AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Shallowing interfacial carrier trap in transition metal dichalcogenide heterostructures with interlayer hybridization

Xu Wu1,2,§Jingsi Qiao3,§Liwei Liu1,§Yan Shao2Zhongliu Liu2Linfei Li2Zhili Zhu2Cong Wang3Zhixin Hu4Wei Ji3( )Yeliang Wang1,2,5( )Hongjun Gao2,5
School of Information and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China
Center for Joint Quantum Studies and Department of Physics, Tianjin University, Tianjin 300350, China
CAS Center for Excellence in Topological Quantum Computation, Beijing 100049, China
Show Author Information

Graphical Abstract

Abstract

With the unique properties, layered transition metal dichalcogenide (TMD) and its heterostructures exhibit great potential for applications in electronics. The electrical performance, e.g., contact barrier and resistance to electrodes, of TMD heterostructure devices can be significantly tailored by employing the functional layers, called interlayer engineering. At the interface between different TMD layers, the dangling-bond states normally exist and act as traps against charge carrier flow. In this study, we propose a technique to suppress such carrier trap that uses enhanced interlayer hybridization to saturate dangling-bond states, as demonstrated in a strongly interlayer-coupled monolayer-bilayer PtSe2 heterostructure. The hybridization between the unsaturated states and the interlayer electronic states of PtSe2 significantly reduces the depth of carrier traps at the interface, as corroborated by our scanning tunnelling spectroscopic measurements and density functional theory calculations. The suppressed interfacial trap demonstrates that interlayer saturation may offer an efficient way to relay the charge flow at the interface of TMD heterostructures. Thus, this technique provides an effective way for optimizing the interface contact, the crucial issue exists in two-dimensional electronic community.

Electronic Supplementary Material

Download File(s)
12274_2020_3188_MOESM1_ESM.pdf (5 MB)

