani, W.; Khairunisa, S. Q.; Witaningrum, A. M.; Indriati, D. W.; Matondang, M. Q. Y.; Chang, J. Y.; Kotaki, T.; Kameoka, M. Design of boronic acid-attributed carbon dots on inhibits HIV-1 entry. RSC Adv. 2016, 6, 92996-93002.
[199]
Łoczechin, A.; Séron, K.; Barras, A.; Giovanelli, E.; Belouzard, S.; Chen, Y. T.; Metzler-Nolte, N.; Boukherroub, R.; Dubuisson, J.; Szunerits, S. Functional carbon quantum dots as medical countermeasures to human coronavirus. ACS Appl. Mater. Interfaces 2019, 11, 42964-42974.
[200]
Yuan, Y.; Cao, D. F.; Zhang, Y. F.; Ma, J.; Qi, J. X.; Wang, Q. H.; Lu, G. W.; Wu, Y.; Yan, J. H.; Shi, Y. et al. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat. Commun. 2017, 8, 15092.
[201]
Raj, V. S.; Mou, H.; Smits, S. L.; Dekkers, D. H. W.; Müller, M. A.; Dijkman, R.; Muth, D.; Demmers, J. A. A.; Zaki, A.; Fouchier, R. A. M. et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 2013, 495, 251-254.
[202]
Coleman, C. M.; Venkataraman, T.; Liu, Y. V.; Glenn, G. M.; Smith, G. E.; Flyer, D. C.; Frieman, M. B. MERS-CoV spike nanoparticles protect mice from MERS-CoV infection. Vaccine 2017, 35, 1586-1589.
[203]
Shereen, M. A.; Khan, S.; Kazmi, A.; Bashir, N.; Siddique, R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J. Adv. Res. 2020, 24, 91-98.
[204]
Monteil, V.; Kwon, H.; Prado, P.; Hagelkrüys, A.; Wimmer, R. A.; Stahl, M.; Leopoldi, A.; Garreta, E.; Hurtado Del Pozo, C.; Prosper, F. et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 2020, 181, 905-913.e7.
[205]
Zhang, H. B.; Penninger, J. M.; Li, Y. M.; Zhong, N. S.; Slutsky, A. S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intens. Care Med. 2020, 46, 586-590.
[206]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T. S.; Herrler, G.; Wu, N. H.; Nitsche, A. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020, 181, 271-280.e8.
[207]
Singh, L.; Kruger, H. G.; Maguire, G. E. M.; Govender, T.; Parboosing, R. The role of nanotechnology in the treatment of viral infections. Ther. Adv. Infect. Dis. 2017, 4, 105-131.
[208]
Jackman, J. A.; Lee, J.; Cho, N. J. Nanomedicine for infectious disease applications: Innovation towards broad-spectrum treatment of viral infections. Small 2016, 12, 1133-1139.
[209]
Adesina, S. K.; Akala, E. O. Nanotechnology approaches for the delivery of exogenous siRNA for HIV therapy. Mol. Pharmaceutics 2015, 12, 4175-4187.
[210]
Richardson, P.; Griffin, I.; Tucker, C.; Smith, D.; Oechsle, O.; Phelan, A.; Rawling, M.; Savory, E.; Stebbing, J. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet 2020, 395, e30-e31.
[211]
Pu, S. Y.; Xiao, F.; Schor, S.; Bekerman, E.; Zanini, F.; Barouch- Bentov, R.; Nagamine, C. M.; Einav, S. Feasibility and biological rationale of repurposing sunitinib and erlotinib for dengue treatment. Antiviral. Res. 2018, 155, 67-75.
[212]
Chen, N. S.; Zhou, M.; Dong, X.; Qu, J. M.; Gong, F. Y.; Han, Y.; Qiu, Y.; Wang, J. L.; Liu, Y.; Wei, Y. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507-513.
[213]
Xu, H. P.; He, C. Y.; Liu, Y.; Jiang, J. L.; Ma, T. Novel therapeutic modalities and drug delivery-erlotinib liposomes modified with galactosylated lipid: In vitro and in vivo investigations. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1902-1907.
[214]
Zeng, C. X.; Hou, X. C.; Yan, J. Y.; Zhang, C. X.; Li, W. Q.; Zhao, W. Y.; Du, S.; Dong, Y. Z. Leveraging mRNAs sequences to express SARS-CoV-2 antigens in vivo. bioRxiv 2020, .
[215]
