AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Anti-vapor-penetration and condensate microdrop self-transport of superhydrophobic oblique nanowire surface under high subcooling

Rui Wang1,§Feifei Wu1,§Fanfei Yu1,§Jie Zhu1Xuefeng Gao1,2( )Lei Jiang3
Functional Materials and Interfaces Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Show Author Information

Graphical Abstract

Abstract

It is well-known that microscale gaps or defects are ubiquitous and can be penetrated by vapor, resulting in the failure of superhydrophobic effect and undesired condensate flooding under high subcooling. Here, we propose and demonstrate that such problem can be solved by the oblique arrangement of nanowires. Such a structure has been demonstrated to own anti-vapor-penetration and microdrop self-transport functions under high subcooling, unaffected by the microscale gaps. This is because vapor molecules can be intercepted by oblique nanowires and preferentially nucleate at near-surface locations, avoiding the penetration of vapor into the microscale gaps. As-formed microdrops can suspend upon the nanowires and have low solid-liquid adhesion. Besides, oblique nanowires can generate asymmetric surface tension and microdrop coalescence can release driving energy, both of which facilitate the microdrop self-removal via sweeping and jumping ways. This new design idea helps develop more advanced condensation mass and heat transfer interfaces.

Electronic Supplementary Material

Video
12274_2020_3196_MOESM1_ESM.avi
12274_2020_3196_MOESM2_ESM.avi
12274_2020_3196_MOESM3_ESM.avi
12274_2020_3196_MOESM4_ESM.avi
Download File(s)
12274_2020_3196_MOESM5_ESM.pdf (1.4 MB)