References

[1]
Q. H. Wang,; K. Kalantar-Zadeh,; A. Kis,; J. N. Coleman,; M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.
[2]
Y. Zhang,; T. R. Chang,; B. Zhou,; Y. T. Cui,; H. Yan,; Z. K. Liu,; F. Schmitt,; J. Lee,; R. Moore,; Y. Chen, et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 2014, 9, 111-115.
[3]
M. M. Ugeda,; A. J. Bradley,; S. F. Shi,; F. H. da Jornada,; Y. Zhang,; D. Y. Qiu,; W. Ruan,; S. K. Mo,; Z. Hussain,; Z. X. Shen, et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 2014, 13, 1091-1095.
[4]
M. M. Ugeda,; A. J. Bradley,; Y. Zhang,; S. Onishi,; Y. Chen,; W. Ruan,; C. Ojeda-Aristizabal,; H. Ryu,; M. T. Edmonds,; H. Z. Tsai, et al. Characterization of collective ground states in single-layer NbSe2. Nat. Phys. 2015, 12, 92-97.
[5]
M. Bonilla,; S. Kolekar,; Y. J. Ma,; H. C. Diaz,; V. Kalappattil,; R. Das,; T. Eggers,; H. R. Gutierrez,; M. H. Phan, M. Batzill, Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 2018, 13, 289-293.
[6]
G. Li,; Y. Y. Zhang,; H. Guo,; L. Huang,; H. L. Lu,; X. Lin,; Y. L. Wang,; S. X. Du,; H. J. Gao, Epitaxial growth and physical properties of 2D materials beyond graphene: From monatomic materials to binary compounds. Chem. Soc. Rev. 2018, 47, 6073-6100.
[7]
Y. Liu,; J. Guo,; E. B. Zhu,; L. Liao,; S. J. Lee,; M. N. Ding,; I. Shakir,; V. Gambin,; Y. Huang,; X. F. Duan, Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696-700.
[8]
G. H. Yang,; Y. Shao,; J. B. Niu,; X. L. Ma,; C. Y. Lu,; W. Wei,; X. C. Chuai,; J. W. Wang,; J. C. Cao,; H. Huang, et al. Possible Luttinger liquid behavior of edge transport in monolayer transition metal dichalcogenide crystals. Nat. Commun. 2020, 11, 659.
[9]
C. M. Huang,; S. F. Wu,; A. M. Sanchez,; J. J. P. Peters,; R. Beanland,; J. S. Ross,; P. Rivera,; W. Yao,; D. H. Cobden,; X. D. Xu, Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. Nat. Mater. 2014, 13, 1096-1101.
[10]
C. D. Zhang,; M. Y. Li,; J. Tersoff,; Y. M. Han,; Y. S. Su,; L. J. Li,; D. A. Muller,; C. K. Shih, Strain distributions and their influence on electronic structures of WSe2-MoS2 laterally strained heterojunctions. Nat. Nanotechnol. 2018, 13, 152-158.
[11]
M. Y. Li,; Y. M. Shi,; C. C. Cheng,; L. S. Lu,; Y. C. Lin,; H. L. Tang,; M. L. Tsai,; C. W. Chu,; K. H. Wei,; J. H. He, et al. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science 2015, 349, 524-528.
[12]
P. Rivera,; J. R. Schaibley,; A. M. Jones,; J. S. Ross,; S. F. Wu,; G. Aivazian,; P. Klement,; K. Seyler,; G. Clark,; N. J. Ghimire, et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nat. Commun. 2015, 6, 6242.
[13]
Z. D. Chu,; A. L. Han,; C. Lei,; S. Lopatin,; P. Li,; D. Wannlund,; D. Wu,; K. Herrera,; X. X. Zhang,; A. H. MacDonald, et al. Energy-resolved photoconductivity mapping in a monolayer-bilayer WSe2 lateral heterostructure. Nano Lett. 2018, 18, 7200-7206.
[14]
T. F. Yang,; B. Y. Zheng,; Z. Wang,; T. Xu,; C. Pan,; J. Zou,; X. H. Zhang,; Z. Y. Qi,; H. J. Liu,; Y. X. Feng, et al. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p-n junctions. Nat. Commun. 2017, 8, 1906.
[15]
Y. Wang,; J. C. Kim,; R. J. Wu,; J. Martinez,; X. J. Song,; J. Yang,; F. Zhao,; A. Mkhoyan,; H. Y. Jeong,; M. Chhowalla, Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 2019, 568, 70-74.
[16]
A. K. Geim,; I. V. Grigorieva, Van der Waals heterostructures. Nature 2013, 499, 419-425.
[17]
X. D. Duan,; C. Wang,; J. C. Shaw,; R. Cheng,; Y. Chen,; H. L. Li,; X. P. Wu,; Y. Tang,; Q. L. Zhang,; A. L. Pan, et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 2014, 9, 1024-1030.
[18]
Y. Cao,; A. Mishchenko,; G. L. Yu,; E. Khestanova,; A. P. Rooney,; E. Prestat,; A. V. Kretinin,; P. Blake,; M. B. Shalom,; C. Woods, et al. Quality heterostructures from two-dimensional crystals unstable in air by their assembly in inert atmosphere. Nano Lett. 2015, 15, 4914-4921.
[19]
A. J. Bradley,; M. M. Ugeda,; F. H. da Jornada,; D. Y. Qiu,; W. Ruan,; Y. Zhang,; S. Wickenburg,; A. Riss,; J. Lu,; S. K. Mo, et al. Probing the role of interlayer coupling and coulomb interactions on electronic structure in few-layer MoSe2 nanostructures. Nano Lett. 2015, 15, 2594-2599.
[20]
Y. D. Zhao,; J. S. Qiao,; P. Yu,; Z. X. Hu,; Z. Y. Lin,; S. P. Lau,; Z. Liu,; W. Ji,; Y. Chai, Extraordinarily strong interlayer interaction in 2D layered PtS2. Adv. Mater. 2016, 28, 2399-2407.
[21]
C. D. Zhang,; Y. X. Chen,; J. K. Huang,; X. X. Wu,; L. J. Li,; W. Yao,; J. Tersoff, C. K. Shih, Visualizing band offsets and edge states in bilayer-monolayer transition metal dichalcogenides lateral heterojunction. Nat. Commun. 2016, 7, 10349.
[22]
