AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Multi-redox phenazine/non-oxidized graphene/cellulose nanohybrids as ultrathick cathodes for high-energy organic batteries

Youngjin Ham1Vitalii Ri2Jin Kim1Yeoheung Yoon3Jinho Lee1Kisuk Kang4Ki-Seok An3( )Chunjoong Kim2( )Seokwoo Jeon1( )
Department of Materials Science and Engineering, Advanced Battery Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
Show Author Information

Graphical Abstract

Abstract

Various redox-active organic molecules can serve as ideal electrode materials to realize sustainable energy storage systems. Yet, to be more appropriate for practical use, considerable architectural engineering of an ultrathick, high-loaded organic electrode with reliable electrochemical performance is of crucial importance. Here, by utilizing the synergetic effect of the non-covalent functionalization of highly conductive non-oxidized graphene flakes (NOGFs) and introduction of mechanically robust cellulose nanofiber (CNF)-intermingled structure, a very thick (≈ 1 mm), freestanding organic nanohybrid electrode which ensures the superiority in cycle stability and areal capacity is reported. The well-developed ion/electron pathways throughout the entire thickness and the enhanced kinetics of electrochemical reactions in the ultrathick 5,10-dihydro-5,10-dimethylphenazine/NOGF/CNF (DMPZ-NC) cathodes lead to the high areal energy of 9.4 mWh·cm-2 (= 864 Wh·kg-1 at 158 W·kg-1). This novel ultrathick electrode architecture provides a general platform for the development of the high-performance organic battery electrodes.

Electronic Supplementary Material

Download File(s)
12274_2020_3187_MOESM1_ESM.pdf (2.6 MB)