Broza, Y. Y.; Haick, H. Nanomaterial-based sensors for detection of disease by volatile organic compounds. Nanomedicine 2013, 8, 785-806.
[216]
Dragonieri, S.; Schot, R.; Mertens, B. J. A.; Le Cessie, S.; Gauw, S. A.; Spanevello, A.; Resta, O.; Willard, N. P.; Vink, T. J.; Rabe, K. F. et al. An electronic nose in the discrimination of patients with asthma and controls. J. Allergy Clin. Immunol. 2007, 120, 856-862.
[217]
Taylor, S. L.; Leong, L. E. X.; Choo, J. M.; Wesselingh, S.; Yang, I. A.; Upham, J. W.; Reynolds, P. N.; Hodge, S.; James, A. L.; Jenkins, C. et al. Inflammatory phenotypes in patients with severe asthma are associated with distinct airway microbiology. J. Allergy Clin. Immunol. 2018, 141, 94-103.e15.
[218]
Plaza, V.; Crespo, A.; Giner, J.; Merino, J. L.; Ramos-Barbón, D.; Mateus, E. F.; Torrego, A.; Cosio, B. G.; Agustí, A.; Sibila, O. Inflammatory asthma phenotype discrimination using an electronic nose breath analyzer. J. Investig. Allergol. Clin. Immunol. 2015, 25, 431-437.
[219]
Keil, T. W. M.; Feldmann, D. P.; Costabile, G.; Zhong, Q.; da Rocha, S.; Merkel, O. M. Characterization of spray dried powders with nucleic acid-containing PEI nanoparticles. Eur. J. Pharm. Biopharm. 2019, 143, 61-69.
[220]
Bhavna; Ahmad, F. J.; Mittal, G.; Jain, G. K.; Malhotra, G.; Khar, R. K.; Bhatnagar, A. Nano-salbutamol dry powder inhalation: A new approach for treating broncho-constrictive conditions. Eur. J. Pharm. Biopharm. 2009, 71, 282-291.
[221]
Matsuo, Y.; Ishihara, T.; Ishizaki, J.; Miyamoto, K. I.; Higaki, M.; Yamashita, N. Effect of betamethasone phosphate loaded polymeric nanoparticles on a murine asthma model. Cell. Immunol. 2009, 260, 33-38.
[222]
Nasr, M.; Najlah, M.; D’Emanuele, A.; Elhissi, A. PAMAM dendrimers as aerosol drug nanocarriers for pulmonary delivery via nebulization. Int. J. Pharmaceut. 2014, 461, 242-250.
[223]
Kenyon, N. J.; Bratt, J. M.; Lee, J.; Luo, J. T.; Franzi, L. M.; Zeki, A. A.; Lam, K. S. Self-assembling nanoparticles containing dexamethasone as a novel therapy in allergic airways inflammation. PLoS One 2013, 8, e77730.
[224]
Chen, X. Y.; Huang, W. H.; Wong, B. C.; Yin, L. L.; Wong, Y. F.; Xu, M.; Yang, Z. J. Liposomes prolong the therapeutic effect of anti-asthmatic medication via pulmonary delivery. Int. J. Nanomedicine 2012, 7, 1139-1148.
[225]
Arafa, M. G.; Ayoub, B. M. Nano-vesicles of salbutamol sulphate in metered dose inhalers: Formulation, characterization and in vitro evaluation. Int. J. Appl. Pharmaceut. 2017, 9, 100-105.
[226]
Wang, K.; Feng, Y. P.; Li, S.; Li, W. J.; Chen, X.; Yi, R.; Zhang, H. R.; Hong, Z. Y. Oral delivery of bavachinin-loaded PEG-PLGA nanoparticles for asthma treatment in a murine model. J. Biomed. Nanotechnol. 2018, 14, 1806-1815.
[227]
Chakraborty, S.; Ehsan, I.; Mukherjee, B.; Mondal, L.; Roy, S.; Saha, K. D.; Paul, B.; Debnath, M. C.; Bera, T. Therapeutic potential of andrographolide-loaded nanoparticles on a murine asthma model. Nanomedicine 2019, 20, 102006.
[228]
Joshi, V. B.; Adamcakova-Dodd, A.; Jing, X. F.; Wongrakpanich, A.; Gibson-Corley, K. N.; Thorne, P. S.; Salem, A. K. Development of a poly (lactic-co-glycolic acid) particle vaccine to protect against house dust mite induced allergy. AAPS J. 2014, 16, 975-985.
[229]
Salem, A. K. A promising CpG adjuvant-loaded nanoparticle-based vaccine for treatment of dust mite allergies. Immunotherapy 2014, 6, 1161-1163.
[230]
