AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

An ionizable supramolecular dendrimer nanosystem for effective siRNA delivery with a favorable safety profile

Dinesh Dhumal1,§Wenjun Lan1,2,§Ling Ding1,3,§Yifan Jiang1Zhenbin Lyu1,4Erik Laurini5Domenico Marson5Aura Tintaru4Nelson Dusetti2Suzanne Giorgio1Juan Lucio Iovanna2Sabrina Pricl5,6Ling Peng1( )
Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille 13288, France
Aix-Marseille Université, INSERM, CNRS, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille 13288, France
Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille 13385, France
Aix-Marseille Université, CNRS, Institut de Chimie Radicalaire (ICR), UMR 7273, Marseille 13013, France
Molecular Biology and Nanotechnology Laboratory, Department of Engineering and Architectures, University of Trieste, Trieste 34127, Italy
Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-136, Poland

§ Dinesh Dhumal, Wenjun Lan, and Ling Ding contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Gene therapy using small interfering RNA (siRNA) is emerging as a novel therapeutic approach to treat various diseases. However, safe and efficient siRNA delivery still constitutes the major obstacle for clinical implementation of siRNA therapeutics. Here we report an ionizable supramolecular dendrimer vector, formed via self-assembly of a small amphiphilic dendrimer, as an effective siRNA delivery system with a favorable safety profile. By virtue of the ionizable tertiary amine terminals, the supramolecular dendrimer has a low positively charged surface potential and no notable cytotoxicity at physiological pH. Nonetheless, this ionizable feature imparted sufficient surface charge to the supramolecular dendrimer to enable formation of a stable complex with siRNA via electrostatic interactions. The resulting siRNA/dendrimer delivery system had a surface charge that was neither neutral, thus avoiding aggregation, nor too high, thus avoiding cytotoxicity, but was sufficient for favorable cellular uptake and endosomal release of the siRNA. When tested in different cancer cell lines and patient-derived cancer organoids, this dendrimer-mediated siRNA delivery system effectively silenced the oncogenes Myc and Akt2 with a potent antiproliferative effect, outperforming the gold standard vector, Lipofectamine 2000. Therefore, this ionizable supramolecular dendrimer represents a promising vector for siRNA delivery. The concept of supramolecular dendrimer nanovectors via self-assembly is new, yet easy to implement in practice, offering a new perspective for supramolecular chemistry in biomedical applications.

Electronic Supplementary Material

Download File(s)
12274_2020_3216_MOESM1_ESM.pdf (1.8 MB)

