AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Flagship Review

Advanced photocatalysts based on metal nanoparticle/metal-organic framework composites

Jun Guo1,2Yue Wan1Yanfei Zhu2,3Meiting Zhao1( )Zhiyong Tang2,3( )
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
Show Author Information

Graphical Abstract

Abstract

Photocatalysis, via conversion of light into valuable chemicals, is an economic and effective way to utilize inexhaustible solar energy for the sustainable development of our human society. Aiming at killing two birds with one stone, metal nanoparticle (MNP)/metal-organic framework (MOF) composites via integration of the individual advantages of MNP and MOF have been becoming a versatile photocatalyst. Moreover, owing to the synergist effect between each component, MNP/MOF composite photocatalysts usually show greatly promoted catalytic activity, selectivity and long-term recyclability. In this review, first of all, the widely adopted synthesis strategies of MNP/MOF composite are introduced comprehensively, and then their recent advances in photocatalysis including photocatalytic hydrogen production, carbon dioxide reduction, organic transformation reactions and photodegradation of pollutants are summarized and highlighted. Finally, challenges and perspectives among MNP/MOF based photocatalysis are also proposed and discussed for advancing further development in this hot research field.

References

[1]
Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-38.
[2]
Ong, C. B.; Ng, L. Y.; Mohammad, A. W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew. Sust. Energ. Rev. 2018, 81, 536-551.
[3]
Ma, R.; Zhang, S.; Wen, T.; Gu, P. C.; Li, L.; Zhao, G. X.; Niu, F. L.; Huang, Q. F.; Tang, Z. W.; Wang, X. K. A critical review on visible- light-response CeO2-based photocatalysts with enhanced photooxidation of organic pollutants. Catal. Today 2019, 335, 20-30.
[4]
Lee, G. J.; Wu, J. J. Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications—A review. Powder Technol. 2017, 318, 8-22.
[5]
Cheng, L.; Xiang, Q. J.; Liao, Y. L.; Zhang, H. W. CdS-based photocatalysts. Energy Environ. Sci. 2018, 11, 1362-1391.
[6]
Wen, J. Q.; Xie, J.; Chen, X. B; Li, X. A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 2017, 391, 72-123.
[7]
Mishra, M.; Chun, D. M. α-Fe2O3 as a photocatalytic material: A review. Appl. Catal. A: General 2015, 498, 126-141.
[8]
Chen, S. S.; Takata, T.; Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2017, 2, 17050.
[9]
Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.
[10]
Howarth, A. J.; Liu, Y. Y.; Li, P.; Li, Z. Y.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Chemical, thermal and mechanical stabilities of metal- organic frameworks. Nat. Rev. Mater. 2016, 1, 15018.
[11]
Huang, X. C.; Lin, Y. Y.; Zhang, J. P.; Chen, X. M. Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angew. Chem. 2006, 45, 1557-1559.
[12]
Lin, Z. J.; Lü, J.; Hong, M.; Cao, R. Metal-organic frameworks based on flexible ligands (FL-MOFs): Structures and applications. Chem. Soc. Rev. 2014, 43, 5867-5895.
[13]
Pang, Q. Q.; Tu, B. B.; Li, Q. W. Metal-organic frameworks with multicomponents in order. Coord. Chem. Rev. 2019, 388, 107-125.
[14]
Zhou, H. C.; Long, J. R.; Yaghi, O. M. Introduction to metal-organic frameworks. Chem. Rev. 2012, 112, 673-674.
[15]
Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067-2080.
[16]
Liu, S. J.; Zhang, C.; Sun, Y. D.; Chen, Q.; He, L. F.; Zhang, K.; Zhang, J.; Liu, B.; Chen, L. F. Design of metal-organic framework- based photocatalysts for hydrogen generation. Coord. Chem. Rev. 2020, 413, 213266.
[17]
Chen, L. Y.; Xu, Q. Metal-organic framework composites for catalysis. Matter 2019, 1, 57-89.
[18]
Alkhatib, I. I.; Garlisi, C.; Pagliaro, M.; Al-Ali, K.; Palmisano, G. Metal-organic frameworks for photocatalytic CO2 reduction under visible radiation: A review of strategies and applications. Catal. Today 2020, 340, 209-224.
[19]
Li, D. D.; Kassymova, M.; Cai, X. C.; Zang, S. Q.; Jiang, H. L. Photocatalytic CO2 reduction over metal-organic framework-based materials. Coord. Chem. Rev. 2020, 412, 213262.
