Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Rational design of smart adsorbent equipped with a sensitive indicator via ligand exchange: A hierarchical porous mixed-ligand MOF for simultaneous removal and detection of Hg2+

Liang Zhang1Jing Wang1Huiting Wang1Wentao Zhang1Wenxin Zhu1Ting Du1Yongsheng Ni1Xianghong Xie1Jing Sun2Jianlong Wang1()
College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

The increasing accumulation of toxic mercury species in water environment has posed a serious health threat worldwide, making it inevitable to develop the versatile materials to achieve efficient prevention and remediation of mercury pollution. Guided by the solvent-assisted ligand exchange (SALE) approach, this work rationally constructed a mixed-ligand NH2-UiO-66-SH (NSU66) with hierarchical-pore structure by incorporating the thiol-rich ligands (H2DMBD) into the water-stable NH2-UiO-66 (NU66) precursor to act as a smart adsorbent equipped with sensitive detector for simultaneous sensing and removal of Hg2+. Unlike the traditional adsorbents, the as-prepared NSU66 not only exhibits a remarkable removal ability with fast capture rate (within 60.0 min), large uptake capacity (265.29 mg/g), and qualified selectivity, but also possesses satisfactory sensing capability, accompanied by low detection limit (3.50 × 10-2 µM), wide linear range (1.00-99.7 µM), high specificity, and strong anti-interference capability. The detection function plays a vital role in indicating the removal behavior and the pre-enrichment effect of adsorption process correspondingly improves the sensitivity of indicator. Notably, the sensing and trapping capabilities of NSU66 are significantly improved compared to the NU66, which stems from the delicate design of the mixed-ligand and hierarchical-pore structure. Furthermore, proven excellent stability and recyclability emphasize the feasibility of NSU66 in practical applications. These results suggest that the smart NSU66 adsorbent can serve as a favorable platform for early warning and guided removal of toxic Hg2+ in water.

Electronic Supplementary Material

Download File(s)
12274_2020_3211_MOESM1_ESM.pdf (1.8 MB)

References

[1]
A. Shahat,; S. A. Elsalam,; J. M. Herrero-Martínez,; E. F. Simó-Alfonso,; G. Ramis-Ramos, Optical recognition and removal of Hg(II) using a new self-chemosensor based on a modified amino-functionalized Al-MOF. Sens. Actuators B 2017, 253, 164-172.
[2]
L. F. Liang,; L. Y. Liu,; F. L. Jiang,; C. P. Liu,; D. Q. Yuan,; Q. H. Chen,; D. Wu,; H. L. Jiang; M. C. Hong, Incorporation of In2S3 nanoparticles into a metal-organic framework for ultrafast removal of Hg from water. Inorg. Chem. 2018, 57, 4891-4897.
[3]
N. D. Rudd,; H. Wang,; E. M. A. Fuentes-Fernandez,; S. J. Teat,; F. Chen,; G. Hall,; Y. J. Chabal,; J. Li, Highly efficient luminescent metal-organic framework for the simultaneous detection and removal of heavy metals from water. ACS Appl. Mater. Interfaces 2016, 8, 30294-30303.
[4]
L. H. Zhi,; W. Zuo,; F. J. Chen,; B. D. Wang, 3D MoS2 composition aerogels as chemosensors and adsorbents for colorimetric detection and high-capacity adsorption of Hg2+. ACS Sustainable Chem. Eng. 2016, 4, 3398-3408.
[5]
M. H. Hu,; H. Tian,; J. H. He, Unprecedented selectivity and rapid uptake of CuS nanostructures toward Hg(II) ions. ACS Appl. Mater. Interfaces 2019, 11, 19200-19206.
[6]
A. Hakimifar,; A. Morsali, Urea-based metal-organic frameworks as high and fast adsorbent for Hg2+ and Pb2+ removal from water. Inorg. Chem. 2019, 58, 180-187.
[7]
S. T. Zhang,; D. X. Zhang,; X. H. Zhang,; D. H. Shang,; Z. H. Xue,; D. L. Shan; X. Q. Lu, Ultratrace naked-eye colorimetric detection of Hg2+ in wastewater and serum utilizing mercury-stimulated peroxidase mimetic activity of reduced graphene oxide-PEI-Pd nanohybrids. Anal. Chem. 2017, 89, 3538-3544.