References

[1]
Setten, R. L.; Rossi, J. J.; Han, S. P. The current state and future directions of RNAi-based therapeutics. Nat. Rev. Drug Dis. 2019, 18, 421-446.
[2]
Delivering the promise of RNA therapeutics. Nat. Med. 2019, 25, 1321.
[3]
Ledford H. Gene-silencing technology gets first drug approval after 20-year wait. Nature 2018, 560, 291-292.
[4]
Mullard, A. RNAi agents score an approval and drive an acquisition. Nat. Rev. Drug Dis. 2020, 19, 10.
[5]
Kanasty, R.; Dorkin, J. R.; Vegas, A.; Anderson, D. Delivery materials for siRNA therapeutics. Nat. Mater. 2013, 12, 967-977.
[6]
Dong, Y. Z.; Siegwart, D. J.; Anderson, D. G. Strategies, design, and chemistry in siRNA Delivery systems. Adv. Drug Deliv. Rev. 2019, 144, 133-147.
[7]
Kim, B.; Park, J. H.; Sailor, M. J. Rekindling RNAi therapy: Materials design requirements for in vivo siRNA delivery. Adv. Mater. 2019, 31, 1903637.
[8]
Yin, H.; Kanasty, R. L.; Eltoukhy, A. A; Vegas, A. J.; Dorkin, J. R.; Anderson, D. G. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 2014, 15, 541-555.
[9]
Ho, W.; Zhang, X. Q.; Xu, X. Y. Biomaterials in siRNA delivery: A comprehensive review. Adv. Healthc. Mater. 2016, 5, 2715-2731.
[10]
Rietwyk, S.; Peer, D. Next-generation lipids in RNA interference therapeutics. ACS Nano 2017, 11, 7572-7586.
[11]
Cooper, B. M.; Putnam, D. Polymers for siRNA delivery: A critical assessment of current technology prospects for clinical application. ACS Biomater. Sci. Eng. 2016, 2, 1837-1850.
[12]
Khandare, J.; Calderón, M.; Dagia, N. M.; Haag, R. Multifunctional dendritic polymers in Nanomedicine: Opportunities and challenges. Chem. Soc. Rev. 2012, 41, 2824-2848.
[13]
Liu, X. X.; Rocchi, P.; Peng, L. Dendrimers as non-viral vectors for siRNA delivery. New J. Chem. 2012, 36, 256-263.
[14]
Cao, Y.; Liu, X. X.; Peng, L. Molecular engineering of dendrimer Nanovectors for siRNA delivery and gene silencing. Front. Chem. Sci. Eng. 2017, 11, 663-675.
[15]
Svenson, S. The dendrimer paradox—high medical expectations but poor clinical translation. Chem. Soc. Rev. 2015, 44, 4131-4144.
[16]
Dong, Y. W.; Yu, T. Z.; Ding, L.; Laurini, E.; Huang, Y. Y.; Zhang, M. J.; Weng, Y. H.; Lin, S. T.; Chen, P.; Marson, D. et al. A dual targeting dendrimer-mediated siRNA delivery system for effective gene silencing in cancer therapy. J. Am. Chem. Soc. 2018, 140, 16264-16274.
[17]
Liu, X. X.; Wang, Y.; Chen, C.; Tintaru, A.; Cao, Y.; Liu, J.; Ziarelli, F.; Tang, J. J.; Guo, H. B.; Rosas, R. et al. A fluorinated bola-amphiphilic Dendrimer for on-demand delivery of siRNA, via specific response to reactive oxygen species. Adv. Funct. Mater. 2016, 26, 8594-8603.
[18]
Liu, X. X.; Zhou, J. H.; Yu, T. Z.; Chen, C.; Cheng, Q.; Sengupta, K.; Huang, Y. Y.; Li, H. T.; Liu, C.; Wang, Y. et al. Adaptive amphiphilic dendrimer-based nanoassemblies as robust and versatile siRNA delivery systems. Angew. Chem., Int. Ed. 2014, 53, 11822-11827.
[19]
Yu, T. Z.; Liu, X. X.; Bolcato-Bellemin, A. L.; Wang, Y.; Liu, C.; Erbacher, P.; Qu, F. Q.; Rocchi P.; Behr, J. P.; Peng, L. An amphiphilic dendrimer for effective delivery of small interfering RNA and gene silencing in vitro and in vivo. Angew. Chem., Int. Ed. 2012, 51, 8478-8484.
[20]
Chen, C.; Posocco, P.; Liu, X. X.; Cheng, Q.; Laurini, E.; Zhou, J. H.; Liu, C.; Wang, Y.; Tang, J. J.; Dal Col, V. et al. Mastering dendrimer self-assembly for efficient siRNA delivery: From conceptual design to in vivo efficient gene silencing. Small 2016, 12, 3667-3676.
[21]
