AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Fabrication of metal-organic framework-based nanofibrous separator via one-pot electrospinning strategy

Congcong Chen1,§Weidong Zhang2,§He Zhu1,3( )Bo-Geng Li1Yingying Lu2Shiping Zhu3,4( )
State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada
Show Author Information

Graphical Abstract

Abstract

Metal-organic framework (MOF)/polymer composites have attracted extensive attention in the recent years. However, it still remains challenging to efficiently and effectively fabricate these composite materials. In this study, we propose a facile one-pot electrospinning strategy for preparation of HKUST-1/polyacrylonitrile (PAN) nanofibrous membranes from a homogeneous stock solution containing HKUST-1 precursors and PAN. MOF crystallization and polymer solidification occur simultaneously during the electrospinning process, thus avoiding the issues of aggregation and troublesome multistep fabrication of the conventional approach. The obtained HKUST-1/PAN electrospun membranes show uniform MOF distribution throughout the nanofibers and yield good mechanical properties. The membranes are used as separators in Li-metal full batteries under harsh testing conditions, using an ultrathin Li-metal anode, a high mass loading cathode, and the HKUST-1/PAN nanofibrous separator. The results demonstrate significantly improved cycling performance (capacity retention of 83.1% after 200 cycles) under a low negative to positive capacity ratio (N/P ratio of 1.86). The improvement can be attributed to an enhanced wettability of the separator towards electrolyte stemmed from the nanofibrous structure, and a uniform lithium ion flux stabilized by the open metal sites of uniformly distributed HKUST-1 particles in the membrane during cycling.

Electronic Supplementary Material

Download File(s)
12274_2020_3203_MOESM1_ESM.pdf (2.9 MB)

