AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Atomic Fe-Zn dual-metal sites for high-efficiency pH-universal oxygen reduction catalysis

Jie Xu1,§Shuhua Lai1,§Defeng Qi1Min Hu1Xianyun Peng1Yifan Liu2( )Wei Liu1Guangzhi Hu3Heng Xu1Fan Li1Chao Li1Jia He1( )Longchao Zhuo4Jiaqiang Sun5Yuan Qiu1Shusheng Zhang6Jun Luo1Xijun Liu1( )
Institute for New Energy Materials & Low-Carbon Technologies and Tianjin Key Lab of Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
College of Chemistry, Zhengzhou University, Zhengzhou 450000, China
Show Author Information

Graphical Abstract

Abstract

An effective electrocatalyst being highly active in all pH range for oxygen reduction reaction (ORR) is crucial for energy conversion and storage devices. However, most of the high-efficiency ORR catalysis was reported in alkaline conditions. Herein, we demonstrated the preparation of atomically dispersed Fe-Zn pairs anchored on porous N-doped carbon frameworks (Fe-Zn-SA/NC), which works efficiently as ORR catalyst in the whole pH range. It achieves high half-wave potentials of 0.78, 0.85 and 0.72 V in 0.1 M HClO4, 0.1 M KOH and 0.1 M phosphate buffer saline (PBS) solutions, respectively, as well as respectable stability. The performances are even comparable to Pt/C. Furthermore, when assembled into a Zn-air battery, the high power density of 167.2 mW·cm-2 and 120 h durability reveal the feasibility of Fe-Zn-SA/NC in real energy-related devices. Theoretical calculations demonstrate that the superior catalytic activity of Fe-Zn-SA/NC can be contributed to the lower energy barriers of ORR at the Fe-Zn-N6 centers. This work demonstrates the potential of Fe-Zn pairs as alternatives to the Pt catalysts for efficient catalytic ORR and provides new insights of dual-atom catalysts for other energy conversion related catalytic reactions.

Electronic Supplementary Material

Download File(s)
12274_2020_3186_MOESM1_ESM.pdf (5.2 MB)

