AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Optical identification of interlayer coupling of graphene/MoS2 van der Waals heterostructures

Mingming Yang1,§Longlong Wang1,§Guofeng Hu2,§Xue Chen3Peng Lai Gong4Xin Cong3Yi Liu1Yuanbo Yang1Xiaoli Li1( )Xiaohui Zhao1( )Xuelu Liu3( )
National-Local Joint Engineering Laboratory of New Energy Photoelectric Devices & Hebei Key laboratory of Optic-electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China
College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China

§ Mingming Yang, Longlong Wang, and Guofeng Hu contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The interlayer coupling in van der Waals (vdW) heterostructures (vdWHs) is at the frontier of the fundamental research, underlying many optical behaviors. The graphene/MoS2 vdWHs provide an ideal platform to reveal the good interfacial coupling between graphene and MoS2 constituents. Here, three groups of graphene/MoS2 vdWHs were prepared by transferring 1-3 layers of graphene onto monolayer MoS2. The interlayer coupling within graphene/MoS2 vdWHs were characterized and analyzed by Raman spectroscopy, photoluminescence (PL) spectroscopy and optical contrast (OC) spectroscopy. The upshift of the A1g peak of MoS2 and the upshift of the D and 2D peaks of SLG show that the electrons move from MoS2 to graphene accompanied by the dielectric shielding effect on graphene. The weakened PL intensities and the slight red shift of A peak prove that the electrons move from MoS2 to graphene meanwhile the recombination of hole and electron pairs is blocked in vdWHs. Our results deepen the understanding of the interlayer coupling of graphene/MoS2 vdWHs and therefore provide guidelines for the practical design and application of optoelectronic devices based on graphene/MoS2 vdWHs.

Electronic Supplementary Material

Download File(s)
12274_2020_3215_MOESM1_ESM.pdf (3.9 MB)

