AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Porous γ-Fe2O3 nanoparticle decorated with atomically dispersed platinum: Study on atomic site structural change and gas sensor activity evolution

Qiheng Li1Zhi Li1( )Qinghua Zhang2Lirong Zheng3Wensheng Yan4Xiao Liang1Lin Gu2Chen Chen1Dingsheng Wang1Qing Peng1Yadong Li1( )
Department of Chemistry, Tsinghua University, Beijing 100084, China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei 230029, China
Show Author Information

Graphical Abstract

Abstract

Decorating semi-conducting metal oxide with noble metal has been recognized as a viable approach to improve the sensitivity of gas sensor. However, conventional method which relys on noble metal nanoparticles is confronted with drawback of significantly increased cost. To maximize the atom efficiency and reduce the cost for practical industrial application, designing sensor material with noble metal isolated single atom sites (ISAS) doping is a desired option. Here, we report an atomically dispersed platinum on one-dimensional arranged porous γ-Fe2O3 nanoparticle composites as highly efficient ethanol gas sensor. The optimized sample (Pt1-Fe2O3-ox) exhibited a high response (Ra/Rg =102.4) and good selectivity to ethanol gas. It is demonstrated only the Pt single atom sites with high valance can effectively promote the adsorption capacity to ethanol and consequently enhance the sensitivity of sensing process by changing the electrical structure of Fe2O3 support. This work indicates the single atom sites could play a vital role in improving the performance of conventional metal oxides gas sensors and pave way for the exploration of ISAS-enhanced gas sensor for other volatile organic compounds (VOCs).

Electronic Supplementary Material

Download File(s)
12274_2020_3199_MOESM1_ESM.pdf (3.8 MB)