[20]
Pi, Y. H.; Li, X. Y.; Xia, Q. B.; Wu, J. L.; Li, Y. W.; Xiao, J.; Li, Z. Adsorptive and photocatalytic removal of persistent organic pollutants (POPs) in water by metal-organic frameworks (MOFs). Chem. Eng. J. 2018, 337, 351-371.
[21]
Cao, M.; Pang, R.; Wang, Q. Y.; Han, Z.; Wang, Z. Y.; Dong, X. Y.; Li, S. F.; Zang, S. Q.; Mak, T. C. W. Porphyrinic silver cluster assembled material for simultaneous capture and photocatalysis of mustard-gas simulant. J. Am. Chem. Soc. 2019, 141, 14505-14509.
[22]
Wang, Q.; Gao, Q. Y.; Al-Enizi, A. M.; Nafady, A.; Ma, S. Q. Recent advances in MOF-based photocatalysis: Environmental remediation under visible light. Inorg. Chem. Front. 2020, 7, 300-339.
[23]
Subudhi, S.; Rath, D.; Parida, K. M. A mechanistic approach towards the photocatalytic organic transformations over functionalised metal organic frameworks: A review. Catal. Sci. Technol. 2018, 8, 679-696.
[24]
Xiao, J. D.; Jiang, H. L. Metal-organic frameworks for photocatalysis and photothermal catalysis. Acc. Chem. Res. 2019, 52, 356-366.
[25]
Wang, J. L.; Wang, C.; Lin, W. B. Metal-organic frameworks for light harvesting and photocatalysis. ACS Catal. 2012, 2, 2630-2640.
[26]
Wang, M. M.; Wang, P.; Li, C. P.; Li, H. J.; Jin, Y. D. Boosting electrocatalytic oxygen evolution performance of ultrathin Co/Ni-MOF nanosheets via plasmon-induced hot carriers. ACS Appl. Mater. Interfaces 2018, 10, 37095-37102.
[27]
Vaddipalli, S. R.; Sanivarapu, S. R.; Vengatesan, S.; Lawrence, J. B.; Eashwar, M.; Sreedhar, G. Heterostructured Au NPs/CdS/LaBTC MOFs photoanode for efficient photoelectrochemical water splitting: stability enhancement via CdSe QDs to 2D-CdS nanosheets transformation. ACS Appl. Mater. Interfaces 2016, 8, 23049-23059.
[28]
Becerra, J.; Nguyen, D. T.; Gopalakrishnan, V. N.; Do, T. O. Plasmonic Au nanoparticles incorporated in the zeolitic imidazolate framework (ZIF-67) for the efficient sunlight-driven photoreduction of CO2. ACS Appl. Energy Mater. 2020, 3, 7659-7665.
[29]
Deng, X.; Yang, L. L.; Huang, H. L.; Yang, Y. Y.; Feng, S. Q.; Zeng, M.; Li, Q.; Xu, D. S. Shape-defined hollow structural Co-MOF-74 and metal nanoparticles@Co-MOF-74 composite through a transformation strategy for enhanced photocatalysis performance. Small 2019, 15, 1902287.
[30]
Choi, K. M.; Kim, D.; Rungtaweevoranit, B.; Trickett, C. A.; Barmanbek, J. T. D.; Alshammari, A. S.; Yang, P. D.; Yaghi, O. M. Plasmon-enhanced photocatalytic CO2 conversion within metal- organic frameworks under visible light. J. Am. Chem. Soc. 2017, 139, 356-362.
[31]
Robatjazi, H.; Weinberg, D.; Swearer, D. F.; Jacobson, C.; Zhang, M.; Tian, S.; Zhou, L. N.; Nordlander, P.; Halas, N. J. Metal-organic frameworks tailor the properties of aluminum nanocrystals. Sci. Adv. 2019, 5, eaav5340.
[32]
Guo, F.; Wei, Y. P.; Wang, S. Q.; Zhang, X. Y.; Wang, F. M.; Sun, W. Y. Pt nanoparticles embedded in flowerlike NH2-UiO-68 for enhanced photocatalytic carbon dioxide reduction. J. Mater. Chem. A 2019, 7, 26490-26495.
[33]
Wang, C.; deKrafft, K. E.; Lin, W. B. Pt Nanoparticles@photoactive metal-organic frameworks: Efficient hydrogen evolution via synergistic photoexcitation and electron injection. J. Am. Chem. Soc. 2012, 134, 7211-7214.
[34]
Xiao, J. D.; Shang, Q. C.; Xiong, Y. J.; Zhang, Q.; Luo, Y.; Yu, S. H.; Jiang, H. L. Boosting photocatalytic hydrogen production of a metal-organic framework decorated with platinum nanoparticles: The platinum location matters. Angew. Chem., Int. Ed. 2016, 55, 9389-9393.
[35]
Han, Y. Q.; Xu, H. T.; Su, Y. Q.; Xu, Z. L.; Wang, K. F.; Wang, W. Z. Noble metal (Pt, Au@Pd) nanoparticles supported on metal organic framework (MOF-74) nanoshuttles as high-selectivity CO2 conversion catalysts. J. Catal. 2019, 370, 70-78.
[36]
Sun, D. R.; Li, Z. H. Double-solvent method to pd nanoclusters encapsulated inside the cavity of NH2-Uio-66(Zr) for efficient visible-light-promoted suzuki coupling reaction. J. Phys. Chem. C 2016, 120, 19744-19750.
[37]
Sun, D. R.; Xu, M. P.; Jiang, Y. T.; Long, J. L.; Li, Z. H. Small-sized bimetallic CuPd nanoclusters encapsulated inside cavity of NH2- UiO-66(Zr) with superior performance for light-induced Suzuki coupling reaction. Small Methods 2018, 2, 1800164.