References

[1]
H. J. Cho,; D. J. Preston,; Y. Y. Zhu,; E. N. Wang, Nanoengineered materials for liquid-vapour phase-change heat transfer. Nat. Rev. Mater. 2017, 2, 16092.
[2]
R. F. Wen,; X. H. Ma,; Y. C. Lee,; R. G. Yang, Liquid-vapor phase-change heat transfer on functionalized nanowired surfaces and beyond. Joule 2018, 2, 2307-2347.
[3]
S. Daniel,; M. K. Chaudhury,; J. C. Chen, Fast drop movements resulting from the phase change on a gradient surface. Science 2001, 291, 633-636.
[4]
X. P. Qu,; J. B. Boreyko,; F. J. Liu,; R. L. Agapov,; N. V. Lavrik,; S. T. Retterer,; J. J. Feng,; C. P. Collier,; C. H. Chen, Self-propelled sweeping removal of dropwise condensate. Appl. Phys. Lett. 2015, 106, 221601.
[5]
Q. Peng,; L. Jia,; J. Guo,; C. Dang,; Y. Ding,; L. F. Yin,; Q. Yan, Forced jumping and coalescence-induced sweeping enhanced the dropwise condensation on hierarchically microgrooved superhydrophobic surface. Appl. Phys. Lett. 2019, 114, 133106.
[6]
X. J. Gong,; X. F. Gao,; L. Jiang, Recent progress in bionic condensate microdrop self-propelling surfaces. Adv. Mater. 2017, 29, 1703002.
[7]
Y. T. Luo,; J. Li,; J. Zhu,; Y. Zhao,; X. F. Gao, Fabrication of condensate microdrop self-propelling porous films of cerium oxide nanoparticles on copper surfaces. Angew. Chem., Int. Ed. 2015, 54, 4876-4879.
[8]
J. Liu,; H. Y. Guo,; B. Zhang,; S. S. Qiao,; M. Z. Shao,; X. R. Zhang,; X. Q. Feng,; Q. Y. Li,; Y. L. Song,; L. Jiang, et al. Guided self-propelled leaping of droplets on a micro-anisotropic superhydrophobic surface. Angew. Chem., Int. Ed. 2016, 55, 4265-4269.
[9]
C. H. Chen,; Q. J. Cai,; C. Tsai,; C. L. Chen,; G. Y. Xiong,; Y. Yu,; Z. F. Ren, Dropwise condensation on superhydrophobic surfaces with two-tier roughness. Appl. Phys. Lett. 2007, 90, 173108.
[10]
A. Aili,; H. X. Li,; M. H. Alhosani,; T. J. Zhang, Unidirectional fast growth and forced jumping of stretched droplets on nanostructured microporous surfaces. ACS Appl. Mater. Interfaces 2016, 8, 21776-21786.
[11]
N. Miljkovic,; R. Enright,; E. N. Wang, Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. ACS Nano 2012, 6, 1776-1785.
[12]
X. M. Chen,; J. Wu,; R. Y. Ma,; M. Hua,; N. Koratkar,; S. H. Yao,; Z. K. Wang, Nanograssed micropyramidal architectures for continuous dropwise condensation. Adv. Funct. Mater. 2011, 21, 4617-4623.
[13]
N. Miljkovic,; R. Enright,; Y. Nam,; K. Lopez,; N. Dou,; J. Sack,; E. N. Wang, Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces. Nano Lett. 2013, 13, 179-187.
[14]
Y. Zhao,; Y. T. Luo,; J. Zhu,; J. Li,; X. F. Gao, Copper-based ultrathin nickel nanocone films with high-efficiency dropwise condensation heat transfer performance. ACS Appl. Mater. Interfaces 2015, 7, 11719-11723.
[15]
J. Zhu,; Y. T. Luo,; J. Tian,; J. Li,; X. F. Gao, Clustered ribbed-nanoneedle structured copper surfaces with high-efficiency dropwise condensation heat transfer performance. ACS Appl. Mater. Interfaces 2015, 7, 10660-10665.
[16]
R. Wang,; J. Zhu,; K. X. Meng,; H. Wang,; T. Deng,; X. F. Gao,; L. Jiang, Bio-inspired superhydrophobic closely packed aligned nanoneedle architectures for enhancing condensation heat transfer. Adv. Funct. Mater. 2018, 28, 1800634.
[17]
Y. M. Hou,; Y. H. Shang,; M. Yu,; C. X. Feng,; H. Y. Yu,; S. H. Yao, Tunable water harvesting surfaces consisting of biphilic nanoscale topography. ACS Nano 2018, 12, 11022-11030.
[18]
R. F. Wen,; Q. Li,; J. F. Wu,; G. S. Wu,; W. Wang,; Y. F. Chen,; X. H. Ma,; D. L. Zhao,; R. G. Yang, Hydrophobic copper nanowires for enhancing condensation heat transfer. Nano Energy 2017, 33, 177-183.
[19]
R. F. Wen,; S. S. Xu,; X. H. Ma,; Y. C. Lee,; R. G. Yang, Three-dimensional superhydrophobic nanowire networks for enhancing condensation heat transfer. Joule 2018, 2, 269-279.
[20]
R. Wang,; F. F. Wu,; D. D. Xing,; F. F. Yu,; X. F. Gao, Density maximization of one-step electrodeposited copper nanocones and dropwise condensation heat-transfer performance evaluation. ACS Appl. Mater. Interfaces 2020, 12, 24512-24520.
[21]
