AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Blinking CsPbBr3 perovskite nanocrystals for the nanoscopic imaging of electrospun nanofibers

Tianyu Chen1Mengna Huang2Zhongju Ye1Jianhao Hua1Shen Lin1( )Lin Wei2( )Lehui Xiao1( )
State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
Show Author Information

Graphical Abstract

Abstract

Blinking fluorophore perovskite nanocrystals (NCs) were employed to image the fine structure of the polystyrene (PS) electrospun fibers. The conditions of CsPbBr3 NCs embedded and dispersed into PS were investigated and optimized. The stochastic optical reconstruction microscopy is employed to visualize the fine structure of the resulted CsPbBr3@PS electrospun fibers at sub-diffraction limit. The determined resolution in the reconstructed nanoscopic image is around 25.5 nm, which is much narrower than that of conventional fluorescence image. The complex reticulation and multicompartment in bead sub-diffraction-limited structures of CsPbBr3@PS electrospun fibers were successfully mapped with the help of the stochastic blinking properties of CsPbBr3 NCs. This work demonstrated the potential applications of CsPbBr3 perovskite NCs in super-resolution fluorescence imaging to reconstruct the sub-diffraction-limited features of polymeric material.

Electronic Supplementary Material

Download File(s)
12274_2020_3189_MOESM1_ESM.pdf (1.9 MB)

