AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

AgPdCo hollow nanospheres electrocatalyst with high activity and stability toward the formate electrooxidation

Qiao Wang1,2Fuyi Chen1,2( )Quan Tang1,2Longfei Guo1,2Tao Jin1,2Bowei Pan1,2Junpeng Wang1,2Zhen Li1,2Bo Kou1,2Weiqi Bian1,2
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, China
School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
Show Author Information

Graphical Abstract

Abstract

The widespread commercial application of direct formate fuel cell (DFFC) is limited by the lack of efficient electrocatalysts for the formate oxidation reaction (FOR). AgPdCo hollow nanospheres (H-NSs) with jagged surfaces are successfully synthesized via a facile method involving the wet-chemical synthesis of AgPdCo nanospheres (NSs) and galvanic replacement reaction between Pd salt and AgPdCo NSs. Surpassing Ag30Pd69Co1 NSs and most of previously reported electrocatalysts, Ag9Pd90Co1 H-NSs exhibit extremely high FOR activity with a peak current density of 3.08 A·mgPd-1. Apart from the competitive activity, Ag9Pd90Co1 H-NSs show greatly improved chronoamperometric and cycling stability, whereby the current density retains about 0.24 A·mgPd-1 after 3,600 s electrocatalysis and the mass activity maintains 54.06% of the initial value after 500 cycles. The unique hollow nanosphere and synergistic effect are responsible for the enhanced activity and stability. This study will provide new clues for the development of outstanding electrocatalysts.

Electronic Supplementary Material

Download File(s)
12274_2020_3220_MOESM1_ESM.pdf (3.4 MB)