[8]
L. Zhang,; J. Wang,; T. Du,; W. T. Zhang,; W. X. Zhu,; C. Y. Yang,; T. L. Yue,; J. Sun,; T. Li,; J. L. Wang, NH2-MIL-53(Al) metal-organic framework as the smart platform for simultaneous high-performance detection and removal of Hg2+. Inorg. Chem. 2019, 58, 12573-12581.
[9]
F. Y. Du,; L. S. Sun,; Q. L. Zen,; W. Tan,; Z. F. Cheng,; G. H. Ruan,; J. P. Li, A highly sensitive and selective “on-off-on” fluorescent sensor based on nitrogen doped graphene quantum dots for the detection of Hg2+ and paraquat. Sens. Actuators B 2019, 288, 96-103.
[10]
W. Li,; Y. Li,; H. L. Qian,; X. Zhao,; C. X. Yang,; X. P. Yan, Fabrication of a covalent organic framework and its gold nanoparticle hybrids as stable mimetic peroxidase for sensitive and selective colorimetric detection of mercury in water samples. Talanta 2019, 204, 224-228.
[11]
C. Lai,; S. Y. Liu,; C. Zhang,; G. M. Zeng,; D. L. Huang,; L. Qin,; X. G. Liu,; H. Yi,; R. Z. Wang,; F. L. Huang, et al. Electrochemical aptasensor based on sulfur-nitrogen codoped ordered mesoporous carbon and thymine-Hg2+-thymine mismatch structure for Hg2+ detection. ACS Sens. 2018, 3, 2566-2573.
[12]
R. X. Peng,; G. Chen,; F. Zhou,; R. L. Man,; J. H. Huang, Catalyst-free synthesis of triazine-based porous organic polymers for Hg2+ adsorptive removal from aqueous solution. Chem. Eng. J. 2019, 371, 260-266.
[13]
M. C. Nayak,; A. M. Isloor,; B. Inamuddin, Lakshmi,; H. M. Marwani,; I. Khan, Polyphenylsulfone/multiwalled carbon nanotubes mixed ultrafiltration membranes: Fabrication, characterization and removal of heavy metals Pb2+, Hg2+, and Cd2+ from aqueous solutions. Arabian J. Chem. 2020, 13, 4661-4672.
[14]
G. Xu,; L. Wang,; Y. J. Xie,; M. L. Tao,; W. Q. Zhang, Highly selective and efficient adsorption of Hg2+ by a recyclable aminophosphonic acid functionalized polyacrylonitrile fiber. J. Hazard. Mater. 2018, 344, 679-688.
[15]
X. P. Gao,; M. Y. Li,; Y. M. Zhao,; Y. Zhang, Mechanistic study of selective adsorption of Hg2+ ion by porous alginate beads. Chem. Eng. J. 2019, 378, 122096.
[16]
B. Wang,; X. L. Lv,; D. W. Feng,; L. H. Xie,; J. Zhang,; M. Li,; Y. B. Xie,; J. R. Li,; H. C. Zhou, Highly stable Zr(IV)-based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water. J. Am. Chem. Soc. 2016, 138, 6204-6216.
[17]
Q. F. Yang,; J. Wang,; X. Y. Chen,; W. X. Yang,; H. N. Pei,; N. Hu,; Z. H. Li,; Y. R. Suo,; T. Li,; J. L. Wang, The simultaneous detection and removal of organophosphorus pesticides by a novel Zr-MOF based smart adsorbent. J. Mater. Chem. A 2018, 6, 2184-2192.
[18]
D. H. Xie,; Y. Ma,; Y. Gu,; H. J. Zhou,; H. M. Zhang,; G. Z. Wang,; Y. X. Zhang,; H. J. Zhao, Bifunctional NH2-MIL-88(Fe) metal-organic framework nanooctahedra for highly sensitive detection and efficient removal of arsenate in aqueous media. J. Mater. Chem. A 2017, 5, 23794-23804.
[19]
T. Du,; J. Wang,; T. S. Zhang,; L. Zhang,; C. Y. Yang,; T. L. Yue,; J. Sun,; T. Li,; M. G. Zhou; J. L. Wang, An integrating platform of ratiometric fluorescent adsorbent for unconventional real-time removing and monitoring of copper ions. ACS Appl. Mater. Interfaces 2020, 12, 13189-13199.
