AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High-mobility patternable MoS2 percolating nanofilms

Xiangxiang Gao1Jun Yin1Gang Bian1Hai-Yang Liu1Chao-Peng Wang1Xi-Xi Pang1Jian Zhu1,2( )
School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Tianjin Key Laboratory for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, China
Show Author Information

Graphical Abstract

Abstract

Fabrication of large-area and uniform semiconducting thin films of two-dimensional (2D) materials is paramount for the full exploitation of their atomic thicknesses and smooth surfaces in integrated circuits. In addition to elaborate vapor-based synthesis techniques for the wafer-scale growth of 2D films, solution-based approaches for high-quality thin films from the liquid dispersions of 2D flakes, despite underdeveloped, are alternative cost-effective tactics. Here, we present layer-by-layer (LbL) assembly as an effective approach to obtaining scalable semiconducting films of molybdenum disulfide (MoS2) for field-effect transistors (FETs). LbL assembly is achieved by coordinating electrochemically exfoliated MoS2 with cationic poly (diallyldimethylammonium chloride) (PDDA) through electrostatic interactions. The PDDA/MoS2 percolating nanofilms show controlled and self-limited growth on a variety of substrates, and are easily patterned through lift-off processes. Ion gel gated FETs are fabricated on these MoS2 nanofilms, and they show mobilities of 9.8 cm2·V-1·s-1, on/off ratios of 2.1 × 105 with operating voltages less than 2 V. The annealing temperature in the fabrication process can be as low as 200 °C, thereby permitting the fabrication of flexible FETs on polyethylene terephthalate substrates. The LbL assembly technique holds great promise for the large-scale fabrication of flexible electronics based on solution-processed 2D semiconductors.

Electronic Supplementary Material

Download File(s)
12274_2020_3218_MOESM1_ESM.pdf (3.6 MB)

