AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Template synthesis of silver indium sulfide based nanocrystals performed through cation exchange in organic and aqueous media

Na Gao1Rubo Zhang1Bingkun Chen2,4( )Jinfeng Zhang3Xiaoling Zhang1Andrey L. Rogach4
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
School of Life Science, Beijing Institute of Technology, Beijing 100081, China
Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong SAR, China
Show Author Information

Graphical Abstract

Abstract

Heavy-metal-free silver based I-III-VI semiconductor nanocrystals (NCs), including ternary silver indium sulfide (AgInS2) and derivative quaternary silver indium zinc sulfide (i.e., AgInZn2S4) NCs, possess advantages of low toxicity, and size-tunable band gaps approaching near-infrared spectral range, which make them candidates for use in optoelectronic and biological devices. Herein, we report syntheses of AgInS2 based NCs starting from In2S3 template, which have been performed both in organic and aqueous phase through cation exchange. As a result, ternary silver indium sulfide and quaternary silver indium zinc sulfide NCs are obtained in both organic and aqueous media, and confirmed to be orthorhombic AgInS2 NCs and hexagonal AgInZn2S4 NCs, respectively. Furthermore, the aqueous AgInZn2S4 NCs with red emission and low cytotoxicity are explored for the cancer cell imaging.

Electronic Supplementary Material

Download File(s)
12274_2020_3229_MOESM1_ESM.pdf (2.8 MB)

