AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Wavelength-selectivity polarization dependence of optical absorption and photoresponse in SnS nanosheets

Yu Cui1,§Ziqi Zhou1,§Xinghua Wang2Xiaoting Wang1Zhihui Ren1Longfei Pan1Juehan Yang1( )
State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100083, China
Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China

§ Yu Cui and Ziqi Zhou contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The optical and optoelectronic characteristics of SnS nanosheets with strong anisotropic crystal structure are researched. Transmission electron microscopy and polarized Raman spectra are used to determine the crystal orientation of SnS nanosheets. The photodetector based on SnS nanosheets exhibits the carrier mobility of 37.75 cm2/V·s, photoresponsivity of 310.5 A/W and external quantum efficiency of 8.56 × 104 % at 450 nm. Optical absorption around the absorption edge presents obvious polarization sensitivity with the highest optical absorption dichroic ratio of 3.06 at 862 nm. Due to anisotropic optical absorption, the polarized photocurrent appears as the periodic change affected by the polarized direction of the incident light at 808 nm. Overall, SnS nanosheets show good potential in the future application of the polarized photodetectors for specific wavelength.

Electronic Supplementary Material

Download File(s)
12274_2020_3197_MOESM1_ESM.pdf (1.4 MB)

References

[1]
Tyo, J. S.; Goldstein, D. L.; Chenault, D. B.; Shaw, J. A. Review of passive imaging polarimetry for remote sensing applications. Appl. Opt. 2006, 45, 5453-5469.
[2]
Li, Q.; Li, Z. F.; Li, N.; Chen, X. S.; Chen, P. P.; Shen, X. C.; Lu, W. High-polarization-discriminating infrared detection using a single quantum well sandwiched in plasmonic micro-cavity. Sci. Rep. 2014, 4, 6332.
[3]
Li, L.; Xiong, D. Y.; Wen, J.; Li, N.; Zhu, Z. Q. A surface plasmonic coupled mid-long-infrared two-color quantum cascade detector. Infrared Phys. Technol. 2016, 79, 45-49.
[4]
Venuthurumilli, P. K.; Ye, P. D.; Xu, X. F. Plasmonic resonance enhanced polarization-sensitive photodetection by black phosphorus in near infrared. ACS Nano 2018, 12, 4861-4867.
[5]
Chen, Y. B.; Chen, C. Y.; Kealhofer, R.; Liu, H. L.; Yuan, Z. Q.; Jiang, L. L.; Suh, J.; Park, J.; Ko, C.; Choe, H. S. et al. Black arsenic: A layered semiconductor with extreme in-plane anisotropy. Adv. Mater. 2018, 30, 1800754.
[6]
Chu, F. H.; Chen, M. Y.; Wang, Y.; Xie, Y. Q.; Liu, B. Y.; Yang, Y. H.; An, X. T.; Zhang, Y. Z. A highly polarization sensitive antimonene photodetector with a broadband photoresponse and strong anisotropy. J. Mater. Chem. C 2018, 6, 2509-2514.
[7]
Wang, X. T.; Li, Y. T.; Huang, L.; Jiang, X. W.; Jiang, L.; Dong, H. L.; Wei, Z. M.; Li, J. B.; Hu, W. P. Short-wave near-infrared linear dichroism of two-dimensional germanium selenide. J. Am. Chem. Soc. 2017, 139, 14976-14982.
[8]
Zhou, Z. Q.; Cui, Y.; Tan, P. H.; Liu, X. L.; Wei, Z. M. Optical and electrical properties of two-dimensional anisotropic materials. J. Semicond. 2019, 40, 061001.
[9]
Liu, F. C.; Zheng, S. J.; He, X. X.; Chaturvedi, A.; He, J. F.; Chow, W. L.; Mion, T. R.; Wang, X. L.; Zhou, J. D.; Fu, Q. D. et al. Highly sensitive detection of polarized light using anisotropic 2D ReS2. Adv. Funct. Mater. 2016, 26, 1169-1177.
[10]
Zhou, W.; Chen, J. Z.; Gao, H.; Hu, T.; Ruan, S. C.; Stroppa, A.; Ren, W. Anomalous and polarization-sensitive photoresponse of Td-WTe2 from visible to infrared light. Adv. Mater. 2019, 31, 1804629.
[11]
Liu, F. C.; Shimotani, H.; Shang, H.; Kanagasekaran, T.; Zólyomi, V.; Drummond, N.; Fal’ko, V. I.; Tanigaki, K. High-sensitivity photodetectors based on multilayer GaTe flakes. ACS Nano 2014, 8, 752-760.
[12]
Liu, S. J.; Xiao, W. B.; Zhong, M. Z.; Pan, L. F.; Wang, X. T.; Deng, H. X.; Liu, J.; Li, J. B.; Wei, Z. M. Highly polarization sensitive photodetectors based on quasi-1D titanium trisulfide (TiS3). Nanotechnology 2018, 29, 184002.
[13]
Wang, X. T.; Wu, K. D.; Blei, M.; Wang, Y.; Pan, L. F.; Zhao, K.; Shan, C. X.; Lei, M.; Cui, Y.; Chen, B. et al. Highly polarized photoelectrical response in vdW ZrS3 nanoribbons. Adv. Elect. Mater. 2019, 5, 1900419.
[14]
Li, L.; Han, W.; Pi, L. J.; Niu, P.; Han, J. B.; Wang, C. L.; Su, B.; Li, H. Q.; Xiong, J.; Bando, Y. et al. Emerging in-plane anisotropic two-dimensional materials. InfoMat 2019, 1, 54-73.