References

[1]
Nguyen, T. Q.; Bartrom, A. M.; Tran, K.; Haan, J. L. Operation of the alkaline direct formate fuel cell in the absence of added hydroxide. Fuel Cells 2013, 13, 922-926.
[2]
An, L.; Chen, R. Direct formate fuel cells: A review. J. Power Sources 2016, 320, 127-139.
[3]
Li, Y. S.; Sun, X. D.; Feng, Y. Hydroxide self-feeding high-temperature alkaline direct formate fuel cells. ChemSusChem 2017, 10, 2135-2139.
[4]
Yu, X. W.; Manthiram, A. Catalyst-selective, scalable membraneless alkaline direct formate fuel cells. Appl. Catal. B Environ. 2015, 165, 63-67.
[5]
Miller, H. A.; Ruggeri, J.; Marchionni, A.; Bellini, M.; Pagliaro, M. V.; Bartoli, C.; Pucci, A.; Passaglia, E.; Vizza, F. Improving the energy efficiency of direct formate fuel cells with a Pd/C-CeO2 anode catalyst and anion exchange ionomer in the catalyst layer. Energies 2018, 11, 369.
[6]
Ding, J.; Liu, Z.; Liu, X. R.; Liu, J.; Deng, Y. D.; Han, X. P.; Zhong, C.; Hu, W. B. Mesoporous decoration of freestanding palladium nanotube arrays boosts the electrocatalysis capabilities toward formic acid and formate oxidation. Adv. Energy Mater. 2019, 9, 1900955.
[7]
Wang, M. X.; Lian, T. T.; Wang, J. S.; Cheng, X. L.; Zhao, J. H.; Song, C. Y.; Wang, L. C.; Xi, J. Y. In-situ deposition and subsequent growth of Pd on SnO2 as catalysts for formate oxidation with excellent Pd utilization and anti-poisoning performance. Int. J. Hydrogen Energy 2019, 44, 21518-21526.
[8]
Zhang, N.; Chen, F. Y.; Guo, L. F. Catalytic activity of palladium-doped silver dilute nanoalloys for formate oxidation from a theoretical perspective. Phys. Chem. Chem. Phys. 2019, 21, 22598-22610.
[9]
Han, S. H.; Liu, H. M.; Bai, J.; Tian, X. L.; Xia, B. Y.; Zeng, J. H.; Jiang, J. X.; Chen, Y. Platinum-silver alloy nanoballoon nanoassemblies with super catalytic activity for the formate electrooxidation. ACS Appl. Energy Mater. 2018, 1, 1252-1258.
[10]
Galvan, V.; Glass, D. E.; Baxter, A. F.; Prakash, G. K. S. Reduced graphene oxide supported palladium nanoparticles for enhanced electrocatalytic activity toward formate electrooxidation in an alkaline medium. ACS Appl. Energy Mater. 2019, 2, 7104-7111.
[11]
Choun, M.; Hong, S.; Lee, J. Adsorbed hydrogen as a site-occupying species in the electrocatalytic oxidation of formate on Pd/C in alkaline medium. J. Electrochem. Soc. 2018, 165, J3266-J3270.
[12]
Choun, M.; Ham, K.; Shin, D.; Lee, J. K.; Lee, J. Catalytically active highly metallic palladium on carbon support for oxidation of HCOO-. Catal. Today 2017, 295, 26-31.
[13]
Noborikawa, J.; Lau, J.; Ta, J.; Hu, S. Z.; Scudiero, L.; Derakhshan, S.; Ha, S.; Haan, J. L. Palladium-copper electrocatalyst for promotion of oxidation of formate and ethanol in alkaline media. Electrochim. Acta 2014, 137, 654-660.
[14]
Sankar, S.; Anilkumar, G. M.; Tamaki, T.; Yamaguchi, T.; Binary Pd-Ni nanoalloy particles over carbon support with superior alkaline formate fuel electrooxidation performance. ChemCatChem 2019, 11, 4731-4737.
[15]
Sankar, S.; Anilkumar, G. M.; Tamaki, T.; Yamaguchi, T. Cobalt- modified palladium bimetallic catalyst: A multifunctional electrocatalyst with enhanced efficiency and stability toward the oxidation of ethanol and formate in alkaline medium. ACS Appl. Energy Mater. 2018, 1, 4140-4149.
[16]
Tang, Q.; Chen, F. Y.; Jin, T.; Guo, L. F.; Wang, Q.; Liu, H. Z. Alloying in inverse CeO2/Pd nanoparticles to enhance the electrocatalytic activity for the formate oxidation reaction. J. Mater. Chem. A 2019, 7, 22996-23007.
[17]
Guo, L. F.; Chen, F. Y.; Jin, T.; Liu, H. Z.; Zhang, N. Jin, Y. C.; Wang, Q.; Tang, Q.; Pan, B. W. Surface reconstruction of AgPd nanoalloy particles during the electrocatalytic formate oxidation reaction. Nanoscale 2020, 12, 3469-3481.
[18]
Wang, J. S.; Liu, C. H.; Lushington, A.; Cheng, N. C.; Banis, M. N.; Riese, A.; Sun, X. L. Pd on carbon nanotubes-supported Ag for formate oxidation: The effect of Ag on anti-poisoning performance. Electrochim. Acta 2016, 210, 285-292.
[19]
da Silva, S. G.; Silva, J. C. M.; Buzzo, G. S.; Spinacé, E. V.; Neto, A. O.; Assumpção, M. H. M. T. PdAu/C electrocatalysts as anodes for direct formate fuel cell. Electrocatalysis 2015, 6, 442-446.