References

[1]
Jing, L. H.; Kershaw, S. V.; Li, Y. L.; Huang, X. D.; Li, Y. Y.; Rogach, A. L.; Gao, M. Y. Aqueous based semiconductor nanocrystals. Chem. Rev. 2016, 116, 10623-10730.
[2]
Freeman, R.; Willner, I. Optical molecular sensing with semiconductor quantum dots (QDs). Chem. Soc. Rev. 2012, 41, 4067-4085.
[3]
Kershaw, S. V.; Susha, A. S.; Rogach, A. L. Narrow bandgap colloidal metal chalcogenide quantum dots: Synthetic methods, heterostructures, assemblies, electronic and infrared optical properties. Chem. Soc. Rev. 2013, 42, 3033-3087.
[4]
Carey, G. H.; Abdelhady, A. L.; Ning, Z. J.; Thon, S. M.; Bakr, O. M.; Sargent, E. H. Colloidal quantum dot solar cells. Chem. Rev. 2015, 115, 12732-12763.
[5]
Yuan, M. J.; Liu, M. X.; Sargent, E. H. Colloidal quantum dot solids for solution-processed solar cells. Nat. Energy 2016, 1, 16016.
[6]
Chiba, T.; Hayashi, Y.; Ebe, H.; Hoshi, K.; Sato, J.; Sato, S.; Pu, Y. J.; Ohisa, S.; Kido, J. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photonics 2018, 12, 681-687.
[7]
Wei, Y.; Cheng, Z. Y.; Lin, J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chem. Soc. Rev. 2019, 48, 310-350.
[8]
Chen, B. K.; Susha, A. S.; Reckmeier, C. J.; Kershaw, S. V.; Wang, Y. T.; Zou, B. S.; Zhong, H. Z.; Rogach, A. L. Mesoporous aluminum hydroxide synthesized by a single-source precursor-decomposition approach as a high-quantum-yield blue phosphor for UV-pumped white-light-emitting diodes. Adv. Mater. 2017, 29, 1604284.
[9]
Chen, B. K.; Zhong, H. Z.; Wang, M. X.; Liu, R. B.; Zou, B. S. Integration of CuInS2-based nanocrystals for high efficiency and high colour rendering white light-emitting diodes. Nanoscale 2013, 5, 3514-3519.
[10]
Kim, T.-H.; Cho, K.-S.; Lee, E. K.; Lee, S. J.; Chae, J.; Kim, J. W.; Kim, D. H.; Kwon, J.-Y.; Amaratunga, G.; Lee, S. Y. et al. Full-colour quantum dot displays fabricated by transfer printing. Nat. Photonics 2011, 5, 176-182.
[11]
Wang, H. C.; Lin, S. Y.; Tang, A. C.; Singh, B. P.; Tong, H. C.; Chen, C. Y.; Lee, Y. C.; Tsai, T. L.; Liu, R. S. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display. Angew. Chem., Int. Ed. 2016, 55, 7924-7929.
[12]
Miao, J. L.; Zhang, F. J. Recent progress on highly sensitive perovskite photodetectors. J. Mater. Chem. C 2019, 7, 1741-1791.
[13]
McHugh, K. J.; Jing, L. H.; Behrens, A. M.; Jayawardena, S.; Tang, W.; Gao, M. Y.; Langer, R.; Jaklenec, A. Biocompatible semiconductor quantum dots as cancer imaging agents. Adv. Mater. 2018, 30, 1706356.
[14]
Xu, G. X.; Zeng, S. W.; Zhang, B. T.; Swihart, M. T.; Yong, K. T.; Prasad, P. N. New generation cadmium-free quantum dots for biophotonics and nanomedicine. Chem. Rev. 2016, 116, 12234-12327.
[15]
Dubertret, B.; Skourides, P.; Norris, D. J.; Noireaux, V.; Brivanlou, A. H.; Libchaber, A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002, 298, 1759-1762.
[16]
Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S;. Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538-544.
[17]
Gao, N.; Yang, W.; Nie, H. L.; Gong, Y. Q.; Jing, J.; Gao, L. J.; Zhang, X. L. Turn-on theranostic fluorescent nanoprobe by electrostatic self-assembly of carbon dots with doxorubicin for targeted cancer cell imaging, in vivo hyaluronidase analysis, and targeted drug delivery. Biosens. Bioelectron. 2017, 96, 300-307.
[18]
Rogach, A.; Kershaw, S. V.; Burt, M.; Harrison, M. T.; Kornowski, A.; Eychmuller, A.; Weller, H. Colloidally prepared HgTe nanocrystals with strong room-temperature infrared luminescence. Adv. Mater. 1999, 11, 552-555.
