AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Long-term exposure to titanium dioxide nanoparticles promotes diet-induced obesity through exacerbating intestinal mucus layer damage and microbiota dysbiosis

Xiaoqiang Zhu1,§Lijun Zhao1,§Zhi Liu2Qibing Zhou1Yanhong Zhu1 ( )Yuliang Zhao3( )Xiangliang Yang1( )
National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
Show Author Information

Graphical Abstract

Abstract

Titanium dioxide nanoparticles (TiO2-NPs) are commonly used as food additives, including some high-fat foods that are risk factors for obesity. However, little is known about the effects of chronic TiO2-NPs digestion in the population on high fat diet (HFD). Herein, we reported that TiO2-NPs exacerbated HFD-induced obesity by disruption of mucus layer and alterations of gut microbiota. Oral intake of TiO2-NPs significantly increased body weight, liver weight, and amount of adipose tissues, especially in HFD-fed mice. Mechanistic studies revealed TiO2-NPs induced colonic mucus layer disruption and obesity-related microbiota dysbiosis. The damage on mucus was demonstrated through down-regulation of Muc2 gene and the absorption of mucin protein by TiO2-NPs. Consequently, mucus layer damage combined microbiota dysbiosis escalated the low-grade systemic inflammation, which exacerbated HFD-induced obesity. In contrast, gut microbiota depletion eliminated these effects, indicating gut microbiota were necessary for TiO2-NPs-induced inflammation and obesity. All the results stated the alarming role of TiO2-NPs in the HFD-driven obesity and emphasized the reevaluating the health impacts of nanoparticles commonly used in daily life, particularly, in susceptible population.

Electronic Supplementary Material

Download File(s)
12274_2020_3210_MOESM1_ESM.pdf (6.1 MB)