References

[1]
M. Armand,; J. M. Tarascon, Building better batteries. Nature 2008, 451, 652-657.
[2]
J. H. Wang,; Y. Yamada,; K. Sodeyama,; E. Watanabe,; K. Takada,; Y. Tateyama,; A. Yamada, Fire-extinguishing organic electrolytes for safe batteries. Nat. Energy 2018, 3, 22-29.
[3]
T. B. Schon,; B. T. McAllister,; P. F. Li,; D. S. Seferos, The rise of organic electrode materials for energy storage. Chem. Soc. Rev. 2016, 45, 6345-6404.
[4]
J. Desilvestro,; W. Scheifele,; O. Haas, In situ determination of gravimetric and volumetric charge densities of battery electrodes: Polyaniline in aqueous and nonaqueous electrolytes. J. Electrochem. Soc. 1992, 139, 2727-2736.
[5]
W. Guo,; Y. X. Yin,; S. Xin,; Y. G. Guo,; L. J. Wan, Superior radical polymer cathode material with a two-electron process redox reaction promoted by graphene. Energy Environ. Sci. 2012, 5, 5221-5225.
[6]
S. R. Deng,; L. B. Kong,; G. Q. Hu,; T. Wu,; D. Li,; Y. H. Zhou,; Z. Y. Li, Benzene-based polyorganodisulfide cathode materials for secondary lithium batteries. Electrochim. Acta 2006, 51, 2589-2593.
[7]
Y. Lu,; Q. Zhang,; L. Li,; Z. Q. Niu,; J. Chen, Design strategies toward enhancing the performance of organic electrode materials in metal-ion batteries. Chem 2018, 4, 2786-2813.
[8]
A. Orita,; M. G. Verde,; M. Sakai,; Y. S. Meng, A biomimetic redox flow battery based on flavin mononucleotide. Nat. Commun. 2016, 7, 13230.
[9]
J. Hong,; M. Lee,; B. Lee,; D. H. Seo,; C. B. Park,; K. Kang, Biologically inspired pteridine redox centres for rechargeable batteries. Nat. Commun. 2014, 5, 5335.
[10]
A. Hollas,; X. L. Wei,; V. Murugesan,; Z. M. Nie,; B. Li,; D. Reed,; J. Liu,; V. Sprenkle,; W. Wang, A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries. Nat. Energy 2018, 3, 508-514.
[11]
M. Lee,; J. Hong,; B. Lee,; K. Ku,; S. Lee,; C. B. Park,; K. Kang, Multi-electron redox phenazine for ready-to-charge organic batteries. Green Chem. 2017, 19, 2980-2985.
[12]
H. D. Lim,; B. Lee,; Y. P. Zheng,; J. Hong,; J. Kim,; H. Gwon,; Y. Ko,; M. Lee,; K. Cho,; K. Kang, Rational design of redox mediators for advanced Li-O2 batteries. Nat. Energy 2016, 1, 16066.
[13]
X. Han,; C. Chang,; L. Yuan,; T. Sun,; J. Sun, Aromatic carbonyl derivative polymers as high-performance Li-ion storage materials. Adv. Mater. 2007, 19, 1616-1621.
[14]
M. Walter,; K. V. Kravchyk,; C. Böfer,; R. Widmer,; M. V. Kovalenko, Polypyrenes as high-performance cathode materials for aluminum batteries. Adv. Mater. 2018, 30, 1705644.
[15]
D. Y. Chen,; A. J. Avestro,; Z. H. Chen,; J. L. Sun,; S. L. Wang,; M. Xiao,; Z. Erno,; M. M. Algaradah,; M. S. Nassar,; K. Amine, et al. A rigid naphthalenediimide triangle for organic rechargeable lithium-ion batteries. Adv. Mater. 2015, 27, 2907-2912.
[16]
M. Kolek,; F. Otteny,; P. Schmidt,; C. Mück-Lichtenfeld,; C. Einholz,; J. Becking,; E. Schleicher,; M. Winter,; P. Bieker,; B. Esser, Ultra-high cycling stability of poly(vinylphenothiazine) as a battery cathode material resulting from π-π interactions. Energy Environ. Sci. 2017, 10, 2334-2341.
[17]
X. W. Chi,; Y. L. Liang,; F. Hao,; Y. Zhang,; J. Whiteley,; H. Dong,; P. Hu,; S. Lee,; Y. Yao, Tailored organic electrode material compatible with sulfide electrolyte for stable all-solid-state sodium batteries. Angew. Chem., Int. Ed. 2018, 57, 2630-2634.
[18]
L. M. Cui,; L. M. Zhou,; K. Zhang,; F. Y. Xiong,; S. S. Tan,; M. S. Li,; Q. Y. An,; Y. M. Kang,; L. Q. Mai, Salt-controlled dissolution in pigment cathode for high-capacity and long-life magnesium organic batteries. Nano Energy 2019, 65, 103902.
[19]
J. Lee,; H. Kim,; M. J. Park, Long-life, high-rate lithium-organic batteries based on naphthoquinone derivatives. Chem. Mater. 2016, 28, 2408-2416.
[20]
M. Lee,; J. Hong,; H. Kim,; H. D. Lim,; S. B. Cho,; K. Kang,; C. B. Park, Organic nanohybrids for fast and sustainable energy storage. Adv. Mater. 2014, 26, 2558-2565.
[21]