[15]
Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372-377.
[16]
Hong, T.; Chamlagain, B.; Lin, W. Z.; Chuang, H. J.; Pan, M. H.; Zhou, Z. X.; Xu, Y. Q. Polarized photocurrent response in black phosphorus field-effect transistors. Nanoscale 2014, 6, 8978-8983.
[17]
Yuan, H. T.; Liu, X. G.; Afshinmanesh, F.; Li, W.; Xu, G.; Sun, J.; Lian, B.; Curto, A. G.; Ye, G. J.; Hikita, Y. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. Nat. Nanotechnol. 2015, 10, 707-713.
[18]
Zhou, Z. Q.; Long, M. S.; Pan, L. F.; Wang, X. T.; Zhong, M. Z.; Blei, M.; Wang, J. L.; Fang, J. Z.; Tongay, S.; Hu, W. D. et al. Perpendicular optical reversal of the linear dichroism and polarized photodetection in 2D GeAs. ACS Nano 2018, 12, 12416-12423.
[19]
Tian, Z.; Guo, C. L.; Zhao, M. X.; Li, R. R.; Xue, J. M. Two-dimensional SnS: A phosphorene analogue with strong in-plane electronic anisotropy. ACS Nano 2017, 11, 2219-2226.
[20]
Lin, S. R.; Carvalho, A.; Yan, S. C.; Li, R.; Kim, S.; Rodin, A.; Carvalho, L.; Chan, E. M.; Wang, X.; Castro Neto, A. H. et al. Accessing valley degree of freedom in bulk Tin(II) sulfide at room temperature. Nat. Commun. 2018, 9, 1455.
[21]
Zhang, Z. D.; Yang, J. H.; Zhang, K.; Chen, S.; Mei, F. H.; Shen, G. Z. Anisotropic photoresponse of layered 2D SnS-based near infrared photodetectors. J. Mater. Chem. C 2017, 5, 11288-11293.
[22]
Sun, B. Z.; Ma, Z. J.; He, C.; Wu, K. C. Enhanced thermoelectric performance of layered SnS crystals: The synergetic effect of temperature and carrier concentration. RSC Adv. 2015, 5, 56382-56390.
[23]
Zheng, D. S.; Fang, H. H.; Long, M. S.; Wu, F.; Wang, P.; Gong, F.; Wu, X.; Ho, J. C.; Liao, L.; Hu, W. D. High-performance near-infrared photodetectors based on p-type SnX (X = S, Se) nanowires grown via chemical vapor deposition. ACS Nano 2018, 12, 7239-7245.
[24]
Zhou, X.; Gan, L.; Zhang, Q.; Xiong, X.; Li, H. Q.; Zhong, Z. Q.; Han, J. B.; Zhai, T. Y. High performance near-infrared photodetectors based on ultrathin SnS nanobelts grown via physical vapor deposition. J. Mater. Chem. C 2016, 4, 2111-2116.
[25]
Sohila, S.; Rajalakshmi, M.; Ghosh, C.; Arora, A. K.; Muthamizhchelvan, C. Optical and Raman scattering studies on SnS nanoparticles. J. Alloys Compd. 2011, 509, 5843-5847.
[26]
Gao, W.; Li, Y. T.; Guo, J. H.; Ni, M. X.; Liao, M.; Mo, H. J.; Li, J. B. Narrow-gap physical vapour deposition synthesis of ultrathin SnS1-xSex (0 ≤ x ≤ 1) two-dimensional alloys with unique polarized Raman spectra and high (opto)electronic properties. Nanoscale 2018, 10, 8787-8795.
[27]
Xia, J.; Li, X. Z.; Huang, X.; Mao, N. N.; Zhu, D. D.; Wang, L.; Xu, H.; Meng, X. M. Physical vapor deposition synthesis of two-dimensional orthorhombic SnS flakes with strong angle/temperature-dependent Raman responses. Nanoscale 2016, 8, 2063-2070.
[28]
Xu, X. L.; Song, Q. J.; Wang, H. F.; Li, P.; Zhang, K.; Wang, Y. L.; Yuan, K.; Yang, Z. C.; Ye, Y.; Dai, L. In-plane anisotropies of polarized Raman response and electrical conductivity in layered tin selenide. ACS Appl. Mater. Interfaces 2017, 9, 12601-12607.
[29]
Ling, X.; Liang, L. B.; Huang, S. X.; Puretzky, A. A.; Geohegan, D. B.; Sumpter, B. G.; Kong, J.; Meunier, V.; Dresselhaus, M. S. Low- frequency interlayer breathing modes in few-layer black phosphorus. Nano Lett. 2015, 15, 4080-4088.
[30]
Rath, T.; Gury, L.; Sánchez-Molina, I.; Martínez, L.; Haque, S. A. Formation of porous SnS nanoplate networks from solution and their application in hybrid solar cells. Chem. Commun. 2015, 51, 10198-10201.
[31]
Shi, H. Y.; Yan, R. S.; Bertolazzi, S.; Brivio, J.; Gao, B.; Kis, A.; Jena, D.; Xing, H. G.; Huang, L. B. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano 2013, 7, 1072-1080.
Nano Research
Pages 2224-2230
Cite this article:
Cui Y, Zhou Z, Wang X, et al. Wavelength-selectivity polarization dependence of optical absorption and photoresponse in SnS nanosheets. Nano Research, 2021, 14(7): 2224-2230. https://doi.org/10.1007/s12274-020-3197-7
Topics:

817

Views

39

Crossref

37

Web of Science

39

Scopus

4

CSCD

Altmetrics

Received: 16 September 2020
Revised: 17 October 2020
Accepted: 19 October 2020
Published: 05 July 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return