Liu, X. X.; Liu, C.; Zhou, J. H.; Chen, C.; Qu, F. Q.; Rossi, J. J.; Rocchi, P.; Peng, L. Promoting siRNA delivery via enhanced cellular uptake using an arginine-decorated amphiphilic dendrimer. Nanoscale 2015, 7, 3867-3875.
[22]
Kulkarni, J. A.; Cullis, P. R.; van der Meel, R. Lipid nanoparticles enabling gene therapies: From concepts to clinical utility. Nucleic Acid Ther. 2018, 28, 146-157.
[23]
Cullis, P. R.; Hope, M. J. Lipid nanoparticle systems for enabling gene therapies. Mol. Ther. 2017, 25, 1467-1475.
[24]
Evers, M. J. W.; Kulkarni, J. A.; van der Meel, R.; Cullis, P. R.; Vader, P.; Schiffelers, R. M. State-of-the-art design and rapid- mixing production techniques of lipid nanoparticles for nucleic acid delivery. Small Methods 2018, 2, 1700375.
[25]
Wu, J. Y.; Zhou, J. H.; Qu, F. Q.; Bao, P. H.; Zhang, Y.; Peng, L. Polycationic Dendrimers interact with RNA molecules: polyamine dendrimers inhibit the catalytic activity of Candida ribozymes. Chem. Commun. 2005, 313-315.
[26]
Manning, B. D.; Toker, A. AKT/PKB signaling: Navigating the network. Cell 2017, 169, 381-405.
[27]
Franke, T. F. PI3K/Akt: getting it right matters. Oncogene 2008, 27, 6473-6488.
[28]
Dang, C. V. MYC on the path to cancer. Cell 2012, 149, 22-35.
[29]
Chen, H.; Liu, H. D.; Qing, G. L. Targeting oncogenic Myc as a strategy for cancer treatment. Signal Transduct. Target. Ther. 2018, 3, 5.
[30]
Tuveson, D.; Clevers, H. Cancer modeling meets human organoid technology. Science 2019, 364, 952-955.
[31]
Vlachogiannis, G.; Hedayat, S.; Vatsiou, A.; Jamin, Y.; Fernández- Mateos, J.; Khan, K.; Lampis, A.; Eason, K.; Huntingford, I.; Burke, R. et al. Patient-derived Organoids model treatment response of metastatic gastrointestinal cancers. Science 2018, 359, 920-926.
[32]
Wirth, M.; Mahboobi, S.; Krämer, O. H.; Schneider, G. Concepts to target MYC in pancreatic cancer. Mol. Cancer Ther. 2016, 15, 1792-1798.
[33]
Dusetti, N.; Iovanna, J. Organoids from pancreatic ductal adenocarcinoma. Med. Sci. (Paris), 2020, 36, 57-62.
[34]
Bian, B.; Juiz, N. A.; Gayet, O.; Bigonnet, M.; Brandone, N.; Roques, J.; Cros, J.; Wang, N. H.; Dusetti, N.; Iovanna, J. Pancreatic cancer organoids for determining sensitivity to bromodomain and extra-terminal inhibitors (BETi). Front. Oncol. 2019, 9, 475.
[35]
Ellert-Miklaszewska, A.; Ochocka, N.; Maleszewska, M.; Ding, L.; Laurini, E.; Jiang, Y. F.; Roura, A. J.; Giorgio, S.; Gielniewski, B.; Pricl, S. et al. Efficient and innocuous delivery of small interfering RNA to microglia using an amphiphilic dendrimer nanovector. Nanomedicine 2019, 14, 2441-2458.
[36]
Garofalo, S.; Cocozza, G.; Porzia, A.; Inghilleri, M.; Raspa, M.; Scavizzi, F.; Aronica, E.; Bernardini, G.; Peng, L.; Ransohoff, R. M. et al. Natural killer cells modulate motor neuron-immune cell cross talk in models of amyotrophic lateral sclerosis. Nat. Commun. 2020, 11, 1773.
[37]
Chen, J.; Aleksandra, E. M.; Garofalo, S.; Dey, A.; Tang, J.; Jiang, Y.; Clément, F.; Marche, P.; Liu, X.; Kaminska, B. et al. Synthesis and use of an amphiphilic dendrimer for siRNA delivery into primary immune cells. Nat. Protoc. 2020, .
Nano Research
Pages 2247-2254
Cite this article:
Dhumal D, Lan W, Ding L, et al. An ionizable supramolecular dendrimer nanosystem for effective siRNA delivery with a favorable safety profile. Nano Research, 2021, 14(7): 2247-2254. https://doi.org/10.1007/s12274-020-3216-8
Topics:

908

Views

25

Crossref

0

Web of Science

24

Scopus

0

CSCD

Altmetrics

Received: 20 August 2020
Revised: 28 October 2020
Accepted: 31 October 2020
Published: 05 July 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return