Y. D. Zhao,; J. S. Qiao,; Z. H. Yu,; P. Yu,; K. Xu,; S. P. Lau,; W. Zhou,; Z. Liu,; X. R. Wang,; W. Ji, et al. High-electron-mobility and air-stable 2D layered PtSe2 FETs. Adv. Mater. 2017, 29, 1604230.
[23]
X. X. Li,; Z. Q. Fan,; P. Z. Liu,; M. L. Chen,; X. Liu,; C. K. Jia,; D. M. Sun,; X. W. Jiang,; Z. Han,; V. Bouchiat, et al. Gate-controlled reversible rectifying behaviour in tunnel contacted atomically-thin MoS2 transistor. Nat. Commun. 2017, 8, 970.
[24]
P. Nagler,; M. V. Ballottin,; A. A. Mitioglu,; F. Mooshammer,; N. Paradiso,; C. Strunk,; R. Huber,; A. Chernikov,; P. C. M. Christianen,; C. Schüller, et al. Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures. Nat. Commun. 2017, 8, 1551.
[25]
L. H. Li,; T. Tian,; Q. Cai,; C. J. Shih,; E. J. G. Santos, Asymmetric electric field screening in van der Waals heterostructures. Nat. Commun. 2018, 9, 1271.
[26]
X. H. Qiu,; W. Ji, Illuminating interlayer interactions. Nat. Mater. 2018, 17, 211-213.
[27]
X. Cui,; G. H. Lee,; Y. D. Kim,; G. Arefe,; P. Y. Huang,; C. H. Lee,; D. A. Chenet,; X. Zhang,; L. Wang,; F. Ye, et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 2015, 10, 534-540.
[28]
Y. Y. Liu,; P. Stradins,; S. H. Wei, Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier. Sci. Adv. 2016, 2, e1600069.
[29]
S. W. LaGasse,; P. Dhakras,; K. Watanabe,; T. Taniguchi,; J. U. Lee, Gate-tunable graphene-WSe2 heterojunctions at the schottky-mott limit. Adv. Mater. 2019, 31, 1901392.
[30]
J. S. Qiao,; X. H. Kong,; Z. X. Hu,; F. Yang,; W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.
[31]
J. S. Qiao,; Y. H. Pan,; F. Yang,; C. Wang,; Y. Chai,; W. Ji, Few-layer Tellurium: One-dimensional-like layered elementary semiconductor with striking physical properties. Sci. Bull. 2018, 63, 159-168.
[32]
A. Ciarrocchi,; A. Avsar,; D. Ovchinnikov,; A. Kis, Thickness-modulated metal-to-semiconductor transformation in a transition metal dichalcogenide. Nat. Commun. 2018, 9, 919.
[33]
Z. Li,; J. C. Zhuang,; L. Wang,; H. F. Feng,; Q. Gao,; X. Xu,; W. C. Hao,; X. L. Wang,; C. Zhang,; K. H. Wu, et al. Realization of flat band with possible nontrivial topology in electronic Kagome lattice. Sci. Adv. 2018, 4, eaau4511.
[34]
H. F. Feng,; C. Liu,; S. Zhou,; N. Gao,; Q. Gao,; J. C. Zhuang,; X. Xu,; Z. P. Hu,; J. O. Wang,; L. Chen, et al. Experimental realization of two-dimensional buckled lieb lattice. Nano Lett. 2020, 20, 2537-2543.
[35]
Y. Shao,; S. R. Song,; X. Wu,; J. Qi,; H. L. Lu,; C. Liu,; S. Y. Zhu,; Z. L. Liu,; J. O. Wang,; D. X. Shi, et al. Epitaxial fabrication of two-dimensional NiSe2 on Ni(111) substrate. Appl. Phys. Lett. 2017, 111, 113107.
[36]
H. F. Feng,; Z. F. Xu,; J. C. Zhuang,; L. Wang,; Y. L. Liu,; X. Xu,; L. Song,; W. C. Hao,; Y. Du, Role of charge density wave in monatomic assembly in transition metal dichalcogenides. Adv. Funct. Mater. 2019, 29, 1900367.
[37]
Y. L. Wang,; L. F. Li,; W. Yao,; S. R. Song,; J. T. Sun,; J. B. Pan,; X. Ren,; C. Li,; E. Okunishi,; Y. Q. Wang, et al. Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt. Nano Lett. 2015, 15, 4013-4018.
[38]
X. Lin,; J. C. Lu,; Y. Shao,; Y. Y. Zhang,; X. Wu,; J. B. Pan,; L. Gao,; S. Y. Zhu,; K. Qian,; Y. F. Zhang, et al. Intrinsically patterned two-dimensional materials for selective adsorption of molecules and nanoclusters. Nat. Mater. 2017, 16, 717-721.
[39]
W. Yao,; E. Y. Wang,; H. Q. Huang,; K. Deng,; M. Z. Yan,; K. N. Zhang,; K. Miyamoto,; T. Okuda,; L. F. Li,; Y. L. Wang, et al. Direct observation of spin-layer locking by local Rashba effect in monolayer semiconducting PtSe2 film. Nat. Commun. 2017, 8, 14216.
[40]
H. L. Zhuang,; R. G. Hennig, Computational search for single-layer transition-metal dichalcogenide photocatalysts. J. Phys. Chem. C 2013, 117, 20440-20445.
[41]
M. Dion,; H. Rydberg,; E. Schröder,; D. C. Langreth,; B. I. Lundqvist, Van der Waals density Functional for general geometries. Phys. Rev. Lett. 2004, 92, 246401.
[42]
J. Klimeš,; D. R. Bowler,; A. Michaelides, Van der Waals density functionals applied to solids. Phys. Rev. B 2011, 83, 195131.
[43]
J. Heyd,; G. E. Scuseria,; M.; Ernzerhof, Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003,118, 8207.
Nano Research
Pages 1390-1396
Cite this article:
Wu X, Qiao J, Liu L, et al. Shallowing interfacial carrier trap in transition metal dichalcogenide heterostructures with interlayer hybridization. Nano Research, 2021, 14(5): 1390-1396. https://doi.org/10.1007/s12274-020-3188-8
Topics:

908

Views

10

Crossref

N/A

Web of Science

10

Scopus

1

CSCD

Altmetrics

Received: 03 September 2020
Revised: 14 October 2020
Accepted: 15 October 2020
Published: 03 December 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return