[38]
Wang, D. K.; Pan, Y. T.; Xu, L. Z.; Li, Z. H. PdAu@MIL-100(Fe) cooperatively catalyze tandem reactions between amines and alcohols for efficient N-alkyl amines syntheses under visible light. J. Catal. 2018, 361, 248-254.
[39]
Long, J. L.; Liu, H. L.; Wu, S. J.; Liao, S. J.; Li, Y. W. Selective oxidation of saturated hydrocarbons using Au-Pd alloy nanoparticles supported on metal-organic frameworks. ACS Catal. 2013, 3, 647-654.
[40]
Rungtaweevoranit, B.; Baek, J.; Araujo, J. R.; Archanjo, B. S.; Choi, K. M.; Yaghi, O. M.; Somorjai, G. A. Copper nanocrystals encapsulated in Zr-based metal-organic frameworks for highly selective CO2 hydrogenation to methanol. Nano Lett. 2016, 16, 7645-7649.
[41]
Na, K.; Choi, K. M.; Yaghi, O. M.; Somorjai, G. A. Metal nanocrystals embedded in single nanocrystals of MOFs give unusual selectivity as heterogeneous catalysts. Nano Lett. 2014, 14, 5979-5983.
[42]
Chang, F. W.; Kuo, M. S.; Tsay, M. T.; Hsieh, M. C. Hydrogenation of CO2 over nickel catalysts on rice husk ash-alumina prepared by incipient wetness impregnation. Appl. Catal. A 2003, 247, 309-320.
[43]
Sabo, M.; Henschel, A.; Fröde, H.; Klemm, E.; Kaskel, S. Solution infiltration of palladium into MOF-5: Synthesis, physisorption and catalytic properties. J. Mater. Chem. 2007, 17, 3827-3832.
[44]
Hwang, Y. K.; Hong, D. Y.; Chang, J. S.; Jhung, S. H.; Seo, Y. K.; Kim, J.; Vimont, A.; Daturi, M.; Serre, C.; Férey, G. Amine grafting on coordinatively unsaturated metal centers of MOFs: Consequences for catalysis and metal encapsulation. Angew. Chem. 2008, 120, 4212-4216.
[45]
Huang, Y. B.; Lin, Z. J.; Cao, R. Palladium nanoparticles encapsulated in a metal-organic framework as efficient heterogeneous catalysts for direct C2 arylation of indoles. Chem.—Eur. J. 2011, 17, 12706-12712.
[46]
Juan-Alcañiz, J.; Ferrando-Soria, J.; Luz, I.; Serra-Crespo, P.; Skupien, E.; Santos, V. P.; Pardo, E.; Llabrés i Xamena, F. X.; Kapteijn, F.; Gascon, J. The oxamate route, a versatile post-functionalization for metal incorporation in MIL-101(Cr): Catalytic applications of Cu, Pd, and Au. J. Catal. 2013, 307, 295-304.
[47]
Guo, Z. Y.; Xiao, C. X.; Maligal-Ganesh, R. V.; Zhou, L.; Goh, T. W.; Li, X. L.; Tesfagaber, D.; Thiel, A.; Huang, W. Y. Pt nanoclusters confined within metal-organic framework cavities for chemoselective cinnamaldehyde hydrogenation. ACS Catal. 2014, 4, 1340-1348.
[48]
Zhang, F. M.; Jin, Y.; Fu, Y. H.; Zhong, Y. J.; Zhu, W. D.; Ibrahim, A. A.; El-Shall, M. S. Palladium nanoparticles incorporated within sulfonic acid-functionalized MIL-101(Cr) for efficient catalytic conversion of vanillin. J. Mater. Chem. A 2015, 3, 17008-17015.
[49]
Chen, M. M.; Han, L.; Zhou, J.; Sun, C. Y.; Hu, C. Y.; Wang, X. L.; Su, Z. M. Photoreduction of carbon dioxide under visible light by ultra-small Ag nanoparticles doped into Co-ZIF-9. Nanotechnology 2018, 29, 284003.
[50]
Liu, X. H.; Ma, J. G.; Niu, Z.; Yang, G. M.; Cheng, P. An efficient nanoscale heterogeneous catalyst for the capture and conversion of carbon dioxide at ambient pressure. Angew. Chem., Int. Ed. 2015, 54, 988-991.
[51]
Jiang, H. L.; Akita, T.; Ishida, T.; Haruta, M.; Xu, Q. Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal- organic framework. J. Am. Chem. Soc. 2011, 133, 1304-1306.
[52]
Gu, X. J.; Lu, Z. H.; Jiang, H. L.; Akita, T.; Xu, Q. Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage. J. Am. Chem. Soc. 2011, 133, 11822-11825.
[53]
Aijaz, A.; Karkamkar, A.; Choi, Y. J.; Tsumori, N.; Rönnebro, E.; Autrey, T.; Shioyama, H.; Xu, Q. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: A double solvents approach. J. Am. Chem. Soc. 2012, 134, 13926-13929.
[54]
Liu, J. W.; Fan, Y. Z.; Zhang, K.; Zhang, L.; Su, C. Y. Engineering porphyrin metal-organic framework composites as multifunctional platforms for CO2 adsorption and activation. J. Am. Chem. Soc. 2020, 142, 14548-14556.
[55]
Liu, Y.; Jia, S. Y.; Wu, S. H.; Li, P. L.; Liu, C. J.; Xu, Y. M.; Qin, F. X. Synthesis of highly dispersed metallic nanoparticles inside the pores of MIL-101(Cr) via the new double solvent method. Catal. Commun. 2015, 70, 44-48.