References

[1]
M. V. Kovalenko,; L. Manna,; A. Cabot,; Z. Hens,; D. V. Talapin,; C. R. Kagan,; V. I. Klimov,; A. L. Rogach,; P. Reiss,; D. J. Milliron, et al. Prospects of nanoscience with nanocrystals. ACS Nano 2015, 9, 1012-1057.
[2]
X. J. Zhang,; X. X. Wu,; X. Y. Liu,; G. Y. Chen,; Y. K. Wang,; J. C. Bao,; X. X. Xu,; X. F. Liu,; Q. Zhang,; K. K. Yu, et al. Heterostructural CsPbX3-PbS (X = Cl, Br, I) quantum dots with tunable vis-NIR dual emission. J. Am. Chem. Soc. 2020, 142, 4464-4471.
[3]
N. S. Makarov,; S. J. Guo,; O. Isaienko,; W. Y. Liu,; I. Robel,; V. I. Klimov, Spectral and dynamical properties of single excitons, biexcitons, and trions in cesium-lead-halide perovskite quantum dots. Nano Lett. 2016, 16, 2349-2362.
[4]
G. Nedelcu,; L. Protesescu,; S. Yakunin,; M. I. Bodnarchuk,; M. J. Grotevent,; M. V. Kovalenko, Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2015, 15, 5635-5640.
[5]
J. Z. Song,; J. H. Li,; X. M. Li,; L. M. Xu,; Y. H. Dong,; H. B. Zeng, Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162-7167.
[6]
S. Yakunin,; L. Protesescu,; F. Krieg,; M. I. Bodnarchuk,; G. Nedelcu,; M. Humer,; G. De Luca,; M. Fiebig,; W. Heiss,; M. V. Kovalenko, Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 2015, 6, 8056.
[7]
P. Ramasamy,; D. H. Lim,; B. Kim,; S. H. Lee,; M. S. Lee,; J. S. Lee, All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem. Commun. 2016, 52, 2067-2070.
[8]
J. Pan,; L. N. Quan,; Y. B. Zhao,; W. Peng,; B. Murali,; S. P. Sarmah,; M. J. Yuan,; L. Sinatra,; N. M. Alyami,; J. K. Liu, et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv. Mater. 2016, 28, 8718-8725.
[9]
L. Protesescu,; S. Yakunin,; M. I. Bodnarchuk,; F. Krieg,; R. Caputo,; C. H. Hendon,; R. X. Yang,; A. Walsh,; M. V. Kovalenko, Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692-3696.
[10]
X. X. Sheng,; G. Y. Chen,; C. Wang,; W. Q. Wang,; J. F. Hui,; Q. Zhang,; K. H. Yu,; W. Wei,; M. D. Yi,; M. Zhang, et al. Polarized optoelectronics of CsPbX3 (X = Cl, Br, I) perovskite nanoplates with tunable size and thickness. Adv. Funct. Mater. 2018, 28, 1800283.
[11]
Y. Li,; X. Y. Wang,; W. N. Xue,; W. Wang,; W. Zhu,; L. J. Zhao, Highly luminescent and stable CsPbBr3 perovskite quantum dots modified by phosphine ligands. Nano Res. 2019, 12, 785-789.
[12]
W. T. Song,; Y. M. Wang,; B. Wang,; Y. F. Yao,; W. G. Wang,; J. H. Wu,; Q. Shen,; W. J. Luo,; Z. G. Zou, Super stable CsPbBr3@SiO2 tumor imaging reagent by stress-response encapsulation. Nano Res. 2020, 13, 795-801.
[13]
X. X. Sheng,; Y. Liu,; Y. Wang,; Y. F. Li,; X. Wang,; X. P. Wang,; Z. H. Dai,; J. C. Bao,; X. X. Xu, Cesium lead halide perovskite quantum dots as a photoluminescence probe for metal ions. Adv. Mater. 2017, 29, 1700150.
[14]
J. L. Yang,; B. D. Siempelkamp,; D. Y. Liu,; T. L. Kelly, Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano 2015, 9, 1955-1963.
[15]
Y. Z. Li,; X. M. Xu,; C. C. Wang,; B. Ecker,; J. L. Yang,; J. S. Huang,; Y. L. Gao, Light-induced degradation of CH3NH3PbI3 hybrid perovskite thin film. J. Phys. Chem. C 2017, 121, 3904-3910.
[16]
X. Q. Xiang,; H. Lin,; R. F. Li,; Y. Cheng,; Q. M. Huang,; J. Xu,; C. Y. Wang,; X. Y. Chen,; Y. S. Wang, Stress-induced CsPbBr3 nanocrystallization on glass surface: Unexpected mechanoluminescence and applications. Nano Res. 2019, 12, 1049-1054.
[17]
H. W. Yang,; Y. Q. Feng,; Z. Y. Tu,; K. Su,; X. Z. Fan,; B. J. Liu,; Z. P. Shi,; Y. Z. Zhang,; C. Y. Zhao,; B. Zhang, Blue emitting CsPbBr3 perovskite quantum dot inks obtained from sustained release tablets. Nano Res. 2019, 12, 3129-3134.
[18]
G. C. Yuan,; C. Ritchie,; M. Ritter,; S. Murphy,; D. E. Gómez,; P. Mulvaney, The degradation and blinking of single CsPbI3 perovskite quantum dots. J. Phys. Chem. C 2018, 122, 13407-13415.
[19]
X. Yuan,; X. M. Hou,; J. Li,; C. Q. Qu,; W. J. Zhang,; J. L. Zhao,; H. B. Li, Thermal degradation of luminescence in inorganic perovskite CsPbBr3 nanocrystals. Phys. Chem. Chem. Phys. 2017, 19, 8934-8940.