References

[1]
Y. T. Qu,; Z. J. Li,; W. X. Chen,; Y. Lin,; T. W. Yuan,; Z. K. Yang,; C. M. Zhao,; J. Wang,; C. Zhao,; X. Wang, et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 2018, 1, 781-786.
[2]
J. Q. Zhang,; Y. F. Zhao,; C. Chen,; Y. C. Huang,; C. L. Dong,; C. J. Chen,; R. S. Liu,; C. Y. Wang,; K. Yan,; Y. D. Li, et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J. Am. Chem. Soc. 2019, 141, 20118-20126.
[3]
C. Tang,; Y. Jiao,; B. Y. Shi,; J. N. Liu,; Z. H. Xie,; X. Chen,; Q. Zhang,; S. Z. Qiao, Coordination tunes selectivity: Two-electron oxygen reduction on high-loading molybdenum single-atom catalysts. Angew. Chem., Int. Ed. 2020, 132, 9256-9261.
[4]
C. Z. Wan,; X. F. Duan,; Y. Huang, Molecular design of single-atom catalysts for oxygen reduction reaction. Adv. Energy Mater. 2020, 10, 1903815.
[5]
B. C. Hu,; Z. Y. Wu,; S. Q. Chu,; H. W. Zhu,; H. W. Liang,; J. Zhang,; S. H. Yu, SiO2-protected shell mediated templating synthesis of Fe-N-doped carbon nanofibers and their enhanced oxygen reduction reaction performance. Energy Environ. Sci. 2018, 11, 2208-2215.
[6]
Q. H. Li,; W. X. Chen,; H. Xiao,; Y. Gong,; Z. Li,; L. R. Zheng,; X. S. Zheng,; W. S. Yan,; W. C. Cheong,; R. A. Shen, et al. Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv. Mater. 2018, 30, 1800588.
[7]
D. F. Yan,; Y. X. Li,; J. Huo,; R. Chen,; L. M. Dai,; S. Y. Wang, Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 2017, 29, 1606459.
[8]
D. J. Zhou,; Z. Cai,; X. D. Lei,; W. L. Tian,; Y. M. Bi,; Y. Jia,; N. N. Han,; T. F. Gao,; Q. Zhang,; Y. Kuang, et al. NiCoFe-layered double hydroxides/N-doped graphene oxide array colloid composite as an efficient bifunctional catalyst for oxygen electrocatalytic reactions. Adv. Energy Mater. 2018, 8, 1701905.
[9]
L. Z. Bu,; N. Zhang,; S. J. Guo,; X. Zhang,; J. Li,; J. L. Yao,; T. Wu,; G. Lu,; J. Y. Ma,; D. Su, et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410-1414.
[10]
L. Z. Bu,; Q. Shao,; B. E,; J. Guo,; J. L. Yao,; X. Q. Huang, PtPb/PtNi intermetallic core/atomic layer shell octahedra for efficient oxygen reduction electrocatalysis. J. Am. Chem. Soc. 2017, 139, 9576-9582.
[11]
W. L. Gu,; L. Y. Hu,; J. Li,; E. K. Wang, Hybrid of g-C3N4 assisted metal-organic frameworks and their derived high-efficiency oxygen reduction electrocatalyst in the whole pH range. ACS Appl. Mater. Interfaces 2016, 8, 35281-35288.
[12]
X. Y. Li,; H. P. Rong,; J. T. Zhang,; D. S. Wang,; Y. D. Li, Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842-1855.
[13]
S. F. Ji,; Y. J. Chen,; X. L. Wang,; Z. D. Zhang,; D. S. Wang,; Y. D. Li, Chemical synthesis of single atomic site catalysts. Chem. Rev., in press, .
[14]
Y. Xiong,; J. C. Dong,; Z. Q. Huang,; P. Y. Xin,; W. X. Chen,; Y. Wang,; Z. Li,; Z. Jin,; W. Xing,; Z. B. Zhuang, et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 2020, 15, 390-397.
[15]
N. Q. Zhang,; C. L. Ye,; H. Yan,; L. C. Li,; H. He,; D. S. Wang,; Y. D. Li, Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165-3182.
[16]
C. H. Zhang,; J. W. Sha,; H. L. Fei,; M. J. Liu,; S. Yazdi,; J. B. Zhang,; Q. F. Zhong,; X. L. Zou,; N. Q. Zhao,; H. S. Yu, et al. Single-atomic ruthenium catalytic sites on nitrogen-doped graphene for oxygen reduction reaction in acidic medium. ACS Nano 2017, 11, 6930-6941.
[17]