M. Yao,; H. Senoh,; S. I. Yamazaki,; Z. Siroma,; T. Sakai,; K. Yasuda, High-capacity organic positive-electrode material based on a benzoquinone derivative for use in rechargeable lithium batteries. J. Power Sources 2010, 195, 8336-8340.
[22]
W. W. Zhang,; P. K. Sun,; S. R. Sun, A precise theoretical method for high-throughput screening of novel organic electrode materials for Li-ion batteries. J. Materiomics 2017, 3, 184-190.
[23]
J. K. Kim,; Y. Kim,; S. Park,; H. Ko,; Y. Kim, Encapsulation of organic active materials in carbon nanotubes for application to high-electrochemical-performance sodium batteries. Energy Environ. Sci. 2016, 9, 1264-1269.
[24]
C. Y. Guo,; K. Zhang,; Q. Zhao,; L. K. Pei,; J. Chen, High-performance sodium batteries with the 9,10-anthraquinone/CMK-3 cathode and an ether-based electrolyte. Chem. Commun. 2015, 51, 10244-10247.
[25]
H. Wang,; P. F. Hu,; J. Yang,; G. M. Gong,; L. Guo,; X. D. Chen, Renewable-juglone-based high-performance sodium-ion batteries. Adv. Mater. 2015, 27, 2348-2354.
[26]
S. J. Cho,; K. H. Choi,; J. T. Yoo,; J. H. Kim,; Y. H. Lee,; S. J. Chun,; S. B. Park,; D. H. Choi,; Q. L. Wu,; S. Y. Lee, et al. Hetero-nanonet rechargeable paper batteries: Toward ultrahigh energy density and origami foldability. Adv. Funct. Mater. 2015, 25, 6029-6040.
[27]
B. Anothumakkool,; R. Soni,; S. N. Bhange,; S. Kurungot, Novel scalable synthesis of highly conducting and robust PEDOT paper for a high performance flexible solid supercapacitor. Energy Environ. Sci. 2015, 8, 1339-1347.
[28]
K. H. Park,; B. H. Kim,; S. H. Song,; J. Kwon,; B. S. Kong,; K. Kang,; S. Jeon, Exfoliation of non-oxidized graphene flakes for scalable conductive film. Nano Lett. 2012, 12, 2871-2876.
[29]
S. H. Song,; K. H. Park,; B. H. Kim,; Y. W. Choi,; G. H. Jun,; D. J. Lee,; B. S. Kong,; K. W. Paik,; S. Jeon, Enhanced thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Adv. Mater. 2013, 25, 732-737.
[30]
J. Kim,; G. Yoon,; J. Kim,; H. Yoon,; J. Baek,; J. H. Lee,; K. Kang,; S. Jeon, Extremely large, non-oxidized graphene flakes based on spontaneous solvent insertion into graphite intercalation compounds. Carbon 2018, 139, 309-316.
[31]
J. Kim,; N. M. Han,; J. Kim,; J. Lee,; J. K. Kim,; S. Jeon, Highly conductive and fracture-resistant epoxy composite based on non-oxidized graphene flake aerogel. ACS Appl. Mater. Interfaces 2018, 10, 37507-37516.
[32]
J. Kim,; S. H. Song,; H. G. Im,; G. Yoon,; D. Lee,; C. Choi,; J. Kim,; B. S. Bae,; K. Kang,; S. Jeon, Moisture barrier composites made of non-oxidized graphene flakes. Small 2015, 11, 3124-3129.
[33]
J. Kwon,; S. H. Lee,; K. H. Park,; D. H. Seo,; J. Lee,; B. S. Kong,; K. Kang,; S. Jeon, Simple preparation of high-quality graphene flakes without oxidation using potassium salts. Small 2011, 7, 864-868.
[34]
J. Kim,; J. Kim,; S. Song,; S. Y. Zhang,; J. Cha,; K. Kim,; H. Yoon,; Y. Jung,; K. W. Paik,; S. Jeon, Strength dependence of epoxy composites on the average filler size of non-oxidized graphene flake. Carbon 2017, 113, 379-386.
[35]
T. G. Novak,; J. Kim,; J. Kim,; H. Shin,; A. P. Tiwari,; J. Y. Song,; S. Jeon, Flexible thermoelectric films with high power factor made of non-oxidized graphene flakes. 2D Mater. 2019, 6, 045019.
[36]
Y. Ishii,; K. Tashiro,; K. Hosoe,; A. Al-zubaidi,; S. Kawasaki, Electrochemical lithium-ion storage properties of quinone molecules encapsulated in single-walled carbon nanotubes. Phys. Chem. Chem. Phys. 2016, 18, 10411-10418.
[37]
Z. P. Song,; Y. M. Qian,; X. Z. Liu,; T. Zhang,; Y. B. Zhu,; H. J. Yu,; M. Otani,; H. S. Zhou, A quinone-based oligomeric lithium salt for superior Li-organic batteries. Energy Environ. Sci. 2014, 7, 4077-4086.
[38]
B. Ernould,; M. Devos,; J. P. Bourgeois,; J. Rolland,; A. Vlad,; J. F. Gohy, Grafting of a redox polymer onto carbon nanotubes for high capacity battery materials. J. Mater. Chem. A 2015, 3, 8832-8839.
[39]