References

[1]
Z. W. Lei,; J. L. Shen,; W. D. Zhang,; Q. R. Wang,; J. Wang,; Y. H. Deng,; C. Y. Wang, Exploring porous zeolitic imidazolate frame work-8 (ZIF-8) as an efficient filler for high-performance poly(ethyleneoxide)-based solid polymer electrolytes. Nano Res. 2020, 13, 2259-2267.
[2]
L. J. Chen,; X. Ding,; J. Huo,; S. El Hankari,; D. Bradshaw, Facile synthesis of magnetic macroporous polymer/MOF composites as separable catalysts. J. Mater. Sci. 2019, 54, 370-382.
[3]
Z. L. Shi,; Y. Tao,; J. S. Wu,; C. Z. Zhang,; H. L. He,; L. L. Long,; Y. Lee,; T. Li,; Y. B. Zhang, Robust metal-triazolate frameworks for CO2 capture from flue gas. J. Am. Chem. Soc. 2020, 142, 2750-2754.
[4]
C. H. Wu,; L. Y. Chou,; L. L. Long,; X. M. Si,; W. S. Lo,; C. K. Tsung,; T. Li, Structural control of uniform MOF-74 microcrystals for the study of adsorption kinetics. ACS Appl. Mater. Interfaces 2019, 11, 35820-35826.
[5]
K. Suresh,; A. J. Matzger, Enhanced drug delivery by dissolution of amorphous drug encapsulated in a water unstable metal-organic framework (MOF). Angew. Chem., Int. Ed. 2019, 58, 16790-16794.
[6]
H. Zhu,; X. Yang,; E. D. Cranston,; S. P. Zhu, Flexible and porous nanocellulose aerogels with high loadings of metal-organic-framework particles for separations applications. Adv. Mater. 2016, 28, 7652-7657.
[7]
M. Kalaj,; K. C. Bentz,; S. Ayala, Jr.; J. M. Palomba,; K. S. Barcus,; Y. Katayama,; S. M. Cohen, MOF-polymer hybrid materials: From simple composites to tailored architectures. Chem. Rev. 2020, 120, 8267-8302.
[8]
N. Radacsi,; F. D. Campos,; C. R. I. Chisholm,; K. P. Giapis, Spontaneous formation of nanoparticles on electrospun nanofibres. Nat. Commun. 2018, 9, 4740.
[9]
C. L. Zhang,; B. R. Lu,; F. H. Cao,; Z. Y. Wu,; W. Zhang,; H. P. Cong,; S. H. Yu, Electrospun metal-organic framework nanoparticle fibers and their derived electrocatalysts for oxygen reduction reaction. Nano Energy 2019, 55, 226-233.
[10]
Y. B. Dou,; W. J. Zhang,; A. Kaiser, Electrospinning of metal-organic frameworks for energy and environmental applications. Adv. Sci. 2020, 7, 1902590.
[11]
R. Ostermann,; J. Cravillon,; C. Weidmann,; M. Wiebcke,; B. M. Smarsly, Metal-organic framework nanofibers via electrospinning. Chem. Commun. 2011, 47, 442-444.
[12]
A. X. Lu,; M. McEntee,; M. A. Browe,; M. G. Hall,; J. B. DeCoste,; G. W. Peterson, MOFabric: Electrospun nanofiber mats from PVDF/UiO-66-NH2 for chemical protection and decontamination. ACS Appl. Mater. Interfaces 2017, 9, 13632-13636.
[13]
Y. M. Chen,; L. Yu,; X. W. Lou, Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes for lithium storage. Angew. Chem., Int. Ed. 2016, 55, 5990-5993.
[14]
A. X. Lu,; A. M. Ploskonka,; T. M. Tovar,; G. W. Peterson,; J. B. DeCoste, Direct surface growth of UiO-66-NH2 on polyacrylonitrile nanofibers for efficient toxic chemical removal. Ind. Eng. Chem. Res. 2017, 56, 14502-14506.
[15]
T. Y. Li,; X. Z. Yuan,; L. Zhang,; D. T. Song,; K. Y. Shi,; C. Bock, Degradation mechanisms and mitigation strategies of nickel-rich NMC-based lithium-ion batteries. Electrochem. Energy Rev. 2020, 3, 43-80.
[16]
C. J. Niu,; H. Lee,; S. R. Chen,; Q. Y. Li,; J. Du,; W. Xu,; J. G. Zhang,; M. S. Whittingham,; J. Xiao,; J. Liu, High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 2019, 4, 551-559.
[17]
D. C. Lin,; Y. Y. Liu,; Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194-206.
[18]
W. D. Zhang,; H. L. Zhuang,; L. Fan,; L. N. Gao,; Y. Y. Lu, A “cation-anion regulation” synergistic anode host for dendrite-free lithium metal batteries. Sci. Adv. 2018, 4, eaar4410.
[19]
W. D. Zhang,; L. Fan,; Z. M. Tong,; J. Z. Miao,; Z. Y. Shen,; S. Y. Li,; F. Chen,; Y. C. Qiu,; Y. Y. Lu, Stable li-metal deposition via a 3D nanodiamond matrix with ultrahigh Young’s modulus. Small Methods 2019, 3, 1900325.