J. L. Xue,; Y. S. Li,; J. Hu, Nanoporous bimetallic Zn/Fe-N-C for efficient oxygen reduction in acidic and alkaline media. J. Mater. Chem. A 2020, 8, 7145-7157.
[18]
J. J. Huo,; L. Lu,; Z. Y. Shen,; Y. Liu,; J. J. Guo,; Q. B. Liu,; Y. Wang,; H. Liu,; M. H. Wu,; G. X. Wang, A rational synthesis of single-atom iron-nitrogen electrocatalysts for highly efficient oxygen reduction reaction. J. Mater. Chem. A 2020, 8, 16271-16282.
[19]
H. Q. Yang,; Z. Y. Li,; S. Q. Kou,; G. L. Lu,; Z. N. Liu, A complex-sequestered strategy to fabricate Fe single-atom catalyst for efficient oxygen reduction in a broad pH-range. Appl. Catal. B Environ. 2020, 278, 119270.
[20]
X. Wang,; Y. Jia,; X. Mao,; D. B. Liu,; W. X. He,; J. Li,; J. G. Liu,; X. C. Yan,; J. Chen,; L. Song, et al. Edge-rich Fe-N4 active sites in defective carbon for oxygen reduction catalysis. Adv. Mater. 2020, 32, 2000966.
[21]
H. S. Shang,; X. Y. Zhou,; J. C. Dong,; A. Li,; X. Zhao,; Q. H. Liu,; Y. Lin,; J. J. Pei,; Z. Li,; Z. L. Jiang, et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.
[22]
X. L. Wang,; J. Du,; Q. H. Zhang,; L. Gu,; L. J. Cao,; H. P. Liang, In situ synthesis of sustainable highly efficient single iron atoms anchored on nitrogen doped carbon derived from renewable biomass. Carbon 2020, 157, 614-621.
[23]
T. T. Sun,; Y. L. Li,; T. T. Cui,; L. B. Xu,; Y G. Wang,; W. X. Chen,; P. P. Zhang,; T. Y. Zheng; X. Z. Fu,; S. L. Zhang, et al. Engineering of coordination environment and multiscale structure in single-site copper catalyst for superior electrocatalytic oxygen reduction. Nano Lett. 2020, 20, 6206-6214.
[24]
T. T. Sun,; L. B. Xu,; D. S. Wang,; Y. D. Li, Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067-2080.
[25]
Y. Chen,; R. J. Guo,; X. Y. Peng,; X. Q. Wang,; X. J. Liu,; J. Q. Ren,; J. He,; L. C. Zhuo,; J. Q. Sun,; Y. F. Liu, et al. Highly productive electrosynthesis of ammonia by admolecule-targeting single Ag sites. ACS Nano 2020, 14, 6938-6946.
[26]
X. Y. Peng,; S. Z. Zhao,; Y. Y. Mi,; L. L. Han,; X. J. Liu,; D. F. Qi,; J. Q. Sun,; Y. F. Liu,; H. H. Bao,; L. C. Zhuo, et al. Trifunctional single-atomic Ru sites enable efficient overall water splitting and oxygen reduction in acidic media. Samll 2020, 16, 2002888.
[27]
H. Zhou,; Y. F. Zhao,; J. Xu,; H. R. Sun,; Z. J. Li,; W. Liu,; T. W. Yuan,; W. Liu,; X. Q. Wang,; W. C. Cheong, et al. Recover the activity of sintered supported catalysts by nitrogen-doped carbon atomization. Nat. Commun. 2020, 11, 335.
[28]
Z. C. Zhuang,; Q. Kang,; D. S. Wang,; Y. D. Li, Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856-1866.
[29]
H. B. Zhang,; P. F. An,; W. Zhou,; B. Y. Guan,; P. Zhang,; J. C. Dong,; X. W. Lou, Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. Sci. Adv. 2018, 4, eaao6657.
[30]
F. Lü,; S. Z. Zhao,; R. J. Guo,; J. He,; X. Y. Peng,; H. H. Bao,; J. T. Fu,; L. L. Han,; G. C. Qi,; J. Luo, et al. Nitrogen-coordinated single Fe sites for efficient electrocatalytic N2 fixation in neutral media. Nano Energy 2019, 61, 420-427.
[31]
H. S. Shang,; Z. L. Jiang,; D. N. Zhou,; J. J. Pei,; Y. Wang,; J. C. Dong,; X. S. Zheng,; J. T. Zhang,; W. X. Chen, Engineering a metal-organic framework derived Mn-N4-CxSy atomic interface for highly efficient oxygen reduction reaction. Chem. Sci. 2020, 11, 5994-5999.
[32]