[56]
Chen, W. J.; Cheng, B. H.; Sun, Q. T.; Jiang, H. Preparation of MOF confined Ag nanoparticles for the highly active, size selective hydrogenation of olefins. ChemCatChem 2018, 10, 3659-3665.
[57]
Zhu, Q. L.; Li, J.; Xu, Q. Immobilizing metal nanoparticles to metal-organic frameworks with size and location control for optimizing catalytic performance. J. Am. Chem. Soc. 2013, 135, 10210-10213.
[58]
Li, J.; Zhu, Q. L.; Xu, Q. Highly active AuCo alloy nanoparticles encapsulated in the pores of metal-organic frameworks for hydrolytic dehydrogenation of ammonia borane. Chem. Commun. 2014, 50, 5899-5901.
[59]
Huang, Y. B.; Zhang, Y. H.; Chen, X. X.; Wu, D. S.; Yi, Z. G.; Cao, R. Bimetallic alloy nanocrystals encapsulated in ZIF-8 for synergistic catalysis of ethylene oxidative degradation. Chem. Commun. 2014, 50, 10115-10117.
[60]
Chen, Y. Z.; Xu, Q.; Yu, S. H.; Jiang, H. L. Tiny Pd@Co core-shell nanoparticles confined inside a metal-organic framework for highly efficient catalysis. Small 2015, 11, 71-76.
[61]
Sun, J. L.; Chen, Y. Z.; Ge, B. D.; Li, J. H.; Wang, G. M. Three-shell Cu@Co@Ni nanoparticles stabilized with a metal-organic framework for enhanced tandem catalysis. ACS Appl. Mater. Interfaces 2019, 11, 940-947.
[62]
Hermes, S.; Schröter, M. K.; Schmid, R.; Khodeir, L.; Muhler, M.; Tissler, A.; Fischer, R. W.; Fischer, R. A. Metal@MOF: Loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. Angew. Chem., Int. Ed. 2005, 44, 6237-6241.
[63]
Zahmakiran, M. Iridium nanoparticles stabilized by metal organic frameworks (IrNPs@ZIF-8): Synthesis, structural properties and catalytic performance. Dalton Trans. 2012, 41, 12690-12696.
[64]
Hermannsdörfer, J.; Friedrich, M.; Miyajima, N.; Albuquerque, R. Q.; Kümmel, S.; Kempe, R. Ni/Pd@MIL-101: Synergistic catalysis with cavity-conform Ni/Pd nanoparticles. Angew. Chem., Int. Ed. 2012, 51, 11473-11477.
[65]
Müller, M.; Lebedev, O. I.; Fischer, R. A. Gas-phase loading of [Zn4O(btb)2] (MOF-177) with organometallic CVD-precursors: Inclusion compounds of the type [LnM]a@MOF-177 and the formation of Cu and Pd nanoparticles inside MOF-177. J. Mater. Chem. 2008, 18, 5274-5281.
[66]
Ishida, T.; Nagaoka, M.; Akita, T.; Haruta, M. Deposition of gold clusters on porous coordination polymers by solid grinding and their catalytic activity in aerobic oxidation of alcohols. Chem. Eur. J. 2008, 14, 8456-8460.
[67]
Jiang, H. L.; Liu, B.; Akita, T.; Haruta, M.; Sakurai, H.; Xu, Q. Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal- organic framework. J. Am. Chem. Soc. 2009, 131, 11302-11303.
[68]
Jiang, H. L.; Lin, Q. P.; Akita, T.; Liu, B.; Ohashi, H.; Oji, H.; Honma, T.; Takei, T.; Haruta, M.; Xu, Q. Ultrafine gold clusters incorporated into a metal-organic framework. Chem.—Eur. J. 2011, 17, 78-81.
[69]
Mukoyoshi, M.; Kobayashi, H.; Kusada, K.; Hayashi, M.; Yamada, T.; Maesato, M.; Taylor, J. M.; Kubota, Y.; Kato, K.; Takata, M. et al. Hybrid materials of Ni NP@MOF prepared by a simple synthetic method. Chem. Commun. 2015, 51, 12463-12466.
[70]
Li, G. Q.; Kobayashi, H.; Kusada, K.; Taylor, J. M.; Kubota, Y.; Kato, K.; Takata, M.; Yamamoto, T.; Matsumura, S.; Kitagawa, H. An ordered bcc CuPd nanoalloy synthesised via the thermal decomposition of Pd nanoparticles covered with a metal-organic framework under hydrogen gas. Chem. Commun. 2014, 50, 13750-13753.
[71]
Choi, S.; Oh, M. Well-arranged and confined incorporation of PdCo nanoparticles within a hollow and porous metal-organic framework for superior catalytic activity. Angew. Chem., Int. Ed. 2019, 58, 866-871.
[72]
He, L. C.; Liu, Y.; Liu, J. Z.; Xiong, Y. S.; Zheng, J. Z.; Liu, Y. L.; Tang, Z. Y. Core-shell noble-metal@metal-organic-framework nanoparticles with highly selective sensing property. Angew. Chem. 2013, 125, 3829-3833.
[73]
Chen, L. Y.; Chen, X. D.; Liu, H. L.; Bai, C. H.; Li, Y. W. One-step encapsulation of Pd nanoparticles in MOFs via a temperature control program. J. Mater. Chem. A 2015, 3, 15259-15264.
[74]