References

[1]
Lin, Z. Y.; Liu, Y.; Halim, U.; Ding, M. N.; Liu, Y. Y.; Wang, Y. L.; Jia, C. C.; Chen, P.; Duan, X. D.; Wang, C. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 2018, 562, 254-258.
[2]
Xi, Y.; Serna, M. I.; Cheng, L. X.; Gao, Y.; Baniasadi, M.; Rodriguez- Davila, R.; Kim, J.; Quevedo-Lopez, M. A.; Minary-Jolandan, M. Fabrication of MoS2 thin film transistors via selective-area solution deposition methods. J. Mater. Chem. C 2015, 3, 3842-3847.
[3]
Kelly, A. G.; Hallam, T.; Backes, C.; Harvey, A.; Esmaeily, A. S.; Godwin, I.; Coelho, J.; Nicolosi, V.; Lauth, J.; Kulkarni, A. et al. All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science 2017, 356, 69-73.
[4]
Higgins, T. M.; Finn, S.; Matthiesen, M.; Grieger, S.; Synnatschke, K.; Brohmann, M.; Rother, M.; Backes, C.; Zaumseil, J. Electrolyte- gated n-type transistors produced from aqueous inks of WS2 nanosheets. Adv. Funct. Mater. 2019, 29, 1804387.
[5]
Lhuillier, E.; Pedetti, S.; Ithurria, S.; Heuclin, H.; Nadal, B.; Robin, A.; Patriarche, G.; Lequeux, N.; Dubertret, B. Electrolyte-gated field effect transistor to probe the surface defects and morphology in films of thick CdSe colloidal nanoplatelets. ACS Nano 2014, 8, 3813-3820.
[6]
De Arquer, F. P. G.; Armin, A.; Meredith, P.; Sargent, E. H. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2017, 2, 16100.
[7]
Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1, 16052.
[8]
Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372-377.
[9]
Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.
[10]
Lin, Z. Y.; Huang, Y.; Duan, X. F. Van der Waals thin-film electronics. Nat. Electron. 2019, 2, 378-388.
[11]
Yun, S. J.; Duong, D. L.; Ha, D. M.; Singh, K.; Phan, T. L.; Choi, W.; Kim, Y. M.; Lee, Y. H. Ferromagnetic order at room temperature in monolayer WSe2 semiconductor via vanadium dopant. Adv. Sci. 2020, 7, 1903076.
[12]
Zhou, J. D.; Lin, J. H.; Huang, X. W.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H. M.; Lei, J. C. et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355-359.
[13]
Kang, K.; Xie, S. E.; Huang, L. J.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656-660.
[14]
Zheng, J. Y.; Yan, X. X.; Lu, Z. X.; Qiu, H. L.; Xu, G. C.; Zhou, X.; Wang, P.; Pan, X. Q.; Liu, K. H.; Jiao, L. Y. High-mobility multilayered MoS2 flakes with low contact resistance grown by chemical vapor deposition. Adv. Mater. 2017, 29, 1604540.
[15]
Li, J. T.; Naiini, M. M.; Vaziri, S.; Lemme, M. C.; Östling, M. Inkjet printing of MoS2. Adv. Funct. Mater. 2014, 24, 6524-6531.
[16]
Carey, T.; Cacovich, S.; Divitini, G.; Ren, J. S.; Mansouri, A.; Kim, J. M.; Wang, C. X.; Ducati, C.; Sordan, R.; Torrisi, F. Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics. Nat. Commun. 2017, 8, 1202.
[17]
Bessonov, A. A.; Kirikova, M. N.; Petukhov, D. I.; Allen, M.; Ryhänen, T.; Bailey, M. J. Layered memristive and memcapacitive switches for printable electronics. Nat. Mater. 2015, 14, 199-204.
[18]
Koman, V. B.; Liu, P. W.; Kozawa, D.; Liu, A. T.; Cottrill, A. L.; Son, Y.; Lebron, J. A.; Strano, M. S. Colloidal nanoelectronic state machines based on 2D materials for aerosolizable electronics. Nat. Nanotechnol. 2018, 13, 819-827.
[19]
Gao, X. X.; Bian, G.; Zhu, J. Electronics from solution-processed 2D semiconductors. J. Mater. Chem. C 2019, 7, 12835-12861.
[20]
Wang, Z.; Kang, Y.; Zhao, S. C.; Zhu, J. Self-limiting assembly approaches for nanoadditive manufacturing of electronic thin films and devices. Adv. Mater. 2020, 32, 1806480.
[21]
Richardson, J. J.; Björnmalm, M.; Caruso, F. Technology-driven layer- by-layer assembly of nanofilms. Science 2015, 348, aaa2491.
[22]
Zhu, J.; Hersam, M. C. Assembly and electronic applications of colloidal nanomaterials. Adv. Mater. 2017, 29, 1603895.
[23]
Richardson, J. J.; Cui, J. W.; Björnmalm, M.; Braunger, J. A.; Ejima, H.; Caruso, F. Innovation in layer-by-layer assembly. Chem. Rev. 2016, 116, 14828-14867.
[24]