References

[1]
Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419-425.
[2]
Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722-726.
[3]
He, J. Q.; Kumar, N.; Bellus, M. Z.; Chiu, H. Y.; He, D. W.; Wang, Y. S.; Zhao, H. Electron transfer and coupling in graphene-tungsten disulfide van der Waals heterostructures. Nat. Commun. 2014, 5, 5622.
[4]
Georgiou, T.; Jalil, R.; Belle, B. D.; Britnell, L.; Gorbachev, R. V.; Morozov, S. V.; Kim, Y. J.; Gholinia, A.; Haigh, S. J.; Makarovsky, O. et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 2013, 8, 100-103.
[5]
Lu, C. P.; Li, G. H.; Watanabe, K.; Taniguchi, T.; Andrei, E. Y. MoS2: Choice substrate for accessing and tuning the electronic properties of Graphene. Phys. Rev. Lett. 2014, 113, 156804.
[6]
Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.
[7]
Wang, L.; Yue, Q. Y.; Pei, C. J.; Fan, H. C.; Dai, J.; Huang, X.; Li, H.; Huang, W. Scrolling bilayer WS2/MoS2 heterostructures for high- performance photo-detection. Nano Res. 2020, 13, 959-966.
[8]
Tongay, S.; Fan, W.; Kang, J.; Park, J.; Koldemir, U.; Suh, J.; Narang, D. S.; Liu, K.; Ji, J.; Li, J. B. et al. Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. Nano Lett. 2014, 14, 3185-3190.
[9]
Lin, M. L.; Zhou, Y.; Wu, J. B.; Cong, X.; Liu, X. L.; Zhang, J.; Li, H.; Yao, W.; Tan, P. H. Cross-dimensional electron-phonon coupling in van der Waals heterostructures. Nat. Commun. 2019, 10, 2419.
[10]
Zhou, K. G.; Withers, F.; Cao, Y.; Hu, S.; Yu, G. L.; Casiraghi, C. Raman modes of MoS2 used as fingerprint of van der Waals interactions in 2-D crystal-based heterostructures. ACS Nano 2014, 8, 9914-9924.
[11]
Cao, Y.; Wang, Z. J.; Bian, Q.; Cheng, Z. W.; Shao, Z. B.; Zhang, Z. Y.; Sun, H. G.; Zhang, X.; Li, S. J.; Gedeon, H. et al. Phonon modes and photonic excitation transitions of MoS2 induced by top-deposited graphene revealed by Raman spectroscopy and photoluminescence. Appl. Phys. Lett. 2019, 114, 133103.
[12]
Ni, Z. H.; Wang, H. M.; Kasim, J.; Fan, H. M.; Yu, T.; Wu, Y. H.; Feng, Y. P.; Shen, Z. X. Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 2007, 7, 2758-2763.
[13]
Zhang, X.; Tan, Q. H.; Wu, J. B.; Shi, W.; Tan, P. H. Review on the Raman spectroscopy of different types of layered materials. Nanoscale 2016, 8, 6435-6450.
[14]
Liang, L. B.; Zhang, J.; Sumpter, B. G.; Tan, Q. H.; Tan, P. H.; Meunier, V. Low-frequency shear and layer-breathing modes in Raman scattering of two-dimensional materials. ACS Nano 2017, 11, 11777-11802.
[15]
Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385-1390.
[16]
Zhu, C. R.; Wang, G.; Liu, B. L.; Marie, X.; Qiao, X. F.; Zhang, X.; Wu, X. X.; Fan, H.; Tan, P. H.; Amand, T. et al. Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2. Phys. Rev. B 2013, 88, 121301.
[17]
Zhang, X.; Qiao, X. F.; Shi, W.; Wu, J. B.; Jiang, D. S.; Tan, P. H. Phonon and Raman scattering of two-dimensional transition metal Dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 2015, 44, 2757-2785.
[18]
Chakraborty, B.; Bera, A.; Muthu, D. V. S.; Bhowmick, S.; Waghmare, U. V.; Sood, A. K. Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 2012, 85, 161403.
[19]
Wu, J. B.; Lin, M. L.; Cong, X.; Liu, H. N.; Tan, P. H. Raman spectroscopy of Graphene-based materials and its applications in related devices. Chem. Soc. Rev. 2018, 47, 1822-1873.
[20]
Faugeras, C.; Berciaud, S.; Leszczynski, P.; Henni, Y.; Nogajewski, K.; Orlita, M.; Taniguchi, T.; Watanabe, K.; Forsythe, C.; Kim, P. et al. Landau level spectroscopy of electron-electron interactions in Graphene. Phys. Rev. Lett. 2015, 114, 126804.
[21]
Cançado, L. G.; Reina, A.; Kong, J.; Dresselhaus, M. S. Geometrical approach for the study of G' band in the Raman spectrum of monolayer graphene, bilayer graphene, and bulk graphite. Phys. Rev. B 2008, 77, 245408.
[22]
Ferrari, A. C. Raman spectroscopy of Graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47-57.
[23]
Hao, Y. F.; Wang, Y. Y.; Wang, L.; Ni, Z. H.; Wang, Z. Q.; Wang, R.; Koo, C. K.; Shen, Z. X.; Thong, J. T. L. Probing layer number and stacking order of few-layer Graphene by Raman spectroscopy. Small 2010, 6, 195-200.
[24]
Malard, L. M.; Nilsson, J.; Elias, D. C.; Brant, J. C.; Plentz, F.; Alves, E. S.; Castro Neto, A. H.; Pimenta, M. A. Probing the electronic structure of bilayer Graphene by Raman scattering. Phys. Rev. B 2007, 76, 201401.
[25]
Lucchese, M. M.; Stavale, F.; Ferreira, E. H. M.; Vilani, C.; Moutinho, M. V. O.; Capaz, R. B.; Achete, C. A.; Jorio, A. Quantifying ion-induced defects and Raman relaxation length in Graphene. Carbon 2010, 48, 1592-1597.
[26]
Casiraghi, C.; Hartschuh, A.; Qian, H.; Piscanec, S.; Georgi, C.; Fasoli, A.; Novoselov, K. S.; Basko, D. M.; Ferrari, A. C. Raman spectroscopy of Graphene edges. Nano Lett. 2009, 9, 1433-1441.
[27]
Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271-1275.
[28]
Zhang, W. J.; Chuu, C. P.; Huang, J. K.; Chen, C. H.; Tsai, M. L.; Chang, Y. H.; Liang, C. T.; Chen, Y. Z.; Chueh, Y. L.; He, J. H. et al. Ultrahigh-gain photodetectors based on atomically thin graphene- MoS2 heterostructures. Sci. Rep. 2014, 4, 3826.
[29]
Yu, Y. F.; Miao, F.; He, J.; Ni, Z. H. Photodetecting and light-emitting devices based on two-dimensional materials. Chin. Phys. B 2017, 26, 036801.
[30]
Fan, P.; Zheng, B. Y.; Sun, X. X.; Zheng, W. H.; Xu, Z. Y.; Ge, C. H.; Liu, Y.; Zhuang, X. J.; Li, D.; Wang, X. et al. Trion-induced distinct transient behavior and stokes shift in WS2 monolayers. J. Phys. Chem. Lett. 2019, 10, 3763-3772.
[31]
Lu, Y.; Li, X. L.; Zhang, X.; Wu, J. B.; Tan, P. H. Optical contrast determination of the thickness of SiO2 film on Si substrate partially covered by two-dimensional crystal flakes. Sci. Bull. 2015, 60, 806-811.
[32]
Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M. W.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 11, 5111-5116.
[33]
Geim, A. K.; Novoselov, K. S. The rise of Graphene. Nat. Mater. 2007, 6, 183-191.
Nano Research
Pages 2241-2246
Cite this article:
Yang M, Wang L, Hu G, et al. Optical identification of interlayer coupling of graphene/MoS2 van der Waals heterostructures. Nano Research, 2021, 14(7): 2241-2246. https://doi.org/10.1007/s12274-020-3215-9
Topics:

797

Views

20

Crossref

18

Web of Science

19

Scopus

1

CSCD

Altmetrics

Received: 30 July 2020
Revised: 20 October 2020
Accepted: 30 October 2020
Published: 05 July 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return