Ke, F.; Wang, L. H.; Zhu, J. F. An efficient room temperature core-shell AgPd@MOF catalyst for hydrogen production from formic acid. Nanoscale 2015, 7, 8321-8325.
[75]
Kobayashi, H.; Mitsuka, Y.; Kitagawa, H. Metal nanoparticles covered with a metal-organic framework: From one-pot synthetic methods to synergistic energy storage and conversion functions. Inorg. Chem. 2016, 55, 7301-7310.
[76]
Liu, H. L.; Chang, L. N.; Bai, C. H.; Chen, L. Y.; Luque, R.; Li, Y. W. Controllable encapsulation of “clean” metal clusters within MOFs through kinetic modulation: Towards advanced heterogeneous nanocatalysts. Angew. Chem. 2016, 128, 5103-5107.
[77]
Lu, G.; Li, S. Z.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X. Y.; Wang, Y.; Wang, X.; Han, S. Y.; Liu, X. G. et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat. Chem. 2012, 4, 310-316.
[78]
Su, Y. Q.; Xu, H. T.; Wang, J. J.; Luo, X. K.; Xu, Z. L.; Wang, K. F.; Wang, W. Z. Nanorattle Au@PtAg encapsulated in ZIF-8 for enhancing CO2 photoreduction to CO. Nano Res. 2019, 12, 625-630.
[79]
Zhao, M. T.; Deng, K.; He, L. C.; Liu, Y.; Li, G. D.; Zhao, H. J.; Tang, Z. Y. Core-shell palladium Nanoparticle@metal-organic frameworks as multifunctional catalysts for cascade reactions. J. Am. Chem. Soc. 2014, 136, 1738-1741.
[80]
Li, Y. T.; Jin, J.; Wang, D. W.; Lv, J. W.; Hou, K.; Liu, Y. L.; Chen, C. Y.; Tang, Z. Y. Coordination-responsive drug release inside gold nanorod@metal-organic framework core-shell nanostructures for near-infrared-induced synergistic chemo-photothermal therapy. Nano Res. 2018, 11, 3294-3305.
[81]
Chen, L. Y.; Peng, Y.; Wang, H.; Gu, Z. Z.; Duan, C. Y. Synthesis of Au@ZIF-8 single- or multi-core-shell structures for photocatalysis. Chem. Commun. 2014, 50, 8651-8654.
[82]
Hu, P.; Zhuang, J.; Chou, L. Y.; Lee, H. K.; Ling, X. Y.; Chuang, Y. C.; Tsung, C. K. Surfactant-directed atomic to mesoscale alignment: Metal nanocrystals encased individually in single-crystalline porous nanostructures. J. Am. Chem. Soc. 2014, 136, 10561-10564.
[83]
Zheng, G. C.; de Marchi, S.; López-Puente, V.; Sentosun, K.; Polavarapu, L.; Pérez-Juste, I.; Hill, E. H.; Bals, S.; Liz-Marzán, L. M.; Pastoriza-Santos, I. et al. Encapsulation of single plasmonic nanoparticles within ZIF-8 and SERS analysis of the MOF flexibility. Small 2016, 12, 3935-3943.
[84]
Sugikawa, K.; Furukawa, Y.; Sada, K. SERS-active metal-organic frameworks embedding gold nanorods. Chem. Mater. 2011, 23, 3132-3134.
[85]
Zhou, J. J.; Wang, P.; Wang, C. X.; Goh, Y. T.; Fang, Z.; Messersmith, P. B.; Duan, H. W. Versatile core-shell nanoparticle@metal-organic framework nanohybrids: Exploiting mussel-inspired polydopamine for tailored structural integration. ACS Nano 2015, 9, 6951-6960.
[86]
Zhao, M. T.; Yuan, K.; Wang, Y.; Li, G. D.; Guo, J.; Gu, L.; Hu, W. P.; Zhao, H. J.; Tang, Z. Y. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature 2016, 539, 76-80.
[87]
Xu, Z. L.; Zhang, W. N.; Weng, J. N.; Huang, W.; Tian, D. B.; Huo, F. W. Encapsulation of metal layers within metal-organic frameworks as hybrid thin films for selective catalysis. Nano Res. 2016, 9, 158-164.
[88]
Zhu, Y. F.; Qiu, X. Y.; Zhao, S. L.; Guo, J.; Zhang, X. F.; Zhao, W. S.; Shi, Y. N.; Tang, Z. Y. Structure regulated catalytic performance of gold nanocluster-MOF nanocomposites. Nano Res. 2020, 13, 1928-1932.
[89]
Liu, H. L.; Chang, L. N.; Chen, L. Y.; Li, Y. W. Nanocomposites of platinum/metal-organic frameworks coated with metal-organic frameworks with remarkably enhanced chemoselectivity for cinnamaldehyde hydrogenation. ChemCatChem 2016, 8, 946-951.
[90]
Yang, Q.; Liu, W. X.; Wang, B. Q.; Zhang, W. N.; Zeng, X. Q.; Zhang, C.; Qin, Y. J.; Sun, X. M.; Wu, T. P.; Liu, J. F. et al. Regulating the spatial distribution of metal nanoparticles within metal-organic frameworks to enhance catalytic efficiency. Nat. Commun. 2017, 8, 14429.
[91]
Xu, H. T.; Luo, X. K.; Wang, J. J.; Su, Y. Q.; Zhao, X.; Li, Y. S. Spherical sandwich Au@Pd@UIO-67/Pt@UIO-n (n = 66, 67, 69) core-shell catalysts: Zr-based metal-organic frameworks for effectively regulating the reverse water-gas shift reaction. ACS Appl. Mater. Interfaces 2019, 11, 20291-20297.
[92]