References

[1]
P. G. Kopelman, Obesity as a medical problem. Nature 2000, 404, 635-643.
[2]
C. M. Hales,; M. D. Carroll,; C. D. Fryar,; C. L. Ogden, Prevalence of obesity and severe obesity among adults: United States, 2017-2018. NCHS Data Brief 2020, 1-8.
[3]
S. Gallus,; A. Lugo,; B. Murisic,; C. Bosetti,; P. Boffetta,; C. La Vecchia, Overweight and obesity in 16 European countries. Eur. J. Nutr. 2015, 54, 679-689.
[4]
Y. H. Dong,; C. Jan,; Y. H. Ma,; B. Dong,; Z. Y. Zou,; Y. D. Yang,; R. B. Xu,; Y. Song,; J. Ma,; S. M. Sawyer, et al. Economic development and the nutritional status of Chinese school-aged children and adolescents from 1995 to 2014: An analysis of five successive national surveys. Lancet Diabetes Endocrinol. 2019, 7, 288-299.
[5]
H. Taegtmeyer,; C. R. Wilson, Obesity and the risk of heart failure. N. Engl. J. Med. 2002, 347, 1887-1889.
[6]
E. Fabbrini,; S. Sullivan,; S. Klein, Obesity and nonalcoholic fatty liver disease: Biochemical, metabolic, and clinical implications. Hepatology 2010, 51, 679-689.
[7]
M. Serino,; E. Luche,; S. Gres,; A. Baylac,; M. Bergé,; C. Cenac,; A. Waget,; P. Klopp,; J. Iacovoni,; C. Klopp, et al. Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut 2012, 61, 543-553.
[8]
L. M. Cox,; S. Yamanishi,; J. Sohn,; A. V. Alekseyenko,; J. M. Leung,; I. Cho,; S. G. Kim,; H. L. Li,; Z. Gao,; D. Mahana, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 2014, 158, 705-721.
[9]
R. E. Ley,; F. Bäckhed,; P. Turnbaugh,; C. A. Lozupone,; R. D. Knight,; J. I. Gordon, Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA 2005, 102, 11070-11075.
[10]
P. J. Turnbaugh,; R. E. Ley,; M. A. Mahowald,; V. Magrini,; E. R. Mardis,; J. I. Gordon, An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444, 1027-1031.
[11]
B. Chassaing,; O. Koren,; J. K. Goodrich,; A. C. Poole,; S. Srinivasan,; R. E. Ley,; A. T. Gewirtz, Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 2015, 519, 92-96.
[12]
K. M. Buettner,; A. M. Valentine, Bioinorganic chemistry of titanium. Chem. Rev. 2012, 112, 1863-1881.
[13]
X. X. Chen,; B. Cheng,; Y. X. Yang,; A. N. Cao,; J. H. Liu,; L. J. Du,; Y. F. Liu,; Y. L. Zhao,; H. F. Wang, Characterization and preliminary toxicity assay of nano-titanium dioxide additive in sugar-coated chewing gum. Small 2013, 9, 1765-1774.
[14]
Y. Wang,; Z. J. Chen,; T. Ba,; J. Pu,; T. Chen,; Y. S. Song,; Y. E. Gu,; Q. Qian,; Y. Y. Xu,; K. Xiang, et al. Susceptibility of young and adult rats to the oral toxicity of titanium dioxide nanoparticles. Small 2013, 9, 1742-1752.
[15]
A. Weir,; P. Westerhoff,; L. Fabricius,; K. Hristovski,; N. von Goetz, Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Technol. 2012, 46, 2242-2250.
[16]
Y. Yang,; K. Doudrick,; X. Y. Bi,; K. Hristovski,; P. Herckes,; P. Westerhoff,; R. Kaegi, Characterization of food-grade titanium dioxide: The presence of nanosized particles. Environ. Sci. Technol. 2014, 48, 6391-6400.
[17]
M. Dorier,; D. Béal,; C. Marie-Desvergne,; M. Dubosson,; F. Barreau,; E. Houdeau,; N. Herlin-Boime,; M. Carriere, Continuous in vitro exposure of intestinal epithelial cells to E171 food additive causes oxidative stress, inducing oxidation of DNA bases but no endoplasmic reticulum stress. Nanotoxicology 2017, 11, 751-761.
[18]
A. J. Wyrwoll,; P. Lautenschläger,; A. Bach,; B. Hellack,; A. Dybowska,; T. A. J. Kuhlbusch,; H. Hollert,; A. Schäffer,; H. M. Maes, Size matters—The phototoxicity of TiO2 nanomaterials. Environ. Pollut. 2016, 208, 859-867.
[19]
B. Trouiller,; R. Reliene,; A. Westbrook,; P. Solaimani,; R. H. Schiestl, Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res. 2009, 69, 8784-8789.
[20]
S. Bettini,; E. Boutet-Robinet,; C. Cartier,; C. Coméra,; E. Gaultier,; J. Dupuy,; N. Naud,; S. Taché,; P. Grysan,; S. Reguer, et al. Food-grade TiO2 impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in the rat colon. Sci. Rep. 2017, 7, 40373.
[21]
Z. J. Chen,; S. Han,; D. Zhou,; S. P. Zhou,; G. Jia, Effects of oral exposure to titanium dioxide nanoparticles on gut microbiota and gut-associated metabolism in vivo. Nanoscale 2019, 11, 22398-22412.
[22]