Grozdanovic, M.; Laffey, K. G.; Abdelkarim, H.; Hitchinson, B.; Harijith, A.; Moon, H. G.; Park, G. Y.; Rousslang, L. K.; Masterson, J. C.; Furuta, G. T. et al. Novel peptide nanoparticle-biased antagonist of CCR3 blocks eosinophil recruitment and airway hyperresponsiveness. J. Allergy Clin. Immunol. 2019, 143, 669-680. e612.
[231]
Kumar, M.; Kong, X. Y.; Behera, A. K.; Hellermann, G. R.; Lockey, R. F.; Mohapatra, S. S. Chitosan IFN-γ-pDNA nanoparticle (CIN) therapy for allergic asthma. Genet. Vaccines Ther. 2003, 1, 3.
[232]
Kong, X. Y.; Hellermann, G. R.; Zhang, W. D.; Jena, P.; Kumar, M.; Behera, A.; Behera, S.; Lockey, R.; Mohapatra, S. S. Chitosan interferon-γ nanogene therapy for lung disease: Modulation of T-cell and dendritic cell immune responses. Allergy Asthma Clin. Immnuol. 2008, 4, 95-105.
[233]
Farokhzad, O. C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano 2009, 3, 16-20.
[234]
Shi, J. J.; Votruba, A. R.; Farokhzad, O. C.; Langer, R. Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano Lett. 2010, 10, 3223-3230.
[235]
Sanhai, W. R.; Sakamoto, J. H.; Canady, R.; Ferrari, M. Seven challenges for nanomedicine. Nat. Nanotechnol. 2008, 3, 242-244.
[236]
Sanders, N.; Rudolph, C.; Braeckmans, K.; De Smedt, S. C.; Demeester, J. Extracellular barriers in respiratory gene therapy. Adv. Drug Deliv. Rev. 2009, 61, 115-127.
[237]
Lai, S. K.; Wang, Y. Y.; Hanes, J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev. 2009, 61, 158-171.
[238]
Lai, S. K.; Wang, Y. Y.; Wirtz, D.; Hanes, J. Micro- and macrorheology of mucus. Adv. Drug Deliv. Rev. 2009, 61, 86-100.
[239]
Petros, R. A.; DeSimone, J. M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 2010, 9, 615-627.
[240]
Dobrovolskaia, M. A.; McNeil, S. E. Immunological properties of engineered nanomaterials. Nat Nanotechnol. 2007, 2, 469-478.
[241]
Schuster, B. S.; Suk, J. S.; Woodworth, G. F.; Hanes, J. Nanoparticle diffusion in respiratory mucus from humans without lung disease. Biomaterials 2013, 34, 3439-3446.
[242]
Huckaby, J. T.; Lai, S. K. PEGylation for enhancing nanoparticle diffusion in mucus. Adv. Drug Deliv. Rev. 2018, 124, 125-139.
[243]
Shi, J. J.; Kantoff, P. W.; Wooster, R.; Farokhzad, O. C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 2017, 17, 20-37.
[244]
Hare, J. I.; Lammers, T.; Ashford, M. B.; Puri, S.; Storm, G.; Barry, S. T. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Adv. Drug Deliv. Rev. 2017, 108, 25-38.
[245]
Kuzmov, A.; Minko, T. Nanotechnology approaches for inhalation treatment of lung diseases. J. Control. Release 2015, 219, 500-518.
[246]
Hossen, S.; Hossain, M. K.; Basher, M. K.; Mia, M. N. H.; Rahman, M. T.; Uddin, M. J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J. Adv. Res. 2019, 15, 1-18.
[247]
Wilhelm, S.; Tavares, A. J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H. F.; Chan, W. C. W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016, 1, 16014.
[248]
Genchi, G. G.; Marino, A.; Tapeinos, C.; Ciofani, G. Smart materials meet multifunctional biomedical devices: Current and prospective implications for nanomedicine. Front. Bioeng. Biotechnol. 2017, 5, 80.
Nano Research
Pages 2067-2089
Cite this article:
Zhong W, Zhang X, Zeng Y, et al. Recent applications and strategies in nanotechnology for lung diseases. Nano Research, 2021, 14(7): 2067-2089. https://doi.org/10.1007/s12274-020-3180-3
Topics:

1271

Views

63

Crossref

59

Web of Science

67

Scopus

3

CSCD

Altmetrics

Received: 15 September 2020
Revised: 11 October 2020
Accepted: 11 October 2020
Published: 05 July 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return