[20]
A. Merdasa,; M. Bag,; Y. X. Tian,; E. Källman,; A. Dobrovolsky,; I. G. Scheblykin, Super-resolution luminescence microspectroscopy reveals the mechanism of photoinduced degradation in CH3NH3PbI3 perovskite nanocrystals. J. Phys. Chem. C 2016, 120, 10711-10719.
[21]
X. M. Li,; Y. Wu,; S. L. Zhang,; B. Cai,; Y. Gu,; J. Z. Song,; H. B. Zeng, CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435-2445.
[22]
W. L. Zheng,; Z. C. Li,; C. Y. Zhang,; B. Wang,; Q. G. Zhang,; Q. Wan,; L. Kong,; L. Li, Stabilizing perovskite nanocrystals by controlling protective surface ligands density. Nano Res. 2019, 12, 1461-1465.
[23]
C. Sun,; Y. Zhang,; C. Ruan,; C. Y. Yin,; X. Y. Wang,; Y. D. Wang,; W. W. Yu, Efficient and stable white leds with silica-coated inorganic perovskite quantum dots. Adv. Mater. 2016, 28, 10088-10094.
[24]
S. Q. Huang,; Z. C. Li,; L. Kong,; N. W. Zhu,; A. D. Shan,; L. Li, Enhancing the stability of CH3NH3PbBr3 quantum dots by embedding in silica spheres derived from tetramethyl orthosilicate in “waterless” toluene. J. Am. Chem. Soc. 2016, 138, 5749-5752.
[25]
H. C. Wang,; S. Y. Lin,; A. C. Tang,; B. P. Singh,; H. C. Tong,; C. Y. Chen,; Y. C. Lee,; T. L. Tsai,; R. S. Liu, Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display. Angew. Chem., Int. Ed. 2016, 55, 7924-7929.
[26]
L. Gomez,; C. De Weerd,; J. L. Hueso,; T. Gregorkiewicz, Color-stable water-dispersed cesium lead halide perovskite nanocrystals. Nanoscale 2017, 9, 631-636.
[27]
X. G. Wu,; J. L. Tang,; F. Jiang,; X. X. Zhu,; Y. L. Zhang,; D. B. Han,; L. X. Wang,; H. Z. Zhong, Highly luminescent red emissive perovskite quantum dots-embedded composite films: Ligands capping and caesium doping-controlled crystallization process. Nanoscale 2019, 11, 4942-4947.
[28]
R. K. Misra,; S. Aharon,; B. L. Li,; D. Mogilyansky,; I. Visoly-Fisher,; L. Etgar,; E. A. Katz, Temperature- and component-dependent degradation of perovskite photovoltaic materials under concentrated sunlight. J. Phys. Chem. Lett. 2015, 6, 326-330.
[29]
J. J. Xue,; T. Wu,; Y. Q. Dai,; Y. N. Xia, Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem. Rev. 2019, 119, 5298-5415.
[30]
G. W. Peterson,; A. X. Lu,; T. H. Epps III, Tuning the morphology and activity of electrospun polystyrene/UIO-66-NH2 metal-organic framework composites to enhance chemical warfare agent removal. ACS Appl. Mater. Interfaces 2017, 9, 32248-32254.
[31]
C. C. Lin,; D. H. Jiang,; C. C. Kuo,; C. J. Cho,; Y. H. Tsai,; T. Satoh,; C. Su, Water-resistant efficient stretchable perovskite-embedded fiber membranes for light-emitting diodes. ACS Appl. Mater. Interfaces 2018, 10, 2210-2215.
[32]
Y. W. Wang,; Y. H. Zhu,; J. F. Huang,; J. Cai,; J. R. Zhu,; X. L. Yang,; J. H. Shen,; H. Jiang,; C. Z. Li, CsPbBr3 perovskite quantum dots-based monolithic electrospun fiber membrane as an ultrastable and ultrasensitive fluorescent sensor in aqueous medium. J. Phys. Chem. Lett. 2016, 7, 4253-4258.
[33]
Y. F. Wang,; Y. H. Zhu,; J. F. Huang,; J. Cai,; J. R. Zhu,; X. L. Yang,; J. H. Shen,; C. Z. Li, Perovskite quantum dots encapsulated in electrospun fiber membranes as multifunctional supersensitive sensors for biomolecules, metal ions and pH. Nanoscale Horiz. 2017, 2, 225-232.
[34]
K. Friedemann,; A. Turshatov,; K. Landfester,; D. Crespy, Characterization via two-color STED microscopy of nanostructured materials synthesized by colloid electrospinning. Langmuir 2011, 27, 7132-7139.
[35]
Z. J. Ye,; L. Wei,; Y. L. Li,; L. H. Xiao, Efficient modulation of β-amyloid peptide fibrillation with polymer nanoparticles revealed by super-resolution optical microscopy. Anal. Chem. 2019, 91, 8582-8590.
[36]
Z. J. Ye,; L. Wei,; X. Geng,; X. Wang,; Z. H. Li,; L. H. Xiao, Mitochondrion-specific blinking fluorescent bioprobe for nanoscopic monitoring of mitophagy. ACS Nano 2019, 13, 11593-11602.