[20]
Z. Q. Wang,; D. Y. Wu,; G. H. Wu,; N. N. Yang,; A. G. Wu, Modifying Fe3O4 microspheres with rhodamine hydrazide for selective detection and removal of Hg2+ ion in water. J. Hazard. Mater. 2013, 244-245, 621-627.
[21]
A. A. Bhatti,; M. Oguz,; M. Yilmaz, One-pot synthesis of Fe3O4@Chitosan-pSDCalix hybrid nanomaterial for the detection and removal of Hg2+ ion from aqueous media. Appl. Surf. Sci. 2018, 434, 1217-1223.
[22]
A. Panda,; Y. Q. Yang,; S. Venkateswarlu,; Y. Son,; T. H. Bae,; M. Yoon, Highly durable covalent organic framework for the simultaneous ultrasensitive detection and removal of noxious Hg2+. Microporous Mesoporous Mater. 2020, 306, 110399.
[23]
X. D. Sun,; S. Yao,; C. Y. Yu,; G. H. Li,; C. M. Liu,; Q. S. Huo,; Y. L. Liu, An ultrastable Zr-MOF for fast capture and highly luminescence detection of Cr2O72- simultaneously in an aqueous phase. J. Mater. Chem. A 2018, 6, 6363-6369.
[24]
W. T. Zhang,; S. H. Li,; X. N. Liu,; C. Y. Yang,; N. Hu,; L. N. Dou,; B. X. Zhao,; Q. Y. Zhang,; Y. R. Suo,; J. L. Wang, Oxygen-generating MnO2 nanodots-anchored versatile nanoplatform for combined chemo-photodynamic therapy in hypoxic cancer. Adv. Funct. Mater. 2018, 28, 1706375.
[25]
Y. Zhou,; Q. Yang,; D. A. Zhang,; N. Gan,; Q. P. Li,; J. Cuan, Detection and removal of antibiotic tetracycline in water with a highly stable luminescent MOF. Sens. Actuators B 2018, 262, 137-143.
[26]
A. Chakraborty,; S. Bhattacharyya,; A. Hazra,; A. C. Ghosh,; T. K. Maji, Post-synthetic metalation in an anionic MOF for efficient catalytic activity and removal of heavy metal ions from aqueous solution. Chem. Commun. 2016, 52, 2831-2834.
[27]
S. Halder,; J. Mondal,; J. Ortega-Castro,; A. Frontera,; P. Roy, A Ni-based MOF for selective detection and removal of Hg2+ in aqueous medium: A facile strategy. Dalton Trans. 2017, 46, 1943-1950.
[28]
S. J. Li,; T. Lei,; F. Jiang,; M. Liu,; Y. T. Wang,; S. X. Wang,; X. J. Yang, Tuning the morphology and adsorption capacity of Al-MIL-101 analogues with Fe3+ for phosphorus removal from water. J. Colloid Interface Sci. 2020, 560, 321-329.
[29]
Y. X. Gao,; J. Xia,; D. C. Liu,; R. X. Kang,; G. Yu,; S. B. Deng, Synthesis of mixed-linker Zr-MOFs for emerging contaminant adsorption and photodegradation under visible light. Chem. Eng. J. 2019, 378, 122118.
[30]
L. Zhang,; J. Wang,; X. Y. Ren,; W. T. Zhang,; T. S. Zhang,; X. N. Liu,; T. Du,; T. Li,; J. L. Wang, Internally extended growth of core-shell NH2-MIL-101(Al)@ZIF-8 nanoflowers for the simultaneous detection and removal of Cu(II). J. Mater. Chem. A 2018, 6, 21029-21038.
[31]
Z. G. Hu,; S. Faucher,; Y. Y. Zhuo,; Y. Sun,; S. N. Wang,; D. Zhao, Combination of optimization and metalated-ligand exchange: An effective approach to functionalize UiO-66(Zr) MOFs for CO2 separation. Chem.—Eur. J. 2015, 21, 17246-17255.
[32]
T. Li,; M. T. Kozlowski,; E. A. Doud,; M. N. Blakely,; N. L. Rosi, Stepwise ligand exchange for the preparation of a family of mesoporous MOFs. J. Am. Chem. Soc. 2013, 135, 11688-11691.