Choe, K.; Zheng, F. B.; Wang, H.; Yuan, Y.; Zhao, W. S.; Xue, G. X.; Qiu, X. Y.; Ri, M.; Shi, X. H.; Wang, Y. L. et al. Fast and selective semihydrogenation of alkynes by palladium nanoparticles sandwiched in metal-organic frameworks. Angew. Chem., Int. Ed. 2020, 59, 3650-3657.
[93]
Yun, Y. P.; Sheng, H. T.; Bao, K.; Xu, L.; Zhang, Y.; Astruc, D.; Zhu, M. Z. Design and remarkable efficiency of the robust sandwich cluster composite nanocatalysts ZIF-8@Au25@ZIF-67. J. Am. Chem. Soc. 2020, 142, 4126-4130.
[94]
Guo, F.; Guo, J. H.; Wang, P.; Kang, Y. S.; Liu, Y.; Zhao, J.; Sun, W. Y. Facet-dependent photocatalytic hydrogen production of metal-organic framework NH2-MIL-125(Ti). Chem. Sci. 2019, 10, 4834-4838.
[95]
Ma, X.; Wang, L.; Zhang, Q.; Jiang, H. L. Switching on the photocatalysis of metal-organic frameworks by engineering structural defects. Angew. Chem. 2019, 131, 12303-12307.
[96]
Leng, F. C.; Liu, H.; Ding, M. L.; Lin, Q. P.; Jiang, H. L. Boosting photocatalytic hydrogen production of porphyrinic MOFs: The metal location in metalloporphyrin matters. ACS Catal. 2018, 8, 4583-4590.
[97]
Fang, X. Z.; Shang, Q. C.; Wang, Y.; Jiao, L.; Yao, T.; Li, Y. F.; Zhang, Q.; Luo, Y.; Jiang, H. L. Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Adv. Mater. 2018, 30, 1705112.
[98]
Zuo, Q.; Liu, T. T.; Chen, C. S.; Ji, Y.; Gong, X. Q.; Mai, Y. Y.; Zhou, Y. F. Ultrathin metal-organic framework nanosheets with ultrahigh loading of single Pt atoms for efficient visible-light-driven photocatalytic H2 evolution. Angew. Chem. 2019, 131, 10304-10309.
[99]
Lee, D. T.; Jamir, J. D.; Peterson, G. W.; Parsons, G. N. Protective fabrics: Metal-organic framework textiles for rapid photocatalytic sulfur mustard simulant detoxification. Matter 2020, 2, 404-415.
[100]
Song, Y.; Li, Z.; Zhu, Y. Y.; Feng, X. Y.; Chen, J. S.; Kaufmann, M.; Wang, C.; Lin, W. B. Titanium hydroxide secondary building units in metal-organic frameworks catalyze hydrogen evolution under visible light. J. Am. Chem. Soc. 2019, 141, 12219-12223.
[101]
Wang, C.; Xie, Z. G.; deKrafft, K. E.; Lin, W. B. Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J. Am. Chem. Soc. 2011, 133, 13445-13454.
[102]
Dong, X. Y.; Zhang, M.; Pei, R. B.; Wang, Q.; Wei, D. H.; Zang, S. Q.; Fan, Y. T.; Mak, T. C. W. A crystalline copper (II) coordination polymer for the efficient visible-light-driven generation of hydrogen. Angew. Chem. 2016, 128, 2113-2117.
[103]
Nasalevich, M. A.; Hendon, C. H.; Santaclara, J. G.; Svane, K.; van der Linden, B.; Veber, S. L.; Fedin, M. V.; Houtepen, A. J.; van der Veen, M. A.; Kapteijn, F. et al. Electronic origins of photocatalytic activity in d0 metal organic frameworks. Sci. Rep. 2016, 6, 23676.
[104]
de Miguel, M.; Ragon, F.; Devic, T.; Serre, C.; Horcajada, P.; García, H. Evidence of photoinduced charge separation in the metal-organic framework MIL-125(Ti)-NH2. ChemPhysChem 2012, 13, 3651-3654.
[105]
Wen, M. C.; Mori, K.; Kuwahara, Y.; An, T. C.; Yamashita, H. Design and architecture of metal organic frameworks for visible light enhanced hydrogen production. Appl. Catal. B: Environ. 2017, 218, 555-569.
[106]
Fateeva, A.; Chater, P. A.; Ireland, C. P.; Tahir, A. A.; Khimyak, Y. Z.; Wiper, P. V.; Darwent, J. R.; Rosseinsky, M. J. A water-stable porphyrin-based metal-organic framework active for visible-light photocatalysis. Angew. Chem., Int. Ed. 2012, 51, 7440-7444.
[107]
Wen, M. C.; Mori, K.; Kamegawa, T.; Yamashita, H. Amine-functionalized MIL-101(Cr) with imbedded platinum nanoparticles as a durable photocatalyst for hydrogen production from water. Chem. Commun. 2014, 50, 11645-11648.
[108]
Xiao, J. D.; Han, L. L.; Luo, J.; Yu, S. H.; Jiang, H. L. Integration of plasmonic effects and schottky junctions into metal-organic framework composites: Steering charge flow for enhanced visible- light photocatalysis. Angew. Chem., Int. Ed. 2018, 57, 1103-1107.
[109]
Chen, Y. J.; Ji, S. F.; Sun, W. M.; Lei, Y. P.; Wang, Q. C.; Li, A.; Chen, W. X.; Zhou, G.; Zhang, Z. D.; Wang, Y. et al. Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angew. Chem., Int. Ed. 2020, 59, 1295-1301.
[110]