Z. P. Song,; Y. M. Qian,; M. L. Gordin,; D. H. Tang,; T. Xu,; M. Otani,; H. Zhan,; H. S. Zhou,; D. H. Wang, Polyanthraquinone as a reliable organic electrode for stable and fast lithium storage. Angew. Chem., Int. Ed. 2015, 54, 13947-13951.
[40]
Z. P. Song,; Y. M. Qian,; T. Zhang,; M. Otani,; H. S. Zhou, Poly (benzoquinonyl sulfide) as a high-energy organic cathode for rechargeable Li and Na batteries. Adv. Sci. 2015, 2, 1500124.
[41]
H. P. Wu,; Q. H. Meng,; Q. Yang,; M. Zhang,; K. Lu,; Z. X. Wei, Large-area polyimide/swcnt nanocable cathode for flexible lithium-ion batteries. Adv. Mater. 2015, 27, 6504-6510.
[42]
T. Nokami,; T. Matsuo,; Y. Inatomi,; N. Hojo,; T. Tsukagoshi,; H. Yoshizawa,; A. Shimizu,; H. Kuramoto,; K. Komae,; H. Tsuyama, et al. Polymer-bound pyrene-4,5,9,10-tetraone for fast-charge and -discharge lithium-ion batteries with high capacity. J. Am. Chem. Soc. 2012, 134, 19694-19700.
[43]
H. Xia,; Y. Y. Qian,; Y. S. Fu,; X. Wang, Graphene anchored with ZnFe2O4 nanoparticles as a high-capacity anode material for lithium-ion batteries. Solid State Sci. 2013, 17, 67-71.
[44]
H. G. Zhang,; X. D. Yu,; P. V. Braun, Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat. Nanotechnol. 2011, 6, 277-281.
[45]
S. K. Kuk,; Y. Ham,; K. Gopinath,; P. Boonmongkolras,; Y. Lee,; Y. W. Lee,; S. Kondaveeti,; C. Ahn,; B. Shin,; J. K. Lee, et al. Continuous 3D titanium nitride nanoshell structure for solar-driven unbiased biocatalytic CO2 reduction. Adv. Energy Mater. 2019, 9, 1900029.
[46]
C. Ahn,; J. Park,; D. Cho,; G. Hyun,; Y. Ham,; K. Kim,; S. H. Nam,; G. Bae,; K. Lee,; Y. S. Shim, High-performance functional nanocomposites using 3D ordered and continuous nanostructures generated from proximity-field nanopatterning. Funct. Compos. Struct. 2019, 1, 032002.
[47]
G. Hyun,; S. H. Cho,; J. Park,; K. Kim,; C. Ahn,; A. P. Tiwari,; I. D. Kim,; S. Jeon, 3D ordered carbon/SnO2 hybrid nanostructures for energy storage applications. Electrochim. Acta 2018, 288, 108-114.
[48]
S. J. Chun,; E. S. Choi,; E. H. Lee,; J. H. Kim,; S. Y. Lee,; S. Y. Lee, Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries. J. Mater. Chem. 2012, 22, 16618-16626.
[49]
Y. X. Yu, A dispersion-corrected DFT study on adsorption of battery active materials anthraquinone and its derivatives on monolayer graphene and h-BN. J. Mater. Chem. A 2014, 2, 8910-8917.
[50]
B. Das,; R. Voggu,; C. S. Rout,; C. Rao, Changes in the electronic structure and properties of graphene induced by molecular charge-transfer. Chem. Commun. 2008, 5155-5157.
[51]
H. Matsuzaki,; M. A. Ohkura,; Y. Ishige,; Y. Nogami,; H. Okamoto, Photoinduced switching to metallic states in the two-dimensional organic mott insulator dimethylphenazine-tetrafluorotetracyanoquinodimethane with anisotropic molecular stacks. Phys. Rev. B 2015, 91, 245140.
[52]
B. C. Yu,; K. Park,; J. H. Jang,; J. B. Goodenough, Cellulose-based porous membrane for suppressing Li dendrite formation in lithium-sulfur battery. ACS Energy Lett. 2016, 1, 633-637.
[53]
G. Assat,; D. Foix,; C. Delacourt,; A. Iadecola,; R. Dedryvère,; J. M. Tarascon, Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes. Nat. Commun. 2017, 8, 2219.
[54]
R. C. Chiu,; T. Garino,; M. J. Cima, Drying of granular ceramic films: I, effect of processing variables on cracking behavior. J. Am. Ceram. Soc. 1993, 76, 2257-2264.
[55]
D. Pech,; M. Brunet,; H. Durou,; P. H. Huang,; V. Mochalin,; Y. Gogotsi,; P. L. Taberna,; P. Simon, Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 2010, 5, 651-654.
Nano Research
Pages 1382-1389
Cite this article:
Ham Y, Ri V, Kim J, et al. Multi-redox phenazine/non-oxidized graphene/cellulose nanohybrids as ultrathick cathodes for high-energy organic batteries. Nano Research, 2021, 14(5): 1382-1389. https://doi.org/10.1007/s12274-020-3187-9
Topics:

1418

Views

26

Crossref

N/A

Web of Science

27

Scopus

0

CSCD

Altmetrics

Received: 24 August 2020
Revised: 11 October 2020
Accepted: 16 October 2020
Published: 09 November 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return