[19]
Talapin, D. V.; Rogach, A. L.; Shevchenko, E. V.; Kornowski, A.; Haase, M.; Weller, H. Dynamic distribution of growth rates within the ensembles of colloidal II-VI and III-V semiconductor nanocrystals as a factor governing their photoluminescence efficiency. J. Am. Chem. Soc. 2002, 124, 5782-5790.
[20]
Radtchenko, I. L.; Sukhorukov, G. B.; Gaponik, N.; Kornowski, A.; Rogach, A. L.; Möhwald, H. Core-shell structures formed by the solvent-controlled precipitation of luminescent CdTe nanocrystals on latex spheres. Adv. Mater. 2001, 13, 1684-1687.
[21]
Rogach, A. L. Binary superlattices of nanoparticles: Self-assembly leads to “metamaterials”. Angew. Chem., Int. Ed. 2003, 43, 148-149.
[22]
Rogach, A. L.; Eychmuller, A.; Hickey, S. G.; Kershaw, S. V. Infrared-emitting colloidal nanocrystals: Synthesis, assembly, spectroscopy, and applications. Small 2007, 3, 536-557.
[23]
Moreels, I.; Lambert, K.; Smeets, D.; De Muynck, D.; Nollet, T.; Martins, J. C.; Vanhaecke, F.; Vantomme, A.; Delerue, C.; Allan, G. et al. Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano 2009, 3, 3023-3030.
[24]
Pandya, R.; Chen, R. Y. S.; Cheminal, A.; Dufour, M.; Richter, J. M.; Thomas, T. H.; Ahmed, S.; Sadhanala, A.; Booker, E. P.; Divitini, G. et al. Exciton-phonon interactions govern charge-transfer-state dynamics in CdSe/CdTe two-dimensional colloidal heterostructures. J. Am. Chem. Soc. 2018, 140, 14097-14111.
[25]
Gao, D.; Hao, X. Y.; Rowell, N.; Kreouzis, T.; Lockwood, D. J.; Han, S.; Fan, H. S.; Zhang, H.; Zhang, C. C.; Jiang, Y. N. et al. Formation of colloidal alloy semiconductor CdTeSe magic-size clusters at room temperature. Nat. Commun. 2019, 10, 1674.
[26]
Chen, B. K.; Zhong, H. Z.; Li, R.; Zhou, Y.; Ding, Y. Q.; Li, Y. F.; Zou, B. S. Conjugated polymer-assisted preparation of CdSe nanospheres and their photovoltaic properties. Sci. Adv. Mater. 2012, 4, 342-345.
[27]
Reiss, P.; Carrière, M.; Lincheneau, C.; Vaure, L.; Tamang, S. Synthesis of semiconductor nanocrystals, focusing on nontoxic and earth-abundant materials. Chem. Rev. 2016, 116, 10731-10819.
[28]
Chen, B. K.; Pradhan, N.; Zhong, H. Z. From large-scale synthesis to lighting device applications of ternary I-III-VI semiconductor nanocrystals: Inspiring greener material emitters. J. Phys. Chem. Lett. 2018, 9, 435-445.
[29]
Girma, W. M.; Fahmi, M. Z.; Permadi, A.; Abate, M. A.; Chang, J. Y. Synthetic strategies and biomedical applications of I-III-VI ternary quantum dots. J. Mater. Chem. B 2017, 5, 6193-6216.
[30]
Xie, R. G.; Rutherford, M.; Peng, X. G. Formation of high-quality I-III-VI semiconductor nanocrystals by tuning relative reactivity of cationic precursors. J. Am. Chem. Soc. 2009, 131, 5691-5697.
[31]
Yarema, O.; Yarema, M.; Wood, V. Tuning the composition of multicomponent semiconductor nanocrystals: The case of I-III-VI materials. Chem. Mater. 2018, 30, 1446-1461.
[32]
Berends, A. C.; Mangnus, M. J. J.; Xia, C. H.; Rabouw, F. T.; Donega, C. D. M. Optoelectronic properties of ternary I-III-VI2 semiconductor nanocrystals: Bright prospects with elusive origins. J. Phys. Chem. Lett. 2019, 10, 1600-1016.
[33]
Chen, B. K.; Zhong, H. Z.; Zhang, W. Q.; Tan, Z. A.; Li, Y. F.; Yu, C. R.; Zhai, T. Y.; Bando, Y.; Yang, S. Y.; Zou, B. S. Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: Off-stoichiometry effects and improved electroluminescence performance. Adv. Funct. Mater. 2012, 22, 2081-2088.