References

[1]
K. L. Ding,; A. Gulec,; A. M. Johnson,; N. M. Schweitzer,; G. D. Stucky,; L. D. Marks,; P. C. Stair, Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts. Science 2015, 350, 189-192.
[2]
S. Z. Zhao,; Y. F. Wen,; X. J. Liu,; X. Y. Pen,; F. Lü,; F. Y. Gao,; X. Z. Xie,; C. C. Du,; H. H. Yi,; D. J. Kang, et al. Formation of active oxygen species on single-atom Pt catalyst and promoted catalytic oxidation of toluene. Nano Res. 2020, 13, 1544-1551.
[3]
B. T. Qiao,; A. Q. Wang,; X. F. Yang,; L. F. Allard,; Z. Jiang,; Y. T. Cui,; J. Y. Liu,; J. Li,; T. Zhang, Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634-641.
[4]
J. Zhang,; X. Wu,; W. C. Cheong,; W. X. Chen,; R. Lin,; J. Li,; L. R. Zheng,; W. S. Yan,; L. Gu,; C. Chen, et al. Cation vacancy stabilization of single-atomic-site Pt1/Ni(OH)x catalyst for diboration of alkynes and alkenes. Nat. Commun. 2018, 9, 1002.
[5]
J. W. Wan,; W. X. Chen,; C. Y. Jia,; L. R. Zheng,; J. C. Dong,; X. S. Zheng,; Y. Wang,; W. S. Yan,; C. Chen,; Q. Peng, et al. Defect effects on TiO2 nanosheets: Stabilizing single atomic site Au and promoting catalytic properties. Adv. Mater. 2018, 30, 1705369.
[6]
J. C. Liu,; Y. G. Wang,; J. Li, Toward rational design of oxide-supported single-atom catalysts: Atomic dispersion of gold on ceria. J. Am. Chem. Soc. 2017, 139, 6190-6199.
[7]
M. Yang,; S. Li,; Y. Wang,; J. A. Herron,; Y. Xu,; L. F. Allard,; S. Lee,; J. Huang,; M. Mavrikakis,; M. Flytzani-Stephanopoulos, Catalytically active Au-O(OH)x-species stabilized by alkali ions on zeolites and mesoporous oxides. Science 2014, 346, 1498-1501.
[8]
H. Yan,; H. Cheng,; H. Yi,; Y. Lin,; T. Yao,; C. L. Wang,; J. J. Li,; S. Q. Wei,; J. L. Lu, Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: Remarkable performance in selective hydrogenation of 1,3-butadiene. J. Am. Chem. Soc. 2015, 137, 10484-10487.
[9]
G. Vilé,; D. Albani,; M. Nachtegaal,; Z. P. Chen,; D. Dontsova,; M. Antonietti,; N. López,; J. Pérez-Ramírez, A stable single-site palladium catalyst for hydrogenations. Angew. Chem., Int. Ed. 2015, 54, 11265-11269.
[10]
N. H. Fu,; X. Liang,; Z. Li,; W. X. Chen,; Y. Wang,; L. R. Zheng,; Q. H. Zhang,; C. Chen,; D. S. Wang,; Q. Peng, et al. Fabricating Pd isolated single atom sites on C3N4/rGO for heterogenization of homogeneous catalysis. Nano Res. 2020, 13, 947-951.
[11]
S. J. Wei,; A. Li,; J. C. Liu,; Z. Li,; W. X. Chen,; Y. Gong,; Q. H. Zhang,; W. C. Cheong,; Y. Wang,; L. R. Zheng, et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 2018, 13, 856-861.
[12]
J. Jones,; H. F. Xiong,; A. T. DeLaRiva,; E. J. Peterson,; H. Pham,; S. R. Challa,; G. Qi,; S. Oh,; M. H. Wiebenga,; X. I. Pereira Hernández, et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150-154.
[13]
Z. C. Zhuang,; Q. Kang,; D. S. Wang,; Y. D. Li, Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856-1866.
[14]
Y. Pan,; C. Zhang,; Y. Lin,; Z. Liu,; M. M. Wang,; C. Chen, Electrocatalyst engineering and structure-activity relationship in hydrogen evolution reaction: From nanostructures to single atoms. Sci. China Mater. 2020, 63, 921-948.
[15]
F. R. Lucci,; J. L. Liu,; M. D. Marcinkowski,; M. Yang,; L. F. Allard,; M. Flytzani-Stephanopoulos,; E. C. H. Sykes, Selective hydrogenation of 1,3-butadiene on platinum-copper alloys at the single-atom limit. Nat. Commun. 2015, 6, 8550.
[16]
X. Y. Li,; H. P. Rong,; J. T. Zhang,; D. S. Wang,; Y. D. Li, Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842-1855.
[17]
N. Q. Zhang,; C. L. Ye,; H. Yan,; L. C. Li,; H. He,; D. S. Wang,; Y. D. Li, Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165-3182.
[18]
Q. Xu,; C. X. Guo,; S. B. Tian,; J. Zhang,; W. X. Chen,; W. C. Cheong,; L. Gu,; L. R. Zheng,; J. P. Xiao,; Q. Liu, et al. Coordination structure dominated performance of single-atomic Pt catalyst for anti-Markovnikov hydroboration of alkenes. Sci. China Mater. 2020, 63, 972-981.