[20]
W. D. Zhang,; Q. Wu,; J. X. Huang,; L. Fan,; Z. Y. Shen,; Y. He,; Q. Feng,; G. N. Zhu,; Y. Y. Lu, Colossal granular lithium deposits enabled by the grain-coarsening effect for high-efficiency lithium metal full batteries. Adv. Mater. 2020, 32, 2001740.
[21]
M. S. Kim,; M. S. Kim,; V. Do,; Y. R. Lim,; I. W. Nah,; L. A. Archer,; W. I. Cho, Designing solid-electrolyte interphases for lithium sulfur electrodes using ionic shields. Nano Energy 2017, 41, 573-582.
[22]
W. D. Zhang,; S. Q. Zhang,; L. Fan,; L. N. Gao,; X. Q. Kong,; S. Y. Li,; J. Li,; X. Hong,; Y. Y. Lu, Tuning the LUMO energy of an organic interphase to stabilize lithium metal batteries. ACS Energy Lett. 2019, 4, 644-650.
[23]
W. Liu,; Y. Y. Mi,; Z. Weng,; Y. R. Zhong,; Z. S. Wu,; H. L. Wang, Functional metal-organic framework boosting lithium metal anode performance via chemical interactions. Chem. Sci. 2017, 8, 4285-4291.
[24]
W. D. Zhang,; Z. Y. Tu,; J. W. Qian,; S. Choudhury,; L. A. Archer,; Y. Y. Lu, Design principles of functional polymer separators for high-energy, metal-based batteries. Small 2018, 14, 1703001.
[25]
X. Shen,; H. Liu,; X. B. Cheng,; C. Yan,; J. Q. Huang, Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes. Energy Storage Mater. 2018, 12, 161-175.
[26]
R. Ameloot,; E. Gobechiya,; H. Uji-i,; J. A. Martens,; J. Hofkens,; L. Alaerts,; B. F. Sels,; D. E. De Vos, Direct patterning of oriented metal-organic framework crystals via control over crystallization kinetics in clear precursor solutions. Adv. Mater. 2010, 22, 2685-2688.
[27]
R. J. Lin,; B. Villacorta Hernandez,; L. Ge,; Z. H. Zhu, Metal organic framework based mixed matrix membranes: An overview on filler/polymer interfaces. J. Mater. Chem. A 2018, 6, 293-312.
[28]
J. E. Efome,; D. Rana,; T. Matsuura,; C. Q. Lan, Insight studies on metal-organic framework nanofibrous membrane adsorption and activation for heavy metal ions removal from aqueous solution. ACS Appl. Mater. Interfaces 2018, 10, 18619-18629.
[29]
R. M. Elkhaldi,; S. Guclu,; I. Koyuncu, Enhancement of mechanical and physical properties of electrospun PAN nanofiber membranes using PVDF particles. Desalin. Water Treat. 2016, 57, 26003-26013.
[30]
L. W. Huang,; J. T. Arena,; S. S. Manickam,; X. Q. Jiang,; B. G. Willis,; J. R. McCutcheon, Improved mechanical properties and hydrophilicity of electrospun nanofiber membranes for filtration applications by dopamine modification. J. Membr. Sci. 2014, 460, 241-249.
[31]
S. A. Smith,; J. H. Park,; B. P. Williams,; Y. L. Joo, Polymer/ceramic co-continuous nanofiber membranes via room-curable organopolysilazane for improved lithium-ion battery performance. J. Mater. Sci. 2017, 52, 3657-3669.
[32]
B. S. Lee,; S. Cui,; X. Xing,; H. D. Liu,; X. J. Yue,; V. Petrova,; H. D. Lim,; R. K. Chen,; P. Liu, Dendrite suppression membranes for rechargeable zinc batteries. ACS Appl. Mater. Interfaces 2018, 10, 38928-38935.
[33]
M. Yanilmaz,; Y. Lu,; J. D. Zhu,; X. W. Zhang, Silica/polyacrylonitrile hybrid nanofiber membrane separators via sol-gel and electrospinning techniques for lithium-ion batteries. J. Power Sources 2016, 313, 205-212.
[34]
C. C. Fang,; X. F. Wang,; Y. S. Meng, Key issues hindering a practical lithium-metal anode. Trends Chem. 2019, 1, 152-158.
Nano Research
Pages 1465-1470
Cite this article:
Chen C, Zhang W, Zhu H, et al. Fabrication of metal-organic framework-based nanofibrous separator via one-pot electrospinning strategy. Nano Research, 2021, 14(5): 1465-1470. https://doi.org/10.1007/s12274-020-3203-0
Topics:

871

Views

50

Crossref

N/A

Web of Science

51

Scopus

3

CSCD

Altmetrics

Received: 10 August 2020
Revised: 24 September 2020
Accepted: 19 October 2020
Published: 13 November 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return