Ariga, K.; Ahn, E.; Park, M.; Kim, B. S. Layer-by-layer assembly: Recent progress from layered assemblies to layered nanoarchitectonics. Chem. Asian J. 2019, 14, 2553-2566.
[25]
An, Q.; Huang, T.; Shi, F. Correction: Covalent layer-by-layer films: Chemistry, design, and multidisciplinary applications. Chem. Soc. Rev. 2018, 47, 5529.
[26]
Kim, Y.; Zhu, J.; Yeom, B.; Di Prima, M.; Su, X. L.; Kim, J. G.; Yoo, S. J.; Uher, C.; Kotov, N. A. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 2013, 500, 59-63.
[27]
Kiriya, D.; Chen, K.; Ota, H.; Lin, Y. J.; Zhao, P. D.; Yu, Z. B.; Ha, T. J.; Javey, A. Design of surfactant-substrate interactions for roll-to-roll assembly of carbon nanotubes for thin-film transistors. J. Am. Chem. Soc. 2014, 136, 11188-11194.
[28]
Zhu, J.; Liu, X. L.; Geier, M. L.; McMorrow, J. J.; Jariwala, D.; Beck, M. E.; Huang, W.; Marks, T. J.; Hersam, M. C. Layer-by-layer assembled 2D montmorillonite dielectrics for solution-processed electronics. Adv. Mater. 2016, 28, 63-68.
[29]
Zhu, J.; Kang, J.; Kang, J. M.; Jariwala, D.; Wood, J. D.; Seo, J. W. T.; Chen, K. S.; Marks, T. J.; Hersam, M. C. Solution-processed dielectrics based on thickness-sorted two-dimensional hexagonal boron nitride nanosheets. Nano Lett. 2015, 15, 7029-7036.
[30]
Huang, Y.; Wu, J.; Xu, X. F.; Ho, Y.; Ni, G. X.; Zou, Q.; Koon, G. K. W.; Zhao, W. J.; Castro Neto, A. H.; Eda, G. et al. An innovative way of etching MoS2: Characterization and mechanistic investigation. Nano Res. 2013, 6, 200-207.
[31]
Lin, T. Z.; Kang, B. T.; Jeon, M.; Huffman, C.; Jeon, J.; Lee, S.; Han, W.; Lee, J.; Lee, S.; Yeom, G. et al. Controlled layer-by-layer etching of MoS2. ACS Appl. Mater. Interfaces 2015, 7, 15892-15897.
[32]
Xiao, S. Q.; Xiao, P.; Zhang, X. C.; Yan, D. W.; Gu, X. F.; Qin, F.; Ni, Z. H.; Han, Z. J.; Ostrikov, K. Atomic-layer soft plasma etching of MoS2. Sci. Rep. 2016, 6, 19945.
[33]
Pu, J.; Yomogida, Y.; Liu, K. K.; Li, L. J.; Iwasa, Y.; Takenobu, T. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 2012, 12, 4013-4017.
[34]
Gopalakrishnan, D.; Damien, D.; Shaijumon, M. M. MoS2 quantum dot-interspersed exfoliated MoS2 nanosheets. ACS Nano 2014, 8, 5297-5303.
[35]
Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M. W.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 11, 5111-5116.
[36]
Zhang, C.; Tan, J. Y.; Pan, Y. K.; Cai, X. K.; Zou, X. L.; Cheng, H. M.; Liu, B. Mass production of 2D materials by intermediate-assisted grinding exfoliation. Nat. Sci. Rev. 2020, 7, 324-332.
[37]
Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two- dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568-571.
[38]
Joo, P.; Jo, K.; Ahn, G.; Voiry, D.; Jeong, H. Y.; Ryu, S.; Chhowalla, M.; Kim, B. S. Functional polyelectrolyte nanospaced MoS2 multilayers for enhanced photoluminescence. Nano Lett. 2014, 14, 6456-6462.
[39]
Berdichevsky, Y.; Khandurina, J.; Guttman, A.; Lo, Y. H. UV/ozone modification of poly(dimethylsiloxane) microfluidic channels. Sens. Actuators B Chem. 2004, 97, 402-408.
[40]
Zhu, H.; Qin, X. Y.; Cheng, L. X.; Azcatl, A.; Kim, J.; Wallace, R. M. Remote plasma oxidation and atomic layer etching of MoS2. ACS Appl. Mater. Interfaces 2016, 8, 19119-19126.
[41]
Sun, J. B.; Giorgi, G.; Palummo, M.; Sutter, P.; Passacantando, M.; Camilli, L. A scalable method for thickness and lateral engineering of 2D materials. ACS Nano 2020, 14, 4861-4870.
[42]
Castellanos-Gomez, A.; Barkelid, M.; Goossens, A. M.; Calado, V. E.; van der Zant, H. S. J.; Steele, G. A. Laser-thinning of MoS2: On demand generation of a single-layer semiconductor. Nano Lett. 2012, 12, 3187-3192.
[43]
Zhao, Y. D.; Bertolazzi, S.; Maglione, M. S.; Rovira, C.; Mas-Torrent, M.; Samorì, P. Molecular approach to electrochemically switchable monolayer MoS2 transistors. Adv. Mater. 2020, 32, 2000740.
[44]
He, Q. Y.; Zeng, Z. Y.; Yin, Z. Y.; Li, H.; Wu, S. X.; Huang, X.; Zhang, H. Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small 2012, 8, 2994-2999.
[45]