[20]
Bai, J.; Xue, Q.; Zhao, Y.; Jiang, J. X.; Zeng, J. H.; Yin, S. B.; Chen, Y. Component-dependent electrocatalytic activity of ultrathin PdRh alloy nanocrystals for the formate oxidation reaction. ACS Sustainable Chem. Eng. 2019, 7, 2830-2836.
[21]
Wu, X. Q.; Chen, F. Y.; Zhang, N.; Qaseem, A.; Johnston, R. L. Engineering bimetallic Ag-Cu nanoalloys for highly efficient oxygen reduction catalysts: A guideline for designing Ag-based electrocatalysts with activity comparable to Pt/C-20%. Small 2017, 13, 1603876.
[22]
Slanac, D. A.; Hardin, W. G.; Johnston, K. P.; Stevenson, K. J. Atomic ensemble and electronic effects in Ag-rich AgPd nanoalloy catalysts for oxygen reduction in alkaline media. J. Am. Chem. Soc. 2012, 134, 9812-9819.
[23]
Hofmann, T.; Yu, T. H.; Folse, M.; Weinhardt, L.; Bär, M.; Zhang, Y. F.; Merinov, B. V.; Myers, D. J.; Goddard, W. A.; Heske, C. Using photoelectron spectroscopy and quantum mechanics to determine d-band energies of metals for catalytic applications. J. Phys. Chem. C 2012, 116, 24016-24026.
[24]
Hu, S. Z.; Scudiero, L.; Ha, S. Electronic effect of Pd-transition metal bimetallic surfaces toward formic acid electrochemical oxidation. Electrochem. Commun. 2014, 38, 107-109.
[25]
Park, S. A.; Lim, H.; Kim, Y. T. Enhanced oxygen reduction reaction activity due to electronic effects between Ag and Mn3O4 in alkaline media. ACS Catal. 2015, 5, 3995-4002.
[26]
Fu, S. F.; Zhu, C. Z.; Du, D.; Lin, Y. H. Facile one-step synthesis of three-dimensional Pd-Ag bimetallic alloy networks and their electrocatalytic activity toward ethanol oxidation. ACS Appl. Mater. Interfaces 2015, 7, 13842-13848.
[27]
Huang, W. J.; Kang, X. L.; Xu, C.; Zhou, J. H.; Deng, J.; Li, Y. G.; Cheng, S. 2D PdAg alloy nanodendrites for enhanced ethanol electroxidation. Adv. Mater. 2018, 30, 1706962.
[28]
Wang, Q.; Chen, F. Y.; Guo, L. F.; Jin, T.; Liu, H. Z.; Wang, X. L.; Gong, X. F.; Liu, Y. X. Nanoalloying effects on the catalytic activity of the formate oxidation reaction over AgPd and AgCuPd aerogels. J. Mater. Chem. A 2019, 7, 16122-16135.
[29]
Wang, J. L.; Chen, F. Y.; Jin, Y. C.; Guo, L. F.; Gong, X. F.; Wang, X. L.; Johnston, R. L. In situ high-potential-driven surface restructuring of ternary AgPd-Ptdilute aerogels with record-high performance improvement for formate oxidation electrocatalysis. Nanoscale 2019, 11, 14174-14185.
[30]
Jin, Y. C.; Chen, F. Y.; Guo, L. F.; Wang, J. L.; Kou, B.; Jin, T.; Liu, H. Z. Engineering two-dimensional PdAgRh nanoalloys by surface reconstruction for highly active and stable formate oxidation electrocatalysis. ACS Appl. Mater. Interfaces 2020, 12, 26694-26703.
[31]
Gebremariam, T. T.; Chen, F. Y.; Kou, B.; Guo, L. F.; Pan, B. W.; Wang, Q.; Li, Z.; Bian, W. Q. PdAgRu nanoparticles on polybenzimidazole wrapped CNTs for electrocatalytic formate oxidation. Electrochim. Acta 2020, 354, 136678.
[32]
Pan, B. W.; Chen, F. Y.; Kou, B.; Wang, J. P.; Tang, Q.; Guo, L. F.; Wang, Q.; Li, Z.; Bian, W. Q.; Wang, J. L. Unexpectedly high stability and surface reconstruction of PdAuAg nanoparticles for formate oxidation electrocatalysis. Nanoscale 2020, 12, 11659-11671.
[33]
Gunji, T.; Noh, S. H.; Ando, F.; Tanabe, T.; Han, B.; Ohsaka, T.; Matsumoto, F. Electrocatalytic activity of electrochemically dealloyed PdCu3 intermetallic compound towards oxygen reduction reaction in acidic media. J. Mater. Chem. A 2018, 6, 14828-14837.
[34]
Feng, Y. Y.; Bi, L. X.; Liu, Z. H.; Kong, D. S.; Yu, Z. Y. Significantly enhanced electrocatalytic activity for methanol electro-oxidation on Ag oxide-promoted PtAg/C catalysts in alkaline electrolyte. J. Catal. 2012, 290, 18-25.
[35]
Jung, N.; Sohn, Y.; Park, J. H.; Nahm, K. S.; Kim, P.; Yoo, S. J. High-performance PtCux@Pt core-shell nanoparticles decorated with nanoporous Pt surfaces for oxygen reduction reaction. Appl. Catal. B Environ. 2016, 196, 199-206.
[36]
Zhang, Y. P.; Xu, H.; Gao, F.; Song, P. P.; Yan, B.; Wang, J.; Wang, C. Q.; Du, Y. K. Exceptional ethylene glycol electrooxidation enabled by high-quality PdAgCu hollow nanospheres. J. Taiwan Inst. Chem. Eng. 2018, 91, 405-412.