E. Ölçeroğlu,; M. McCarthy, Self-organization of microscale condensate for delayed flooding of nanostructured superhydrophobic surfaces. ACS Appl. Mater. Interfaces 2016, 8, 5729-5736.
[22]
T. Mouterde,; G. Lehoucq,; S. Xavier,; A. Checco,; C. T. Black,; A. Rahman,; T. Midavaine,; C. Clanet,; D. Quéré, Antifogging abilities of model nanotextures. Nat. Mater. 2017, 16, 658-663.
[23]
J. G. Fan,; D. Dyer,; G. Zhang,; Y. P. Zhao, Nanocarpet effect: Pattern formation during the wetting of vertically aligned nanorod arrays. Nano Lett. 2004, 4, 2133-2138.
[24]
R. Enright,; N. Miljkovic,; J. Sprittles,; K. Nolan,; R. Mitchell,; E. N. Wang, How coalescing droplets jump. ACS Nano 2014, 8, 10352-10362.
[25]
J. Tian,; J. Zhu,; H. Y. Guo,; J. Li,; X. Q. Feng,; X. F. Gao, Efficient self-propelling of small-scale condensed microdrops by closely packed ZnO nanoneedles. J. Phys. Chem. Lett. 2014, 5, 2084-2088.
[26]
F. J. Liu,; G. Ghigliotti,; J. J. Feng,; C. H. Chen, Numerical simulations of self-propelled jumping upon drop coalescence on non-wetting surfaces. J. Fluid Mech. 2014, 752, 39-65.
[27]
N. A. Malvadkar,; M. J. Hancock,; K. Sekeroglu,; W. J. Dressick,; M. C. Demirel, An engineered anisotropic nanofilm with unidirectional wetting properties. Nat. Mater. 2010, 9, 1023-1028.
[28]
Y. K. Lai,; X. F. Gao,; H. F. Zhuang,; J. Y. Huang,; C. J. Lin,; L. Jiang, Designing superhydrophobic porous nanostructures with tunable water adhesion. Adv. Mater. 2009, 21, 3799-3803.
[29]
W. Li,; X. F. Li,; W. Chang,; J. Wu,; P. F. Liu,; J. J. Wang,; X. Yao,; Z. Z. Yu, Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation. Nano Res. 2020, 13, 3048-3056.
[30]
Y. J. Li,; H. C. Zhang,; N. N. Han,; Y. Kuang,; J. F. Liu,; W. Liu,; H. H. Duan,; X. M. Sun, Janus electrode with simultaneous management on gas and liquid transport for boosting oxygen reduction reaction. Nano Res. 2019, 12, 177-182.
[31]
X. D. Lou,; Y. Huang,; X. Yang,; H. Zhu,; L. P. Heng,; F. Xia, External stimuli responsive liquid-infused surfaces switching between slippery and nonslippery states: Fabrications and applications. Adv. Funct. Mater. 2020, 30, 1901130.
[32]
H. Zhu,; Y. Huang,; X. Lou,; F. Xia Beetle-inspired wettable materials: From fabrications to applications. Mater. Today Nano 2019, 6, 100034.
[33]
H. Zhu,; Y. Huang,; F. Xia, Environmentally friendly superhydrophobic osmanthus flowers for oil spill cleanup. Appl. Mater. Today 2020, 19, 100607.
[34]
Z. Cai,; Y. S. Zhang,; Y. X. Zhao,; Y. S. Wu,; W. W. Xu,; X. M. Wen,; Y. Zhong,; Y. Zhang,; W. Liu,; H. L. Wang, et al. Selectivity regulation of CO2 electroreduction through contact interface engineering on superwetting Cu nanoarray electrodes. Nano Res. 2019, 12, 345-349.
[35]
Y. A. Li,; Y. Zhao,; X. Y. Lu,; Y. Zhu,; L. Jiang, Self-healing superhydrophobic polyvinylidene fluoride/Fe3O4@polypyrrole fiber with core-sheath structures for superior microwave absorption. Nano Res. 2016, 9, 2034-2045.
[36]
H. J. Gwon,; Y. Park,; C. W. Moon,; S. Nahm,; S. J. Yoon,; S. Y. Kim,; H. W. Jang, Superhydrophobic and antireflective nanograss-coated glass for high performance solar cells. Nano Res. 2014, 7, 670-678.
[37]
B. Su,; S. T. Wang,; Y. L. Song,; L. Jiang, A miniature droplet reactor built on nanoparticle-derived superhydrophobic pedestals. Nano Res. 2011, 4, 266-273.
[38]
J. Ma,; L. P. Wen,; Z. C. Dong,; T. Zhang,; S. T. Wang,; L. Jiang, Aligned silicon nanowires with fine-tunable tilting angles by metal-assisted chemical etching on off-cut wafers. Phys. Status Solidi RRL 2013, 7, 655-658.
Nano Research
Pages 1429-1434
Cite this article:
Wang R, Wu F, Yu F, et al. Anti-vapor-penetration and condensate microdrop self-transport of superhydrophobic oblique nanowire surface under high subcooling. Nano Research, 2021, 14(5): 1429-1434. https://doi.org/10.1007/s12274-020-3196-8
Topics:

726

Views

25

Crossref

N/A

Web of Science

24

Scopus

5

CSCD

Altmetrics

Received: 10 September 2020
Revised: 12 October 2020
Accepted: 15 October 2020
Published: 19 November 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return