H. S. Shang,; W. M. Sun,; R. Sui,; J. J. Pei,; L. R. Zheng,; J. C. Dong,; Z. L. Jiang,; D. N. Zhou,; Z. B. Zhuang,; W. X. Chen, et al. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443-5450.
[33]
L. J. Yu,; C. C. Yang,; W. D. Zhang,; W. Q. Liu,; H. F. Wang,; J. W. Qi,; L. Xu, Solvent-free synthesis of N-doped nanoporous carbon materials as durable high-performance pH-universal ORR catalysts. J. Colloid Interface Sci. 2020, 575, 406-415.
[34]
Z. Y. Lu,; B. Wang,; Y. F. Hu,; W. Liu,; Y. F. Zhao,; R. O. Yang,; Z. P. Li,; J. Luo,; B. Chi,; Z. Jiang, et al. An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction. Angew. Chem., Int. Ed. 2019, 58, 2622-2626.
[35]
J. Wang,; Z. Q. Huang,; W. Liu,; C. R. Chang,; H. L. Tang,; Z. J. Li,; W. X. Chen,; C. J. Jia,; T. Yao,; S. Q. Wei, et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281-17284.
[36]
Y. Y. Wang,; G. X. Zhang,; M. Ma,; Y. Ma,; J. K. Huang,; C. Chen,; Y. Zhang,; X. M. Sun,; Z. F. Yan, Ultrasmall NiFe layered double hydroxide strongly coupled on atomically dispersed FeCo-NC nanoflowers as efficient bifunctional catalyst for rechargeable Zn-air battery. Sci. China Mater. 2020, 63, 1182-1195.
[37]
L. L. Han,; S. J. Song,; M. J. Liu,; S. Y. Yao,; Z. X. Liang,; H. Cheng,; Z. H. Ren,; W. Liu,; R. Q. Lin,; G. C. Qi, et al. Stable and efficient single-atom Zn catalyst for CO2 reduction to CH4. J. Am. Chem. Soc. 2020, 142, 12563-12567.
[38]
H. B. Wang,; T. Maiyalagan,; X. Wang, Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catal. 2012, 2, 781-794.
[39]
J. Xu,; S. H. Lai,; M. Hu,; S. M. Ge,; R. C. Xie,; F. Li,; D. D. Hua,; H. Xu,; H. Zhou,; R. Wu, et al. Semimetal 1H-SnS2 enables high-efficiency electroreduction of CO2 to CO. Small Methods 2020, 4, 2000567.
[40]
W. Liu,; L. L. Han,; H. T. Wang,; X. R. Zhao,; J. A. Boscoboinik,; X. J. Liu,; C. W. Pao,; J. Q. Sun,; L. C. Zhuo,; J. Luo, et al. FeMo sub-nanoclusters/single atoms for neutral ammonia electrosynthesis. Nano Energy 2020, 77, 105078.
[41]
J. Xu,; J. He,; Y. Ding,; J. Luo, X-ray imaging of atomic nuclei. Sci. China Mater. 2020, 63, 1788-1796.
[42]
A. Gloter,; J. Ingrin,; D. Bouchet,; C. Colliex, Composition and orientation dependence of the O K and Fe L2,3 EELS fine structures in Ca2(AlxFe1-x)2O5. Phys. Rev. B 2000, 61, 2587-2594.
[43]
M. J. F. Guinel,; N. Brodusch,; G. Sha,; M. A. Shandiz,; H. Demers,; M. Trudeau,; S. P. Ringer,; R. Gauvin, Microscopy and microanalysis of complex nanosized strengthening precipitates in new generation commercial Al-Cu-Li alloys. J. Microsc. 2014, 255, 128-137.
[44]
D. Liu,; J. C. Li,; S. C. Ding,; Z. Y. Lyu,; S. Feng,; H. Y. Tian,; C. X. Huyan,; M. J. Xu,; T. Li,; D. Du, et al. 2D single-atom catalyst with optimized iron sites produced by thermal melting of metal-organic frameworks for oxygen reduction reaction. Small Methods 2020, 4, 1900827.
[45]
Z. P. Zhang,; J. T. Sun,; F. Wang,; L. M. Dai, Efficient oxygen reduction reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework. Angew. Chem., Int. Ed. 2018, 57, 9038-9043.
[46]
P. Q. Yin,; T. Yao,; Y. E. Wu,; L. R. Zheng,; Y. Lin,; W. Liu,; H. X. Ju,; J. F. Zhu,; X. Hong,; Z. X. Deng, et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800-10805.
[47]