Q. Bu,; G. Y. Yan,; P. C. Deng,; F. Peng,; H. J. Lin,; Y. Z. Xu,; Z. X. Cao,; T. Zhou,; A. Q. Xue,; Y. L. Wang, et al. NMR-based metabonomic study of the sub-acute toxicity of titanium dioxide nanoparticles in rats after oral administration. Nanotechnology 2010, 21, 125105.
[23]
Y. M. Duan,; J. Liu,; L. L. Ma,; N. Li,; H. T. Liu,; J. Wang,; L. Zheng,; C. Liu,; X. F. Wang,; X. Y. Zhao, et al. Toxicological characteristics of nanoparticulate anatase titanium dioxide in mice. Biomaterials 2010, 31, 894-899.
[24]
S. L. McGill,; H. D. C. Smyth, Disruption of the mucus barrier by topically applied exogenous particles. Mol. Pharm. 2010, 7, 2280-2288.
[25]
I. de la Calle,; M. Menta,; M. Klein,; B. Maxit,; F. Séby, Towards routine analysis of TiO2 (nano-)particle size in consumer products: Evaluation of potential techniques. Spectrochim. Acta B: At. Spectrosc. 2018, 147, 28-42.
[26]
X. B. Chen,; S. S. Mao, Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891-2959.
[27]
S. T. Khan,; S. Saleem,; M. Ahamed,; J. Ahmad, Survival of probiotic bacteria in the presence of food grade nanoparticles from chocolates: An in vitro and in vivo study. Appl. Microbiol. Biotechnol. 2019, 103, 6689-6700.
[28]
J. Huh,; N. R. Riggs,; D. Spruijt-Metz,; C. P. Chou,; Z. Q. Huang,; M. A. Pentz, Identifying patterns of eating and physical activity in children: A latent class analysis of obesity risk. Obesity 2011, 19, 652-658.
[29]
T. A. Nicklas,; S. J. Yang,; T. Baranowski,; I. Zakeri,; G. Berenson, Eating patterns and obesity in children. The bogalusa heart study. Am. J. Prev. Med. 2003, 25, 9-16.
[30]
G. A. Bray,; S. Paeratakul,; B. M. Popkin, Dietary fat and obesity: A review of animal, clinical and epidemiological studies. Physiol. Behav. 2004, 83, 549-555.
[31]
S. M. Phillips,; L. G. Bandini,; E. N. Naumova,; H. Cyr,; S. Colclough,; W. H. Dietz,; A. Must, Energy-dense snack food intake in adolescence: Longitudinal relationship to weight and fatness. Obes. Res. 2004, 12, 461-472.
[32]
M. Younes,; P. Aggett,; F. Aguilar,; R. Crebelli,; B. Dusemund,; M. Filipič,; M. J. Frutos,; P. Galtier,; D. Gott, et al. Evaluation of four new studies on the potential toxicity of titanium dioxide used as a food additive (E 171). EFSA J. 2018, 16, e05366.
[33]
L. Geraets,; A. G. Oomen,; P. Krystek,; N. R. Jacobsen,; H. Wallin,; M. Laurentie,; H. W. Verharen,; E. F. A. Brandon,; W. H. de Jong, Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats. Part. Fibre Toxicol. 2014, 11, 30.
[34]
G. Pinget,; J. Tan,; B. Janac,; N. O. Kaakoush,; A. S. Angelatos,; J. O’Sullivan,; Y. C. Koay,; F. Sierro,; J. Davis,; S. K. Divakarla, et al. Impact of the food additive titanium dioxide (E171) on gut microbiota-host interaction. Front. Nutr. 2019, 6, 57.
[35]
W. Dudefoi,; K. Moniz,; E. Allen-Vercoe,; M. H. Ropers,; V. K. Walker, Impact of food grade and nano-TiO2 particles on a human intestinal community. Food Chem. Toxicol. 2017, 106, 242-249.
[36]
J. Li,; S. M. Yang,; R. H. Lei,; W. H. Gu,; Y. X. Qin,; S. H. Ma,; K. Chen,; Y. A. Chang,; X. Bai,; S. B. Xia, et al. Oral administration of rutile and anatase TiO2 nanoparticles shifts mouse gut microbiota structure. Nanoscale 2018, 10, 7736-7745.
[37]
C. Tropini,; E. L. Moss,; B. D. Merrill,; K. M. Ng,; S. K. Higginbottom,; E. P. Casavant,; C. G. Gonzalez,; B. Fremin,; D. M. Bouley,; J. E. Elias, et al. Transient osmotic perturbation causes long-term alteration to the gut microbiota. Cell 2018, 173, 1742-1754.e17.
[38]
M. A. S. Garcia,; N. Yang,; P. M. Quinton, Normal mouse intestinal mucus release requires cystic fibrosis transmembrane regulator - dependent bicarbonate secretion. J. Clin. Invest. 2009, 119, 2613-2622.
[39]
B. O. Schroeder,; G. M. H. Birchenough,; M. Ståhlman,; L. Arike,; M. E. V. Johansson,; G. C. Hansson,; F. Bäckhed, Bifidobacteria or fiber protects against diet-induced microbiota-mediated colonic mucus deterioration. Cell Host Microbe 2018, 23, 27-40.e7.
[40]
S. Rakoff-Nahoum,; J. Paglino,; F. Eslami-Varzaneh,; S. Edberg,; R. Medzhitov, Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 2004, 118, 229-241.
[41]
I. L. Bergin,; F. A. Witzmann, Nanoparticle toxicity by the gastrointestinal route: Evidence and knowledge gaps. Int. J. Biomed. Nanosci. Nanotechnol. 2013, 3, .
[42]
EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). Re-evaluation of titanium dioxide (E 171) as a food additive. EFSA J. 2016, 14, e04545.
[43]
X. Q. Cao,; Y. H. Han,; M. Gu,; H. J. Du,; M. Y. Song,; X. A. Zhu,; G. X. Ma,; C. Pan,; W. C. Wang,; E. M. Zhao, et al. Foodborne titanium dioxide nanoparticles induce stronger adverse effects in obese mice than non-obese mice: Gut microbiota dysbiosis, colonic inflammation, and proteome alterations. Small 2020, 16, 2001858.
[44]
A. Everard,; C. Belzer,; L. Geurts,; J. P. Ouwerkerk,; C. Druart,; L. B. Bindels,; Y. Guiot,; M. Derrien,; G. G. Muccioli,; N. M. Delzenne, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA 2013, 110, 9066-9071.
[45]
G. P. Donaldson,; S. M. Lee,; S. K. Mazmanian, Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 2016, 14, 20-32.
[46]
S. Z. Hasnain,; S. Tauro,; I. Das,; H. Tong,; A. C. H. Chen,; P. L. Jeffery,; V. McDonald,; T. H. Florin,; M. A. McGuckin, IL-10 promotes production of intestinal mucus by suppressing protein misfolding and endoplasmic reticulum stress in goblet cells. Gastroenterology 2013, 144, 357-368.e9.
[47]
G. M. Nava,; H. J. Friedrichsen,; T. S. Stappenbeck, Spatial organization of intestinal microbiota in the mouse ascending colon. ISME J. 2011, 5, 627-638.
[48]
M. E. V. Johansson,; H. Sjövall,; G. C. Hansson, The gastrointestinal mucus system in health and disease. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 352-361.
[49]
C. H. Zhang,; M. H. Zhang,; S. Y. Wang,; R. J. Han,; Y. F. Cao,; W. Y. Hua,; Y. J. Mao,; X. J. Zhang,; X. Y. Pang,; C. C. Wei, et al. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME J. 2010, 4, 312-313.
[50]
L. P. Zhao, The gut microbiota and obesity: From correlation to causality. Nat. Rev. Microbiol. 2013, 11, 639-647.
[51]
P. D. Cani,; S. Possemiers,; T. Van de Wiele,; Y. Guiot,; A. Everard,; O. Rottier,; L. Geurts,; D. Naslain,; A. Neyrinck,; D. M. Lambert, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009, 58, 1091-1103.
[52]
N. Suárez-Zamorano,; S. Fabbiano,; C. Chevalier,; O. Stojanovic,; D. J. Colin,; A. Stevanović,; C. Veyrat-Durebex,; V. Tarallo,; D. Rigo,; S. Germain, et al. Microbiota depletion promotes browning of white adipose tissue and reduces obesity. Nat. Med. 2015, 21, 1497-1501.
[53]
W. Mu,; Y. Wang,; C. Huang,; Y. J. Fu,; J. Q. Li,; H. Wang,; X. D. Jia,; Q. Ba, Effect of long-term intake of dietary titanium dioxide nanoparticles on intestine inflammation in mice. J. Agric. Food Chem. 2019, 67, 9382-9389.
[54]
A. Tirosh,; E. S. Calay,; G. Tuncman,; K. C. Claiborn,; K. E. Inouye,; K. Eguchi,; M. Alcala,; M. Rathaus,; K. S. Hollander,; I. Ron, et al. The short-chain fatty acid propionate increases glucagon and FABP4 production, impairing insulin action in mice and humans. Sci. Transl. Med. 2019, 11, eaav0120.
[55]
J. R. Turner, Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 2009, 9, 799-809.
[56]
J. X. Wang,; G. Q. Zhou,; C. Y. Chen,; H. W. Yu,; T. C. Wang,; Y. M. Ma,; G. Jia,; Y. X. Gao,; B. Li,; J. Sun, et al. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol. Lett. 2007, 168, 176-185.
[57]
M. F. Gregor,; G. S. Hotamisligil, Inflammatory mechanisms in obesity. Annu. Rev. Immunol. 2011, 29, 415-445.
[58]
F. Shen,; R. D. Zheng,; X. Q. Sun,; W. J. Ding,; X. Y. Wang,; J. G. Fan, Gut microbiota dysbiosis in patients with non-alcoholic fatty liver disease. Hepatobiliary Pancreat. Dis. Int. 2017, 16, 375-381.
[59]
P. Bovet,; A. Chiolero,; J. Gedeon, Health effects of overweight and obesity in 195 countries. N. Engl. J. Med. 2017, 377, 1495-1496.
[60]
C. L. Gentile,; T. L. Weir, The gut microbiota at the intersection of diet and human health. Science 2018, 362, 776-780.
Nano Research
Pages 1512-1522
Cite this article:
Zhu X, Zhao L, Liu Z, et al. Long-term exposure to titanium dioxide nanoparticles promotes diet-induced obesity through exacerbating intestinal mucus layer damage and microbiota dysbiosis. Nano Research, 2021, 14(5): 1512-1522. https://doi.org/10.1007/s12274-020-3210-1
Topics:

1101

Views

32

Crossref

N/A

Web of Science

33

Scopus

1

CSCD

Altmetrics

Received: 08 September 2020
Revised: 13 October 2020
Accepted: 22 October 2020
Published: 03 December 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return