Ponomarev, E.; Gutiérrez-Lezama, I.; Ubrig, N.; Morpurgo, A. F. Ambipolar light-emitting transistors on chemical vapor deposited monolayer MoS2. Nano Lett. 2015, 15, 8289-8294.
[46]
Chang, H. Y.; Yang, S. X.; Lee, J.; Tao, L.; Hwang, W. S.; Jena, D.; Lu, N. S.; Akinwande, D. High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems. ACS Nano 2013, 7, 5446-5452.
[47]
Perera, M. M.; Lin, M. W.; Chuang, H. J.; Chamlagain, B. P.; Wang, C. Y.; Tan, X. B.; Cheng, M. M. C.; Tománek, D.; Zhou, Z. X. Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. ACS Nano 2013, 7, 4449-4458.
[48]
Ferain, I.; Colinge, C. A.; Colinge, J. P. Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors. Nature 2011, 479, 310-316.
[49]
Liu, L. J.; Han, J.; Xu, L.; Zhou, J. S.; Zhao, C. Y.; Ding, S. J.; Shi, H. W.; Xiao, M. M.; Ding, L.; Ma, Z. et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 2020, 368, 850-856.
[50]
Kim, S.; Konar, A.; Hwang, W. S.; Lee, J. H.; Lee, J.; Yang, J.; Jung, C.; Kim, H.; Yoo, J. B.; Choi, J. Y. et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 2012, 3, 1011.
[51]
Wu, B. M.; Wang, X. D.; Tang, H. W.; Jiang, W.; Chen, Y.; Wang, Z.; Cui, Z. Z.; Lin, T.; Shen, H.; Hu, W. D. et al. Multifunctional MoS2 transistors with electrolyte gel gating. Small 2020, 16, 2000420.
[52]
Zhang, Y. J.; Ye, J. T.; Yomogida, Y.; Takenobu, T.; Iwasa, Y. Formation of a stable p-n junction in a liquid-gated MoS2 ambipolar transistor. Nano Lett. 2013, 13, 3023-3028.
[53]
Zhang, Y. W.; Li, H.; Wang, H. M.; Xie, H.; Liu, R.; Zhang, S. L.; Qiu, Z. J. Thickness considerations of two-dimensional layered semiconductors for transistor applications. Sci. Rep. 2016, 6, 29615.
[54]
Zhang, C. J.; Wang, H. N.; Chan, W. M.; Manolatou, C.; Rana, F. Absorption of light by excitons and trions in monolayers of metal dichalcogenide MoS2: Experiments and theory. Phys. Rev. B 2014, 89, 205436.
[55]
Li, Y.; Xu, C. Y.; Hu, P. A.; Zhen, L. Carrier control of MoS2 nanoflakes by functional self-assembled monolayers. ACS Nano 2013, 7, 7795-7804.
[56]
Kang, D. H.; Kim, M. S.; Shim, J.; Jeon, J.; Park, H. Y.; Jung, W. S.; Yu, H. Y.; Pang, C. H.; Lee, S.; Park, J. H. High-performance transition metal dichalcogenide photodetectors enhanced by self-assembled monolayer doping. Adv. Funct. Mater. 2015, 25, 4219-4227.
[57]
Kang, D. H.; Shim, J.; Jang, S. K.; Jeon, J.; Jeon, M. H.; Yeom, G. Y.; Jung, W. S.; Jang, Y. H.; Lee, S.; Park, J. H. Controllable nondegenerate p-type doping of tungsten diselenide by octadecyltrichlorosilane. ACS Nano 2015, 9, 1099-1107.
[58]
Chakraborty, B.; Bera, A.; Muthu, D. V. S.; Bhowmick, S.; Waghmare, U. V.; Sood, A. K. Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 2012, 85, 161403.
[59]
Nipane, A.; Karmakar, D.; Kaushik, N.; Karande, S.; Lodha, S. Few-layer MoS2 p-type devices enabled by selective doping using low energy phosphorus implantation. ACS Nano 2016, 10, 2128-2137.
[60]
Li, M. G.; Yao, J. D.; Wu, X. X.; Zhang, S. C.; Xing, B. R.; Niu, X. Y.; Yan, X. Y.; Yu, Y.; Liu, Y. L.; Wang, Y. W. P-type doping in large-area monolayer MoS2 by chemical vapor deposition. ACS Appl. Mater. Interfaces 2020, 12, 6276-6282.
[61]
Amani, M.; Lien, D. H.; Kiriya, D.; Xiao, J.; Azcatl, A.; Noh, J.; Madhvapathy, S. R.; Addou, R.; KC, S.; Dubey, M. et al. Near-unity photoluminescence quantum yield in MoS2. Science 2015, 350, 1065-1068.
[62]
Choi, Y.; Kang, J. M.; Jariwala, D.; Kang, M. S.; Marks, T. J.; Hersam, M. C.; Cho, J. H. Low-voltage complementary electronics from ion-gel-gated vertical van der waals heterostructures. Adv. Mater. 2016, 28, 3742-3748.
Nano Research
Pages 2255-2263
Cite this article:
Gao X, Yin J, Bian G, et al. High-mobility patternable MoS2 percolating nanofilms. Nano Research, 2021, 14(7): 2255-2263. https://doi.org/10.1007/s12274-020-3218-6
Topics:

1053

Views

34

Crossref

0

Web of Science

35

Scopus

2

CSCD

Altmetrics

Received: 13 September 2020
Revised: 28 October 2020
Accepted: 28 October 2020
Published: 05 July 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return