Shen, L. J.; Luo, M. B.; Huang, L. J.; Feng, P. Y.; Wu, L. A clean and general strategy to decorate a titanium metal-organic framework with noble-metal nanoparticles for versatile photocatalytic applications. Inorg. Chem. 2015, 54, 1191-1193.
[111]
Jin, Z. L.; Yang, H. Exploration of Zr-metal-organic framework as efficient photocatalyst for hydrogen production. Nanoscale Res. Lett. 2017, 12, 539.
[112]
Wen, M. C.; Kuwahara, Y.; Mori, K.; Zhang, D. P.; Li, H. X.; Yamashita, H. Synthesis of Ce ions doped metal-organic framework for promoting catalytic H2 production from ammonia borane under visible light irradiation. J. Mater. Chem. A 2015, 3, 14134-14141.
[113]
Cure, J.; Mattson, E.; Cocq, K.; Assi, H.; Jensen, S.; Tan, K.; Catalano, M.; Yuan, S.; Wang, H.; Feng, L. et al. High stability of ultra-small and isolated gold nanoparticles in metal-organic framework materials. J. Mater. Chem. A 2019, 7, 17536-17546.
[114]
Mao, S. M.; Shi, J. W.; Sun, G. T.; Ma, D. D.; He, C.; Pu, Z. X.; Song, K. L.; Cheng, Y. H. Au nanodots@thiol-UiO66@ZnIn2S4 nanosheets with significantly enhanced visible-light photocatalytic H2 evolution: The effect of different Au positions on the transfer of electron-hole pairs. Appl. Catal. B: Environ. 2021, 282, 119550.
[115]
Fu, Y. H.; Sun, D. R.; Chen, Y. J.; Huang, R. K.; Ding, Z. X.; Fu, X. Z.; Li, Z. H. An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew. Chem., Int. Ed. 2012, 51, 3364-3367.
[116]
Lan, G. X.; Li, Z.; Veroneau, S. S.; Zhu, Y. Y.; Xu, Z. W.; Wang, C.; Lin, W. B. Photosensitizing metal-organic layers for efficient sunlight-driven carbon dioxide reduction. J. Am. Chem. Soc. 2018, 140, 12369-12373.
[117]
Zeng, L. Z.; Wang, Z. Y.; Wang, Y. K.; Wang, J.; Guo, Y.; Hu, H. H.; He, X. F.; Wang, C.; Lin, W. B. Photoactivation of Cu centers in metal-organic frameworks for selective CO2 conversion to ethanol. J. Am. Chem. Soc. 2020, 142, 75-79.
[118]
Ji, S. F.; Qu, Y.; Wang, T.; Chen, Y. J.; Wang, G. F.; Li, X.; Dong, J. C.; Chen, Q. Y.; Zhang, W. Y.; Zhang, Z. D. et al. Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 10651-10657.
[119]
Chen, L. Y.; Wang, Y. X.; Yu, F. Y.; Shen, X. S.; Duan, C. Y. A simple strategy for engineering heterostructures of Au nanoparticle-loaded metal-organic framework nanosheets to achieve plasmon-enhanced photocatalytic CO2 conversion under visible light. J. Mater. Chem. A 2019, 7, 11355-11361.
[120]
Sun, D. R.; Liu, W. J.; Fu, Y. H.; Fang, Z. X.; Sun, F. X.; Fu, X. Z.; Zhang, Y. F.; Li, Z. H. Noble metals can have different effects on photocatalysis over metal-organic frameworks (MOFs): A case study on M/NH2-MIL-125(Ti) (M = Pt and Au). Chem.—Eur. J. 2014, 20, 4780-4788.
[121]
Guo, F.; Yang, S. Z.; Liu, Y.; Wang, P.; Huang, J. E.; Sun, W. Y. Size engineering of metal-organic framework MIL-101(Cr)-Ag hybrids for photocatalytic CO2 reduction. ACS Catal. 2019, 9, 8464-8470.
[122]
Fu, Y. H.; Sun, L.; Yang, H.; Xu, L.; Zhang, F. M.; Zhu, W. D. Visible- light-induced aerobic photocatalytic oxidation of aromatic alcohols to aldehydes over Ni-doped NH2-MIL-125(Ti). Appl. Catal. B: Environ. 2016, 187, 212-217.
[123]
Chen, Y. Z.; Wang, Z. U.; Wang, H. W.; Lu, J. L.; Yu, S. H.; Jiang, H. L. Singlet oxygen-engaged selective photo-oxidation over Pt nanocrystals/porphyrinic MOF: The roles of photothermal effect and Pt electronic state. J. Am. Chem. Soc. 2017, 139, 2035-2044.
[124]
Qiu, J. H.; Yang, L. Y.; Li, M.; Yao, J. F. Metal nanoparticles decorated MIL-125-NH2 and MIL-125 for efficient photocatalysis. Mater. Res. Bull. 2019, 112, 297-306.
[125]
Qiu, J. H.; Zhang, X. G.; Xie, K. L.; Zhang, X. F.; Feng, Y.; Jia, M. M.; Yao, J. F. Noble metal nanoparticle-functionalized Zr-metal organic frameworks with excellent photocatalytic performance. J. Colloid Interface Sci. 2019, 538, 569-577.
[126]
Gu, Z. Z.; Chen, L. Y.; Duan, B. H.; Luo, Q.; Liu, J.; Duan, C. Y. Synthesis of Au@UiO-66(NH2) structures by small molecule-assisted nucleation for plasmon-enhanced photocatalytic activity. Chem. Commun. 2016, 52, 116-119.
[127]