[34]
Torimoto, T.; Adachi, T.; Okazaki, K. I.; Sakuraoka, M.; Shibayama, T.; Ohtani, B.; Kudo, A.; Kuwabata, S. Facile synthesis of ZnS-AgInS2 solid solution nanoparticles for a color-adjustable luminophore. J. Am. Chem. Soc. 2007, 129, 12388-12389.
[35]
Doh, H.; Hwang, S.; Kim, S. Size-tunable synthesis of nearly monodisperse Ag2S nanoparticles and size-dependent fate of the crystal structures upon cation exchange to AgInS2 nanoparticles. Chem. Mater. 2016, 28, 8123-8127.
[36]
Zeng, B; Chen, F.; Liu, Z. Y.; Guan, Z. Y.; Li, X.; Teng, F.; Tang, A. W. Seeded-mediated growth of ternary Ag-In-S and quaternary Ag-In-Zn-S nanocrystals from binary Ag2S seeds and the composition- tunable optical properties. J. Mater. Chem. C 2019, 7, 1307-1315.
[37]
Stroyuk, O.; Raevskaya, A.; Spranger, F.; Selyshchev, O.; Dzhagan, V.; Schulze, S.; Zahn, D. R. T.; Eychmüller, A. Origin and dynamics of highly efficient broadband photoluminescence of aqueous glutathione- capped size-selected Ag-In-S quantum dots. J. Phys. Chem. C 2018, 122, 13648-13658.
[38]
Yang, W. T.; Gong, X. Q; Chang, J. Development of novel cadmium-free AgInS2 semiconductor nanoparticles. J. Nanosci. Nanotechnol. 2016, 16, 2172-2183.
[39]
Peng, S. J.; Zhang, S. Y.; Mhaisalkar, S. G.; Ramakrishna, S. Synthesis of AgInS2 nanocrystal ink and its photoelectrical application. Phys. Chem. Chem. Phys. 2012, 14, 8523-8529.
[40]
Deng, D. W.; Cao, J.; Qu, L. Z.; Achilefu, S.; Gu, Y. Q. Highly luminescent water-soluble quaternary Zn-Ag-In-S quantum dots for tumor cell-targeted imaging. Phys. Chem. Chem. Phys. 2013, 15, 5078-5083.
[41]
Uematsu, T.; Wajima, K.; Sharma, D. K.; Hirata, S.; Yamamoto, T.; Kameyama, T.; Vacha, M.; Torimoto, T.; Kuwabata, S. Narrow band-edge photoluminescence from AgInS2 semiconductor nanoparticles by the formation of amorphous III-VI semiconductor shells. NPG Asia Mater. 2018, 10, 713-726.
[42]
Liu, Z. P.; Tang, K. B.; Wang, D. K.; Wang, L. L.; Hao, Q. Y. Facile synthesis of AgInS2 hierarchical flowerlike nanoarchitectures composed of ultrathin nanowires. Nanoscale 2013, 5, 1570-1575.
[43]
Hamanaka, Y.; Ozawa, K.; Kuzuya, T. Enhancement of donor-acceptor pair emissions in colloidal AgInS2 quantum dots with high concentrations of defects. J. Phys. Chem. C 2014, 118, 14562-14568.
[44]
Tang, X. S.; Ho, W. B. A.; Xue, J. M. Synthesis of Zn-doped AgInS2 nanocrystals and their fluorescence properties. J. Phys. Chem. C 2012, 116, 9769-9773.
[45]
Chen, B. K.; Chang, S.; Li, D. Y.; Chen, L. L.; Wang, Y. T.; Chen, T.; Zou, B. S.; Zhong, H. Z.; Rogach, A. L. Template synthesis of CuInS2 nanocrystals from In2S3 nanoplates and their application as counter electrodes in dye-sensitized solar cells. Chem. Mater. 2015, 27, 5949-5956.
[46]
Gupta, S.; Kershaw, S. V.; Rogach, A. L. 25th anniversary article: Ion exchange in colloidal nanocrystals. Adv. Mater. 2013, 25, 6923-6943.
[47]
Morris, A. L.; Lin, C.; Benjamin, S. E.; Devarasetty, V. V. N. M.; Tilluck, W. R.; Lozano, E. I.; Hamo, H.; Aguilar, X. A.; Van Patten, P. G. Toward improved scalability of cation exchange reactions of metal chalcogenide nanocrystals. Chem. Mater. 2017, 29, 6596-6600.
[48]
De Trizio, L.; Manna, L. Forging colloidal nanostructures via cation exchange reactions. Chem. Rev. 2016, 116, 10852-10887.
[49]