[33]
M. Taddei,; R. J. Wakeham,; A. Koutsianos,; E. Andreoli,; A. R. Barron, Post-synthetic ligand exchange in zirconium-based metal-organic frameworks: Beware of the defects! Angew. Chem., Int. Ed. 2018, 57, 11706-11710.
[34]
C. Liu,; C. J. Zeng,; T. Y. Luo,; A. D. Merg,; R. C. Jin,; N. L. Rosi, Establishing porosity gradients within metal-organic frameworks using partial postsynthetic ligand exchange. J. Am. Chem. Soc. 2016, 138, 12045-12048.
[35]
B. Gole,; A. K. Bar,; P. S. Mukherjee, Modification of extended open frameworks with fluorescent tags for sensing explosives: Competition between size selectivity and electron deficiency. Chem.—Eur. J. 2014, 20, 2276-2291.
[36]
L. L. Wu,; Z. Wang,; S. N. Zhao,; X. Meng,; X. Z. Song,; J. Feng,; S. Y. Song,; H. J. Zhang, A metal-organic framework/DNA hybrid system as a novel fluorescent biosensor for mercury(II) ion detection. Chem.—Eur. J. 2016, 22, 477-480.
[37]
Z. C. Shao,; C. Huang,; J. Dang,; Q. Wu,; Y. Y. Liu,; J. Ding,; H. W. Hou, Modulation of magnetic behavior and Hg2+ removal by solvent-assisted linker exchange based on a water-stable 3D MOF. Chem. Mater. 2018, 30, 7979-7987.
[38]
Z. C. Shao,; C. X. Yu,; Q. Xie,; Q. Wu,; Y. J. Zhao,; H. W. Hou, Porous functionalized MOF self-evolution promoting molecule encapsulation and Hg2+ removal. Chem. Commun. 2019, 55, 13382-13385.
[39]
F. Ke,; L. G. Qiu,; Y. P. Yuan,; F. M. Peng,; X. Jiang,; A. J. Xie,; Y. H. Shen,; J. F. Zhu, Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg2+ from water. J. Hazard. Mater. 2011, 196, 36-43.
[40]
L. Ding,; X. B. Luo,; P. H. Shao,; J. K. Yang,; D. Q. Sun, Thiol-functionalized Zr-based metal-organic framework for capture of Hg(II) through a proton exchange reaction. ACS Sustainable Chem. Eng. 2018, 6, 8494-8502.
[41]
F. L. Song,; S. J. Watanabe,; P. E. Floreancig,; K. Koide, Oxidation-resistant fluorogenic probe for mercury based on alkyne oxymercuration. J. Am. Chem. Soc. 2008, 130, 16460-16461.
[42]
M. Dong,; Y. W. Wang,; Y. Peng, Highly selective ratiometric fluorescent sensing for Hg2+ and Au3+, respectively, in aqueous media. Org. Lett. 2010, 12, 5310-5313.
[43]
P. Samanta,; A. V. Desai,; S. Sharma,; P. Chandra,; S. K. Ghosh, Selective recognition of Hg2+ ion in water by a functionalized metal-organic framework (MOF) Based chemodosimeter. Inorg. Chem. 2018, 57, 2360-2364.
[44]
Q. Z. Du,; P. Wu,; Y. Y. Sun,; J. Y. Zhang,; H. He, Selective photodegradation of tetracycline by molecularly imprinted ZnO@NH2-UiO-66 composites. Chem. Eng. J. 2020, 390, 124614.
[45]
L. Valenzano,; B. Civalleri,; S. Chavan,; S. Bordiga,; M. H. Nilsen,; S. Jakobsen,; K. P. Lillerud,; C. Lamberti, Disclosing the complex structure of UiO-66 metal organic framework: A synergic combination of experiment and theory. Chem. Mater. 2011, 23, 1700-1718.
[46]
X. H. Hao,; Y. Q. Liang,; H. Zhen,; X. C. Sun,; X. L. Liu,; M. W. Li,; A. Shen,; Y. X. Yang, Fast and sensitive fluorescent detection of nitrite based on an amino-functionalized MOFs of UiO-66-NH2. J. Solid State Chem. 2020, 287, 121323.