[37]
Peng, C.; Hu, Y. L.; Liu, M. R.; Zheng, Y. X. Hollow raspberry-like PdAg alloy nanospheres: High electrocatalytic activity for ethanol oxidation in alkaline media. J. Power Sources 2015, 278, 69-75.
[38]
An, L. J.; Zhu, M. Y.; Dai, B.; Yu, F. Hollow palladium-copper bimetallic nanospheres with high oxygen reduction activity. Electrochim. Acta 2015, 176, 222-229.
[39]
Zhang, K.; Xu, H.; Yan, B.; Wang, J.; Du, Y. K.; Liu, Q. Y. Superior ethylene glycol oxidation electrocatalysis enabled by hollow PdNi nanospheres. Electrochim. Acta 2018, 268, 383-391.
[40]
Wang, Q.; Chen, F. Y.; Tang, Q.; Guo, L. F.; Gebremariam, T. T.; Jin, T.; Liu, H. Z.; Kou, B.; Li, Z.; Bian, W. Q. Transition from core-shell to Janus segregation pattern in AgPd nanoalloy by Ni doping for the formate oxidation. Appl. Catal. B Environ. 2020, 270, 118861.
[41]
Liu, J. F.; Luo, Z. S.; Li, J. S.; Yu, X. T.; Llorca, J.; Nasiou, D.; Arbiol, J.; Meyns, M.; Cabot, A. Graphene-supported palladium phosphide PdP2 nanocrystals for ethanol electrooxidation. Appl. Catal. B Environ. 2019, 242, 258-266.
[42]
Yu, X. T.; Luo, Z. S.; Zhang, T.; Tang, P. Y.; Li, J. S.; Wang, X.; Llorca, J.; Arbiol, J.; Liu, J. F.; Cabot, A. Stability of Pd3Pb nanocubes during electrocatalytic ethanol oxidation. Chem. Mater. 2020, 32, 2044-2052.
[43]
Li, J. M.; Sun, X. J.; Qin, D. Ag-enriched Ag-Pd bimetallic nanoframes and their catalytic properties. ChemNanoMat 2016, 2, 494-499.
[44]
Luo, L. M.; Zhan, W.; Zhang, R. H.; Chen, D.; Hu, Q. Y.; Guo, Y. F.; Zhou, X. W. Ternary CoAuPd and binary AuPd electrocatalysts for methanol oxidation and oxygen reduction reaction: Enhanced catalytic performance by surface reconstruction. J. Power Sources 2019, 412, 142-152.
[45]
Pang, X. C.; Wan, C. S.; Wang, M. Y.; Lin, Z. Q. Strictly biphasic soft and hard janus structures: Synthesis, properties, and applications. Angew. Chem., Int. Ed. 2014, 53, 5524-5538.
[46]
Park, H. Y.; Park, J. H.; Kim, P.; Yoo, S. J. Hollow PdCu2@Pt core@shell nanoparticles with ordered intermetallic cores as efficient and durable oxygen reduction reaction electrocatalysts. Appl. Catal. B Environ. 2018, 225, 84-90.
[47]
Bin, D.; Yang, B. B.; Zhang, K.; Wang, C. Q.; Wang, J.; Zhong, J. T.; Feng, Y.; Guo, J.; Du, Y. K. Design of PdAg hollow nanoflowers through galvanic replacement and their application for ethanol electrooxidation. Chem.-Eur. J. 2016, 22, 16642-16647.
[48]
Zhang, W. Q.; Yang, J. Z.; Lu, X. M. Tailoring galvanic replacement reaction for the preparation of Pt/Ag bimetallic hollow nanostructures with controlled number of voids. ACS Nano 2012, 6, 7397-7405.
[49]
Wang, L. Q.; Bellini, M.; Filippi, J.; Folliero, M.; Lavacchi, A.; Innocenti, M.; Marchionni, A.; Miller, H. A.; Vizza, F. Energy efficiency of platinum-free alkaline direct formate fuel cells. Appl. Energy 2016, 175, 479-487.
[50]
Mao, H.; Huang, T.; Yu, A. S. Electrochemical surface modification on CuPdAu/C with extraordinary behavior toward formic acid/formate oxidation. Int. J. Hydrogen Energy 2016, 41, 13190-13196.
[51]
Wang, D. L.; Xin, H. L.; Yu, Y. C.; Wang, H. S.; Rus, E.; Muller, D. A.; Abruña, H. D. Pt-decorated PdCo@Pd/C core-shell nanoparticles with enhanced stability and electrocatalytic activity for the oxygen reduction reaction. J. Am. Chem. Soc. 2010, 132, 17664-17666.
[52]
Lai, W. H.; Zhang, B. W.; Hu, Z. P.; Qu, X. M.; Jiang, Y. X.; Wang, Y. X.; Wang, J. Z.; Liu, H. K.; Chou, S. L. The quasi-Pt-allotrope catalyst: Hollow PtCo@single-atom Pt1 on nitrogen-doped carbon toward superior oxygen reduction. Adv. Funct. Mater. 2019, 29, 1807340.
Nano Research
Pages 2268-2276
Cite this article:
Wang Q, Chen F, Tang Q, et al. AgPdCo hollow nanospheres electrocatalyst with high activity and stability toward the formate electrooxidation. Nano Research, 2021, 14(7): 2268-2276. https://doi.org/10.1007/s12274-020-3220-z
Topics:

771

Views

23

Crossref

0

Web of Science

21

Scopus

0

CSCD

Altmetrics

Received: 22 August 2020
Revised: 15 October 2020
Accepted: 01 November 2020
Published: 05 July 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return