[37]
A. Merdasa,; Y. X. Tian,; R. Camacho,; A. Dobrovolsky,; E. Debroye,; E. L. Unger,; J. Hofkens,; V. Sundstrom,; I. G. Scheblykin, “Supertrap” at work: Extremely efficient nonradiative recombination channels in MAPbI3 perovskites revealed by luminescence super-resolution imaging and spectroscopy. ACS Nano 2017, 11, 5391-5404.
[38]
D. Wöll,; C. Flors, Super-resolution fluorescence imaging for materials science. Small Methods 2017, 1, 1700191.
[39]
B. E. Urban,; B. Q. Dong,; T. Q. Nguyen,; V. Backman,; C. Sun,; H. F. Zhang, Subsurface super-resolution imaging of unstained polymer nanostructures. Sci. Rep. 2016, 6, 28156.
[40]
A. Kaltbeitzel,; K. Friedemann,; A. Turshatov,; C. Schönecker,; I. Lieberwirth,; K. Landfester,; D. Crespy, STED analysis of droplet deformation during emulsion electrospinning. Macromol. Chem. Phys. 2017, 218, 1600547.
[41]
C. G. Wang,; M. Taki,; Y. Sato,; A. Fukazawa,; T. Higashiyama,; S. Yamaguchi, Super-photostable phosphole-based dye for multiple-acquisition stimulated emission depletion imaging. J. Am. Chem. Soc. 2017, 139, 10374-10381.
[42]
A. Sarkar,; P. Acharyya,; R. Sasmal,; P. Pal,; S. S. Agasti,; K. Biswas, Synthesis of ultrathin few-layer 2D nanoplates of halide perovskite Cs3Bi2I9 and single-nanoplate super-resolved fluorescence microscopy. Inorg. Chem. 2018, 57, 15558-15565.
[43]
L. Wei,; C. Liu,; B. Chen,; P. Zhou,; H. C. Li,; L. H. Xiao,; E. S. Yeung, Probing single-molecule fluorescence spectral modulation within individual hotspots with subdiffraction-limit image resolution. Anal. Chem. 2013, 85, 3789-3793.
[44]
Z. J. Ye,; X. Wang,; L. H. Xiao, Single-particle tracking with scattering-based optical microscopy. Anal. Chem. 2019, 91, 15327-15334.
[45]
L. Wei,; Y. H. Ma,; X. P. Zhu,; J. H. Xu,; Y. X. Wang,; H. G. Duan,; L. H. Xiao, Sub-diffraction-limit localization imaging of a plasmonic nanoparticle pair with wavelength-resolved dark-field microscopy. Nanoscale 2017, 9, 8747-8755.
[46]
Y. Y. Ma,; Z. J. Ye,; C. Zhang,; X. L. Wang,; H. W. Li,; M. Wong,; H. B. Luo,; L. H. Xiao, Deep red blinking fluorophore for nanoscopic imaging and inhibition of beta-amyloid peptide fibrillation. ACS Nano 2020, 14, 11341-11351.
[47]
H. Liu,; Z. J. Ye,; X. Wang,; L. Wei,; L. H. Xiao, Molecular and living cell dynamic assays with optical microscopy imaging techniques. Analyst 2019, 144, 859-871.
[48]
Y. Y. Ma,; X. Wang,; H. Liu,; L. Wei,; L. H. Xiao, Recent advances in optical microscopic methods for single-particle tracking in biological samples. Anal. Bioanal. Chem. 2019, 411, 4445-4463.
[49]
A. D. Zhang,; C. Q. Dong,; J. C. Ren, Tuning blinking behavior of highly luminescent cesium lead halide nanocrystals through varying halide composition. J. Phys. Chem. C 2017, 121, 13314-13323.
[50]
Y. S. Park,; S. J. Guo,; N. S. Makarov,; V. I. Klimov, Room temperature single-photon emission from individual perovskite quantum dots. ACS Nano 2015, 9, 10386-10393.
[51]
F. R. Hu,; H. C. Zhang,; C. Sun,; C. Y. Yin,; B. Y. Lv,; C. F. Zhang,; W. W. Yu,; X. Y. Wang,; Y. Zhang,; M. Xiao, Superior optical properties of perovskite nanocrystals as single photon emitters. ACS Nano 2015, 9, 12410-12416.
[52]
S. Seth,; T. Ahmed,; A. Samanta, Photoluminescence flickering and blinking of single CsPbBr3 perovskite nanocrystals: Revealing explicit carrier recombination dynamics. J. Phys. Chem. Lett. 2018, 9, 7007-7014.
Nano Research
Pages 1397-1404
Cite this article:
Chen T, Huang M, Ye Z, et al. Blinking CsPbBr3 perovskite nanocrystals for the nanoscopic imaging of electrospun nanofibers. Nano Research, 2021, 14(5): 1397-1404. https://doi.org/10.1007/s12274-020-3189-7
Topics:

953

Views

18

Crossref

N/A

Web of Science

19

Scopus

0

CSCD

Altmetrics

Received: 16 September 2020
Revised: 13 October 2020
Accepted: 15 October 2020
Published: 01 December 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return