Li, Z. X.; Gong, Y. X.; Zhang, X.; Wen, Y. Y.; Yao, J. S.; Hu, M. L.; He, M.; Liu, J. H.; Li, R.; Wang, F. Q. et al. Plasmonic coupling- enhanced in situ photothermal nanoreactor with shape selective catalysis for C-C coupling reaction. Nano Res. 2020, 13, 2812-2818.
[128]
Wang, D. K.; Li, Z. H. Coupling MOF-based photocatalysis with Pd catalysis over Pd@MIL-100(Fe) for efficient N-alkylation of amines with alcohols under visible light. J. Catal. 2016, 342, 151-157.
[129]
Liu, H.; Xu, C. Y.; Li, D. D.; Jiang, H. L. Photocatalytic hydrogen production coupled with selective benzylamine oxidation over MOF composites. Angew. Chem. 2018, 130, 5477-5481.
[130]
Yang, Q. H.; Xu, Q.; Yu, S. H.; Jiang, H. L. Pd Nanocubes@ ZIF-8: Integration of plasmon-driven photothermal conversion with a metal-organic framework for efficient and selective catalysis. Angew. Chem. 2016, 128, 3749-3753.
[131]
Sun, D. R.; Jang, S.; Yim, S. J.; Ye, L.; Kim, D. P. Metal doped core-shell metal-organic frameworks@covalent organic frameworks (MOFs@COFs) hybrids as a novel photocatalytic platform. Adv. Funct. Mater. 2018, 28, 1707110.
[132]
Sun, D. R.; Kim, D. P. Hydrophobic MOFs@metal nanoparticles@ COFs for interfacially confined photocatalysis with high efficiency. ACS Appl. Mater. Interfaces 2020, 12, 20589-20595.
[133]
Liang, R. W.; Jing, F. F.; Shen, L. J.; Qin, N.; Wu, L. M@MIL- 100(Fe) (M = Au, Pd, Pt) nanocomposites fabricated by a facile photodeposition process: Efficient visible-light photocatalysts for redox reactions in water. Nano Res. 2015, 8, 3237-3249.
[134]
Gao, S. T.; Feng, T.; Feng, C.; Shang, N. Z.; Wang, C. Novel visible-light-responsive Ag/AgCl@MIL-101 hybrid materials with synergistic photocatalytic activity. J. Colloid Interface Sci. 2016, 466, 284-290.
[135]
Abdelhameed, R. M.; Simões, M. M. Q.; Silva, A. M. S.; Rocha, J. Enhanced photocatalytic activity of MIL-125 by post-synthetic modification with CrIII and Ag nanoparticles. Chem.—Eur. J. 2015, 21, 11072-11081.
[136]
Liang, R. W.; Luo, S. G.; Jing, F. F.; Shen, L. J.; Qin, N.; Wu, L. A simple strategy for fabrication of Pd@MIL-100(Fe) nanocomposite as a visible-light-driven photocatalyst for the treatment of pharmaceuticals and personal care products (PPCPs). Appl. Catal. B: Environ. 2015, 176-177, 240-248.
[137]
Reddy, C. V.; Reddy, K. R.; Harish, V. V. N.; Shim, J.; Shankar, M. V.; Shetti, N. P.; Aminabhavi, T. M. Metal-organic frameworks (MOFs)-based efficient heterogeneous photocatalysts: Synthesis, properties and its applications in photocatalytic hydrogen generation, CO2 reduction and photodegradation of organic dyes. Int. J. Hydrogen Energy 2020, 45, 7656-7679.
[138]
Zhang, X.; Wang, J.; Dong, X. X.; Lv, Y. K. Functionalized metal-organic frameworks for photocatalytic degradation of organic pollutants in environment. Chemosphere 2020, 242, 125144.
[139]
Shen, L. J.; Wu, W. M.; Liang, R. W.; Lin, R.; Wu, L. Highly dispersed palladium nanoparticles anchored on UiO-66(NH2) metal-organic framework as a reusable and dual functional visible-light-driven photocatalyst. Nanoscale 2013, 5, 9374-9382.
[140]
Zhang, Y. F.; Park, S. J. Stabilization of dispersed CuPd bimetallic alloy nanoparticles on ZIF-8 for photoreduction of Cr(VI) in aqueous solution. Chem. Eng. J. 2019, 369, 353-362.
[141]
Huang, R. W.; Wei, Y. S.; Dong, X. Y.; Wu, X. H.; Du, C. X.; Zang, S. Q.; Mak, T. C. W. Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal-organic framework. Nat. Chem. 2017, 9, 689-697.
[142]
Dong, X. Y.; Si, Y. B.; Yang, J. S.; Zhang, C.; Han, Z.; Luo, P.; Wang, Z. Y.; Zang, S. Q.; Mak, T. C. W. Ligand engineering to achieve enhanced ratiometric oxygen sensing in a silver cluster-based metal-organic framework. Nat. Commun. 2020, 11, 3678.
Nano Research
Pages 2037-2052
Cite this article:
Guo J, Wan Y, Zhu Y, et al. Advanced photocatalysts based on metal nanoparticle/metal-organic framework composites. Nano Research, 2021, 14(7): 2037-2052. https://doi.org/10.1007/s12274-020-3182-1
Topics:

1217

Views

116

Crossref

0

Web of Science

116

Scopus

18

CSCD

Altmetrics

Received: 23 September 2020
Revised: 12 October 2020
Accepted: 13 October 2020
Published: 05 July 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return