[19]
L. DeRita,; J. Resasco,; S. Dai,; A. Boubnov,; H. V. Thang,; A. S. Hoffman,; I. Ro,; G. W. Graham,; S. R. Bare,; G. Pacchioni, et al. Structural evolution of atomically dispersed Pt catalysts dictates reactivity. Nat. Mater. 2019, 18, 746-751.
[20]
T. F. Li,; J. J. Liu,; Y. Song,; F. Wang, Photochemical solid-phase synthesis of platinum single atoms on nitrogen-doped carbon with high loading as bifunctional catalysts for hydrogen evolution and oxygen reduction reactions. ACS Catal. 2018, 8, 8450-8458.
[21]
G. S. Parkinson,; Z. Novotny,; G. Argentero,; M. Schmid,; J. Pavelec,; R. Kosak,; P. Blaha,; U. Diebold, Carbon monoxide-induced adatom sintering in a Pd-Fe3O4 model catalyst. Nat. Mater. 2013, 12, 724-728.
[22]
B. L. Wang,; H. Luo,; X. W. Wang,; E. Z. Wang,; Y. F. Sun,; Y. C. Tsai,; J. X. Dong,; P. Liu,; H. L. Li,; Y. Xu, et al. Direct laser patterning of two-dimensional lateral transition metal disulfide-oxide-disulfide heterostructures for ultrasensitive sensors. Nano Res. 2020, 13, 2035-2043.
[23]
J. Cao,; Z. Y. Wang,; R. Wang,; S. Liu,; T. Fei,; L. J. Wang,; T. Zhang, Synthesis of core-shell α-Fe2O3@NiO nanofibers with hollow structures and their enhanced HCHO sensing properties. J. Mater. Chem. A 2015, 3, 5635-5641.
[24]
D. Kukkar,; K. Vellingiri,; R. Kaur,; S. K. Bhardwaj,; A. Deep,; K. H. Kim, Nanomaterials for sensing of formaldehyde in air: Principles, applications, and performance evaluation. Nano Res. 2019, 12, 225-246.
[25]
A. Mirzaei,; S. G. Leonardi,; G. Neri, Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review. Ceram. Int. 2016, 42, 15119-15141.
[26]
L. Mei,; J. W. Deng,; X. M. Yin,; M. Zhang,; Q. H. Li,; E. D. Zhang,; Z. Xu,; L. B. Chen,; T. H. Wang, Ultrasensitive ethanol sensor based on 3D aloe-like SnO2. Sens. Actuators B: Chem. 2012, 166-167, 7-11.
[27]
N. Van Hieu,; N. A. P. Duc,; T. Trung,; M. A. Tuan,; N. D. Chien, Gas-sensing properties of tin oxide doped with metal oxides and carbon nanotubes: A competitive sensor for ethanol and liquid petroleum gas. Sens. Actuators B: Chem. 2010, 144, 450-456.
[28]
D. Bao,; P. Gao,; L. Q. Wang,; Y. Wang,; Y. J. Chen,; G. R. Chen,; G. B. Li,; C. Chang,; W. Qin, ZnO nanorod arrays and hollow spheres through a facile room-temperature solution route and their enhanced ethanol gas-sensing properties. ChemPlusChem 2013, 78, 1266-1272.
[29]
F. Paraguay D.,; M. Miki-Yoshida,; J. Morales,; J. Solis,; W. Estrada L., Influence of Al, In, Cu, Fe and Sn dopants on the response of thin film ZnO gas sensor to ethanol vapour. Thin Solid Films 2000, 373, 137-140.
[30]
N. Kılınç,; E. Şennik,; Z. Z. Öztürk, Fabrication of TiO2 nanotubes by anodization of Ti thin films for VOC sensing. Thin Solid Films 2011, 520, 953-958.
[31]
J. Chen,; L. Xu,; W. Li,; X. Gou, α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv. Mater. 2005, 17, 582-586.
[32]
S. Yan,; G. T. Zan,; Q. S. Wu, An ultrahigh-sensitivity and selective sensing material for ethanol: α-/γ-Fe2O3 mixed-phase mesoporous nanofibers. Nano Res. 2015, 8, 3673-3686.
[33]
Z. J. Song,; H. M. Chen,; S. S. Bao,; Z. X. Xie,; Q. Kuang,; L. S. Zheng, Nanosheet-assembled, hollowed-out hierarchical γ-Fe2O3 microrods for high-performance gas sensing. J. Mater. Chem. A 2020, 8, 3754-3762.
[34]
W. J. Yan,; X. M. Zeng,; H. Liu,; C. W. Guo,; M. Ling,; H. P. Zhou, Highly reliable and selective ethanol sensor based on α-Fe2O3 nanorhombs working in realistic environments. Chin. Phys. B 2019, 28, 487-493.
[35]
H. L. Tian,; H. Q. Fan,; J. W. Ma,; Z. Y. Liu,; L. T. Ma,; S. H. Lei,; J. W. Fang,; C. B. Long, Pt-decorated zinc oxide nanorod arrays with graphitic carbon nitride nanosheets for highly efficient dual-functional gas sensing. J. Hazard. Mater. 2018, 341, 102-111.
[36]
Q. Zhang,; X. X. Qin,; F. P. Duan-Mu,; H. M. Ji,; Z. R. Shen,; X. P. Han,; W. B. Hu, Isolated platinum atoms stabilized by amorphous tungstenic acid: Metal-support interaction for synergistic oxygen activation. Angew. Chem., Int. Ed. 2018, 57, 9351-9356.