[47]
M. Kim,; J. F. Cahill,; Y. X. Su,; K. A. Prather,; S. M. Cohen, Postsynthetic ligand exchange as a route to functionalization of “inert” metal-organic frameworks. Chem. Sci. 2012, 3, 126-130.
[48]
S. Tanaka,; T. Nagaoka,; A. Yasuyoshi,; Y. Hasegawa,; J. F. M. Denayer, Hierarchical pore development of ZIF-8 MOF by simple salt-assisted mechanosynthesis. Cryst. Growth Des. 2018, 18, 274-279.
[49]
F. M. Zhang,; J. L. Sheng,; Z. D. Yang,; X. J. Sun,; H. L. Tang,; M. Lu,; H. Dong,; F. C. Shen,; J. Liu,; Y. Q. Lan, Rational design of MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors. Angew. Chem., Int. Ed. 2018, 57, 12106-12110.
[50]
H. L. Huang,; J. R. Li,; K. K. Wang,; T. T. Han,; M. M. Tong,; L. S. Li,; Y. B. Xie,; Q. Y. Yang,; D. H. Liu,; C. L. Zhong, An in situ self-assembly template strategy for the preparation of hierarchical-pore metal-organic frameworks. Nat. Commun. 2015, 6, 8847.
[51]
B. Ghalei,; K. Wakimoto,; C. Y. Wu,; A. P. Isfahani,; T. Yamamoto,; K. Sakurai,; M. Higuchi,; B. K. Chang,; S. Kitagawa,; E. Sivaniah, Rational tuning of zirconium metal-organic framework membranes for hydrogen purification. Angew. Chem., Int. Ed. 2019, 58, 19034-19040.
[52]
H. Molavi,; A. Eskandari,; A. Shojaei,; S. A. Mousavi, Enhancing CO2/N2 adsorption selectivity via post-synthetic modification of NH2-UiO-66(Zr). Microporous Mesoporous Mater. 2018, 257, 193-201.
[53]
L. K. Fu,; S. X. Wang,; G. Lin,; L. B. Zhang,; Q. M. Liu,; J. Fang,; C. H. N. Wei,; G. Liu, Post-functionalization of UiO-66-NH2 by 2,5-dimercapto-1,3,4-thiadiazole for the high efficient removal of Hg(II) in water. J. Hazard. Mater. 2019, 368, 42-51.
[54]
J. Wang,; W. T. Zhang,; X. Y. Yue,; Q. F. Yang,; F. B. Liu,; Y. R. Wang,; D. H. Zhang,; Z. H. Li,; J. L. Wang, One-pot synthesis of multifunctional magnetic ferrite-MoS2-carbon dot nanohybrid adsorbent for efficient Pb(II) removal. J. Mater. Chem. A 2016, 4, 3893-3900.
[55]
J. Wang,; Q. F. Yang,; W. X. Yang,; H. N. Pei,; L. Zhang,; T. S. Zhang,; N. Hu,; Y. R. Suo,; J. L. Wang, Adsorptive catalysis of hierarchical porous heteroatom-doped biomass: From recovered heavy metal to efficient pollutant decontamination. J. Mater. Chem. A 2018, 6, 16690-16698.
[56]
Q. F. Yang,; J. Wang,; W. T. Zhang,; F. B. Liu,; X. Y. Yue,; Y. N. Liu,; M. Yang,; Z. H. Li,; J. L. Wang, Interface engineering of metal organic framework on graphene oxide with enhanced adsorption capacity for organophosphorus pesticide. Chem. Eng. J. 2017, 313, 19-26.
[57]
W. T. Zhang,; S. Shi,; W. X. Zhu,; C. Y. Yang,; S. H. Li,; X. N. Liu,; N. Hu,; L. J. Huang,; R. Wang,; Y. R. Suo, et al. In-situ fixation of all-inorganic Mo-Fe-S-clusters for the highly selective removal of lead(II). ACS Appl. Mater. Interfaces 2017, 9, 32720-32726.
[58]
K. K. Yee,; N. Reimer,; J. Liu,; S. Y. Cheng,; S. M. Yiu,; J. Weber,; N. Stock,; Z. T. Xu, Effective mercury sorption by thiol-laced metal-organic frameworks: In strong acid and the vapor phase. J. Am. Chem. Soc. 2013, 135, 7795-7798.