F. Yang,; P. Song,; X. Z. Liu,; B. B. Mei,; W. Xing,; Z. Jiang,; L. Gu,; W. L. Xu, Highly efficient CO2 electroreduction on ZnN4-based single-atom catalyst. Angew. Chem., Int. Ed. 2018, 57, 12303-12307.
[48]
G. B. Chen,; P. Liu,; Z. Q. Liao,; F. F. Sun,; Y. H. He,; H. X. Zhong,; T. Zhang,; E. Zschech,; M. W. Chen,; G. Wu, et al. Zinc-mediated template synthesis of Fe-N-C electrocatalysts with densely accessible Fe-Nx active sites for efficient oxygen reduction. Adv. Mater. 2020, 32, 1907399.
[49]
J. Q. Sun,; S. E. Lowe,; L. J. Zhang,; Y. Z. Wang,; K. L. Pang,; Y. Wang,; Y. L. Zhong,; P. R. Liu,; K. Zhao,; Z. Y. Tang, et al. Ultrathin nitrogen-doped holey carbon@graphene bifunctional electrocatalyst for oxygen reduction and evolution reactions in alkaline and acidic media. Angew. Chem., Int. Ed. 2018, 57, 16511-16515.
[50]
G. Wu,; G. F. Cui,; D. Y. Li,; P. K. Shen,; N. Li, Carbon-supported Co1.67Te2 nanoparticles as electrocatalysts for oxygenreduction reaction in alkaline electrolyte. J. Mater. Chem. 2009, 19, 6581-6589.
[51]
J. Xu,; C. X. Zhang,; H. X. Liu,; J. Q. Sun,; R. C. Xie,; Y. Qiu,; F. Lü,; Y. F. Liu,; L. C. Zhuo,; X. J. Liu, et al. Amorphous MoOx-stabilized single platinum atoms with ultrahigh mass activity for acidic hydrogen evolution. Nano Energy 2020, 70, 104529.
[52]
Y. Wang,; A. R. Chen,; S. H. Lai,; X. Y. Peng,; S. Z. Zhao,; G. Z. Hu,; Y. Qiu,; J. Q. Ren,; X. J. Liu,; J. Luo, Self-supported NbSe2 nanosheet arrays for highly efficient ammonia electrosynthesis under ambient conditions. J. Catal. 2020, 381, 78-83.
[53]
S. P. Wang,; M. L. Zhu,; X. B. Bao,; J. Wang,; C. H. Chen,; H. R. Li,; Y. Wang, Synthesis of mesoporous Fe-N/C materials with high catalytic performance in the oxygen reduction reaction. ChemCatChem 2015, 7, 2937-2944.
[54]
J. Liu,; J. Yin,; B. Feng,; F. Li,; F. Wang, One-pot synthesis of unprotected PtPd nanoclusters with enhanced catalytic activity, durability, and methanol-tolerance for oxygen reduction reaction. Appl. Surf. Sci. 2019, 473, 318-325.
[55]
T. Shinagawa,; A. T. Garcia-Esparza,; K. Takanabe, Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 2015, 5, 13801.
[56]
W. J. Wan,; X. J. Liu,; H. Y. Li,; X. Y. Peng,; D. S. Xi,; J. Luo, 3D carbon framework-supported CoNi nanoparticles as bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Appl. Catal. B Environ. 2019, 240, 193-200.
[57]
H. Y. Li,; W. J. Wan,; X. J. Liu,; H. X. Liu,; S. B. Shen,; F. Lv,; J. Luo, Poplar-catkin-derived N, P-Co-doped carbon microtubes as efficient oxygen electrocatalysts for Zn-air batteries. ChemElectroChem 2018, 5, 1113-1119.
[58]
Y. L. Sun,; J. Wang,; Q. Liu,; M. R. Xia,; Y. F. Tang,; F. M. Gao,; Y. L. Hou,; J. Tse,; Y. F. Zhao, Itinerant ferromagnetic half metallic cobalt-iron couples: Promising bifunctional electrocatalysts for ORR and OER. J. Mater. Chem. A 2019, 7, 27175-27185.
Nano Research
Pages 1374-1381
Cite this article:
Xu J, Lai S, Qi D, et al. Atomic Fe-Zn dual-metal sites for high-efficiency pH-universal oxygen reduction catalysis. Nano Research, 2021, 14(5): 1374-1381. https://doi.org/10.1007/s12274-020-3186-x
Topics:
Part of a topical collection:

1256

Views

173

Crossref

N/A

Web of Science

170

Scopus

26

CSCD

Altmetrics

Received: 21 August 2020
Revised: 12 October 2020
Accepted: 17 October 2020
Published: 09 November 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return