[37]
X. H. Jia,; X. J. Yu,; L. X. Xia,; Y. L. Sun,; H. J. Song, Synthesis and characterization of Ag/α-Fe2O3 microspheres and their application to highly sensitive and selective detection of ethanol. Appl. Surf. Sci. 2018, 462, 29-37.
[38]
M. Zhou,; Y. Jiang,; G. Wang,; W. J. Wu,; W. X. Chen,; P. Yu,; Y. Q. Lin,; J. J. Mao,; L. Q. Mao, Single-atom Ni-N4 provides a robust cellular NO sensor. Nat. Commun. 2020, 11, 3188.
[39]
F. B. Gu,; Y. Z. Cui,; D. M. Han,; S. Hong,; M. Flytzani-Stephanopoulos,; Z. H. Wang, Atomically dispersed Pt (II) on WO3 for highly selective sensing and catalytic oxidation of triethylamine. Appl. Catal. B: Environ. 2019, 256, 117809.
[40]
O. Pozdnyakova,; D. Teschner,; A. Wootsch,; J. Kröhnert,; B. Steinhauer,; H. Sauer,; L. Toth,; F. C. Jentoft,; A. Knop-Gericke,; Z. Paál, et al. Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part I: Oxidation state and surface species on Pt/CeO2 under reaction conditions. J. Catal. 2006, 237, 1-16.
[41]
X. I. Pereira-Hernández,; A. DeLaRiva,; V. Muravev,; D. Kunwar,; H. F. Xiong,; B. Sudduth,; M. Engelhard,; L. Kovarik,; E. J. M. Hensen,; Y. Wang, et al. Tuning Pt-CeO2 interactions by high-temperature vapor-phase synthesis for improved reducibility of lattice oxygen. Nat. Commun. 2019, 10, 1358.
[42]
P. Gruene,; A. Fielicke,; G. Meijer,; D. M. Rayner, The adsorption of CO on group 10 (Ni, Pd, Pt) transition-metal clusters. Phys. Chem. Chem. Phys. 2008, 10, 6144-6149.
[43]
G. Anjum,; R. Kumar,; S. Mollah,; P. Thakur,; S. Gautam,; K. H. Chae, NEXAFS studies of La0.8Bi0.2Fe1-xMnxO3(0.0 ≤ x ≤ 0.4) multiferroic system using X-ray absorption spectroscopy. J. Phys. D: Appl. Phys. 2011, 44, 075403.
[44]
X. H. Liu,; K. Shen,; Y. G. Wang,; Y. Q. Wang,; Y. L. Guo,; Y. Guo,; Z. L. Yong,; G. Z. Lu, Preparation and catalytic properties of Pt supported Fe-Cr mixed oxide catalysts in the aqueous-phase reforming of ethylene glycol. Catal. Commun. 2008, 9, 2316-2318.
[45]
B. B. Chen,; X. B. Zhu,; M. Crocker,; Y. Wang,; C. Shi, FeOx-supported gold catalysts for catalytic removal of formaldehyde at room temperature. Appl. Catal. B: Environ. 2014, 154-155, 73-81.
[46]
H. S. Wei,; X. Y. Liu,; A. Q. Wang,; L. L. Zhang,; B. T. Qiao,; X. F. Yang,; Y. Q. Huang,; S. Miao,; J. Y. Liu,; T. Zhang, FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 2014, 5, 5634.
[47]
G. Korotcenkov, Metal oxides for solid-state gas sensors: What determines our choice? Mater. Sci. Eng.: B 2007, 139, 1-23.
[48]
P. Sun,; Y. X. Cai,; S. S. Du,; X. M. Xu,; L. You,; J. Ma,; F. M. Liu,; X. S. Liang,; Y. F. Sun,; G. Y. Lu, Hierarchical α-Fe2O3/SnO2 semiconductor composites: Hydrothermal synthesis and gas sensing properties. Sens. Actuators B: Chem. 2013, 182, 336-343.
[49]
Y. L. Cheng,; H. X. Guo,; Y. F. Wang,; Y. Zhao,; Y. Li,; L. Liu,; H. Y. Li,; H. J. Duan, Low cost fabrication of highly sensitive ethanol sensor based on Pd-doped α-Fe2O3 porous nanotubes. Mater. Res. Bull. 2018, 105, 21-27.
[50]
L. L. Li,; Y. Cheah,; Y. Ko,; P. Teh,; G. Wee,; C. Wong,; S. J. Peng,; M. Srinivasan, The facile synthesis of hierarchical porous flower-like NiCo2O4 with superior lithium storage properties. J. Mater. Chem. A 2013, 1, 10935-10941.
Nano Research
Pages 1435-1442
Cite this article:
Li Q, Li Z, Zhang Q, et al. Porous γ-Fe2O3 nanoparticle decorated with atomically dispersed platinum: Study on atomic site structural change and gas sensor activity evolution. Nano Research, 2021, 14(5): 1435-1442. https://doi.org/10.1007/s12274-020-3199-5
Topics:

1004

Views

60

Crossref

N/A

Web of Science

55

Scopus

4

CSCD

Altmetrics

Received: 03 August 2020
Revised: 17 September 2020
Accepted: 20 October 2020
Published: 15 November 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return