Di, Q. M.; Zhu, X. Y.; Liu, J.; Zhan, X. B.; Shang, H. S.; Chen, W. X.; Liu, J. J.; Rong, H. P.; Xu, M.; Zhang, J. T. High-performance quantum dots with synergistic doping and oxide shell protection synthesized by cation exchange conversion of ternary-composition nanoparticles. J. Phys. Chem. Lett. 2019, 10, 2606-2615.
[50]
Bai, B.; Xu, M.; Li, N.; Chen, W. X.; Liu, J. J.; Liu, J.; Rong, H. P.; Fenske, D.; Zhang, J. T. Semiconductor nanocrystal engineering by applying thiol- and solvent-coordinated cation exchange kinetics. Angew. Chem., Int. Ed. 2019, 58, 4852-4857.
[51]
Wang, H.; Butler, D. J.; Straus, D. B.; Oh, N.; Wu, F. K.; Guo, J. C.; Xue, K.; Lee, J. D.; Murray, C. B.; Kagan, C. R. Air-stable CuInSe2 nanocrystal transistors and circuits via post-deposition cation exchange. ACS Nano 2019, 13, 2324-2333.
[52]
Park, K. H.; Jang, K.; Son, S. U. Synthesis, optical properties, and self-assembly of ultrathin hexagonal In2S3 nanoplates. Angew. Chem., Int. Ed. 2006, 45, 4608-4612.
[53]
Horani, F.; Lifshitz, E. Unraveling the growth mechanism forming stable γ-In2S3 and β-In2S3 colloidal nanoplatelets. Chem. Mater. 2019, 31, 1784-1793.
[54]
Bujak, P.; Wróbel, Z.; Penkala, M.; Kotwica, K.; Kmita, A.; Gajewska, M.; Ostrowski, A.; Kowalik, P.; Pron, A. Highly luminescent Ag-In-Zn-S quaternary nanocrystals: Growth mechanism and surface chemistry elucidation. Inorg. Chem. 2019, 58, 1358-1370.
[55]
Ramirez, O.; Ramasamy, P.; Choi, Y. C.; Lee, J. S. Morphology transformation of chalcogenide nanoparticles triggered by cation exchange reactions. Chem. Mater. 2019, 31, 268-276.
[56]
Wang, C. X.; Wang, Y.; Xu, L.; Zhang, D.; Liu, M. X.; Li, X. W.; Sun, H. C.; Lin, Q.; Yang, B. Facile aqueous-phase synthesis of biocompatible and fluorescent Ag2S nanoclusters for bioimaging: Tunable photoluminescence from red to near infrared. Small 2012, 8, 3137-3142.
[57]
Reddy, D. A.; Ma, R.; Choi, M. Y.; Kim, T. K. Reduced graphene oxide wrapped ZnS-Ag2S ternary composites synthesized via hydrothermal method: Applications in photocatalyst degradation of organic pollutants. Appl. Surf. Sci. 2015, 324, 725-735.
[58]
Wang, Y. Q.; Zhang, Q. H.; Li, Y. G.; Wang, H. Z. Preparation of AgInS2 quantum dot/In2S3 co-sensitized photoelectrodes by a facile aqueous-phase synthesis route and their photovoltaic performance. Nanoscale 2015, 7, 6185-6192.
[59]
Luo, Z. S.; Zhang, H.; Huang, J.; Zhong, X. H. One-step synthesis of water-soluble AgInS2 and ZnS-AgInS2 composite nanocrystals and their photocatalytic activities. J. Colloid Interface Sci. 2012, 377, 27-33.
[60]
Song, J. L. Q.; Ma, C.; Zhang, W. Z.; Li, X. D.; Zhang, W. T.; Wu, R. B.; Cheng, X. C.; Ali, A.; Yang, M. Y.; Zhu, L. X. et al. Bandgap and structure engineering via cation exchange: From binary Ag2S to ternary AgInS2, quaternary AgZnInS alloy and AgZnInS/ZnS core/shell fluorescent nanocrystals for bioimaging. ACS Appl. Mater. Interfaces 2016, 8, 24826-24836.
[61]
Rogach, A. L.; Ogris, M. Near-infrared-emitting semiconductor quantum dots for tumor imaging and targeting. Curr. Opin. Mol. Ther. 2010, 12, 331-339.
Nano Research
Pages 2321-2329
Cite this article:
Gao N, Zhang R, Chen B, et al. Template synthesis of silver indium sulfide based nanocrystals performed through cation exchange in organic and aqueous media. Nano Research, 2021, 14(7): 2321-2329. https://doi.org/10.1007/s12274-020-3229-3
Topics:

834

Views

16

Crossref

0

Web of Science

17

Scopus

1

CSCD

Altmetrics

Received: 15 July 2020
Revised: 07 November 2020
Accepted: 09 November 2020
Published: 05 July 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return