[59]
H. N. Rubin,; M. M. Reynolds, Amino-incorporated tricarboxylate metal-organic framework for the sensitive fluorescence detection of heavy metal ions with insights into the origin of photoluminescence response. Inorg. Chem. 2019, 58, 10671-10679.
[60]
Y. J. Cui,; Y. F. Yue,; G. D. Qian,; B. L. Chen, Luminescent functional metal-organic frameworks. Chem. Rev. 2012, 112, 1126-1162.
[61]
R. Seenivasan,; W. J. Chang,; S. Gunasekaran, Highly sensitive detection and removal of lead ions in water using cysteine-functionalized graphene oxide/polypyrrole nanocomposite film electrode. ACS Appl. Mater. Interfaces 2015, 7, 15935-15943.
[62]
P. F. Yang,; Y. F. Shu,; Q. X. Zhuang,; Y. S. Li,; J. L. Gu, A robust MOF-based trap with high-density active alkyl thiol for the super-efficient capture of mercury. Chem. Commun. 2019, 55, 12972-12975.
[63]
B. Y. Geng,; H. Y. Wang,; S. Wu,; J. Ru,; C. C. Tong,; Y. F. Chen,; H. Z. Liu,; S. C. Wu,; X. Y. Liu, Surface-tailored nanocellulose aerogels with thiol-functional moieties for highly efficient and selective removal of Hg(II) ions from water. ACS Sustainable Chem. Eng. 2017, 5, 11715-11726.
[64]
R. Wang,; X. Y. Dong,; H. Xu,; R. B. Pei,; M. L. Ma,; S. Q. Zang,; H. W. Hou,; T. C. W. Mak, A super water-stable europium-organic framework: Guests inducing low-humidity proton conduction and sensing of metal ions. Chem. Commun. 2014, 50, 9153-9156.
[65]
X. Y. Xu,; B. Yan, Eu(III)-functionalized MIL-124 as fluorescent probe for highly selectively sensing ions and organic small molecules especially for Fe(III) and Fe(II). ACS Appl. Mater. Interfaces 2015, 7, 721-729.
[66]
Y. Zhou,; H. H. Chen,; B. Yan, An Eu3+ post-functionalized nanosized metal-organic framework for cation exchange-based Fe3+-sensing in an aqueous environment. J. Mater. Chem. A 2014, 2, 13691-13697.
[67]
B. L. Chen,; L. B. Wang,; Y. Q. Xiao,; F. R. Fronczek,; M. Xue,; Y. J. Cui,; G. D. Qian, A luminescent metal-organic framework with lewis basic pyridyl sites for the sensing of metal ions. Angew. Chem., Int. Ed. 2009, 48, 500-503.
[68]
B. Wang,; Q. Yang,; C. Guo,; Y. X. Sun,; L. H. Xie,; J. R. Li, Stable Zr(IV)-based metal-organic frameworks with predesigned functionalized ligands for highly selective detection of Fe(III) ions in water. ACS Appl. Mater. Interfaces 2017, 9, 10286-10295.
[69]
R. Lv,; Z. H. Y. Chen,; X. Fu,; B. Y. Yang,; H. Li,; J. Su,; W. Gu,; X. Liu, A highly selective and fast-response fluorescent probe based on Cd-MOF for the visual detection of Al3+ ion and quantitative detection of Fe3+ ion. J. Solid State Chem. 2018, 259, 67-72.
[70]
Z. H. Xiang,; C. Q. Fang,; S. H. Leng,; D. P. Cao, An amino group functionalized metal-organic framework as a luminescent probe for highly selective sensing of Fe3+ ions. J. Mater. Chem. A 2014, 2, 7662-7665.
Nano Research
Pages 1523-1532
Cite this article:
Zhang L, Wang J, Wang H, et al. Rational design of smart adsorbent equipped with a sensitive indicator via ligand exchange: A hierarchical porous mixed-ligand MOF for simultaneous removal and detection of Hg2+. Nano Research, 2021, 14(5): 1523-1532. https://doi.org/10.1007/s12274-020-3211-0
Topics:
Metrics & Citations  
Article History
Copyright
Return