AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

3D printing of metal-based materials for renewable energy applications

Shahryar Mooraj1Zhen Qi2Cheng Zhu2( )Jie Ren1Siyuan Peng1Liang Liu1Shengbiao Zhang1Shuai Feng1Fanyue Kong1,3Yanfang Liu1Eric B. Duoss2Sarah Baker2Wen Chen1( )
Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003-2210, USA
Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
Show Author Information

Graphical Abstract

Abstract

Large-scale renewable energy must overcome conversion and storage challenges before it can replace fossil fuels due to its intermittent nature. However, current sustainable energy devices still suffer from high cost, low efficiency, and poor service life problems. Recently, porous metal-based materials have been widely used as desirable cross-functional platforms for electrochemical and photochemical energy systems for their unique electrical conductivity, catalytic activity, and chemical stability. To tailor the porosity length scale, ordering, and compositions, 3D printing has been applied as a disruptive manufacturing revolution to create complex architected components by directly joining sequential layers into designed structures. This article intends to summarize cutting- edge advances of metal-based materials for renewable energy devices (e.g., fuel cells, solar cells, supercapacitors, and batteries) over the past decade.

References

[1]
Scheffran, J.; Felkers, M.; Froese, R. Economic growth and the global energy demand. In Green Energy to Sustainability: Strategies for Global Industries; Vertès, A. A.; Qureshi, N.; Blaschek, H. P.; Yukawa, H., Eds.; Wiley & Sons Ltd: 2020; pp 1-44.
[2]
Nayak, P. K.; Yang, L. T.; Brehm, W.; Adelhelm, P. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises. Angew. Chem., Int. Ed. 2018, 57, 102-120.
[3]
Deng, D.; Kim, M. G.; Lee, J. Y.; Cho, J. Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy Environ. Sci. 2009, 2, 818-837.
[4]
Rui, X. H.; Tan, H. T.; Yan, Q. Y. Nanostructured metal sulfides for energy storage. Nanoscale 2014, 6, 9889-9924.
[5]
Gu, P.; Zheng, M. B.; Zhao, Q. X.; Xiao, X.; Xue, H. G.; Pang, H. Rechargeable zinc-air batteries: A promising way to green energy. J. Mater. Chem. A 2017, 5, 7651-7666.
[6]
Hasa, I.; Hassoun, J.; Passerini, S. Nanostructured Na-ion and Li-ion anodes for battery application: A comparative overview. Nano Res. 2017, 10, 3942-3969.
[7]
Castillo-Blas, C.; Álvarez-Galván, C.; Puente-Orench, I.; García- Sánchez, A.; Oropeza, F. E.; Gutiérrez-Puebla, E.; Monge, Á.; de la Peña-O’Shea, V. A.; Gándara, F. Highly efficient multi-metal catalysts for carbon dioxide reduction prepared from atomically sequenced metal organic frameworks. Nano Res. 2021, 14, 493-500.
[8]
Chen, M.; Pu, Y. H.; Li, Z. Y.; Huang, G.; Liu, X. F.; Lu, Y.; Tang, W. K.; Xu, L.; Liu, S. Y.; Yu, R. H. et al. Synergy between metallic components of MoNi alloy for catalyzing highly efficient hydrogen storage of MgH2. Nano Res. 2020, 13, 2063-2071.
[9]
Corbin, N.; Zeng, J.; Williams, K.; Manthiram, K. Heterogeneous molecular catalysts for electrocatalytic CO2 reduction. Nano Res. 2019, 12, 2093-2125.
[10]
Da, P. M.; Zheng, G. F. Tailoring interface of lead-halide perovskite solar cells. Nano Res. 2017, 10, 1471-1497.
[11]
Gao, R.; Yan, D. P. Fast formation of single-unit-cell-thick and defect-rich layered double hydroxide nanosheets with highly enhanced oxygen evolution reaction for water splitting. Nano Res. 2018, 11, 1883-1894.
[12]
Hueso, K. B.; Palomares, V.; Armand, M.; Rojo, T. Challenges and perspectives on high and intermediate-temperature sodium batteries. Nano Res. 2017, 10, 4082-4114.
[13]
Kenney, M. J.; Huang, J. E.; Zhu, Y.; Meng, Y. T.; Xu, M. Q.; Zhu, G. Z.; Hung, W. H.; Kuang, Y.; Lin, M. C.; Sun, X. M. et al. An electrodeposition approach to metal/metal oxide heterostructures for active hydrogen evolution catalysts in near-neutral electrolytes. Nano Res. 2019, 12, 1431-1435.
[14]
Li, Q. Y.; Lian, T. Q. Exciton dissociation dynamics and light-driven H2 generation in colloidal 2D cadmium chalcogenide nanoplatelet heterostructures. Nano Res. 2018, 11, 3031-3049.
[15]
Li, X. D.; Wang, D. Y.; Zhang, Y.; Liu, L. T.; Wang, W. S. Surface- ligand protected reduction on plasmonic tuning of one-dimensional MoO3-x nanobelts for solar steam generation. Nano Res. 2020, 13, 3025-3032.
[16]
Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067-2080.
[17]
Thalluri, S. M.; Borme, J.; Yu, K.; Xu, J. Y.; Amorim, I.; Gaspar, J.; Qiao, L.; Ferreira, P.; Alpuim, P.; Liu, L. F. Conformal and continuous deposition of bifunctional cobalt phosphide layers on p-silicon nanowire arrays for improved solar hydrogen evolution. Nano Res. 2018, 11, 4823-4835.
[18]
Tian, S. F.; Chen, S. D.; Ren, X. T.; Hu, Y. Q.; Hu, H. Y.; Sun, J. J.; Bai, F. An Efficient visible-light photocatalyst for CO2 reduction fabricated by cobalt porphyrin and graphitic carbon nitride via covalent bonding. Nano Res. 2020, 13, 2665-2672.
[19]
Xie, H. P.; Lan, C.; Chen, B.; Wang, F. H.; Liu, T. Noble-metal-free catalyst with enhanced hydrogen evolution reaction activity based on granulated co-doped Ni-Mo phosphide nanorod arrays. Nano Res. 2020, 13, 3321-3329.
[20]
Zhang, J. N.; Hu, W. P.; Cao, S.; Piao, L. Y. Recent progress for hydrogen production by photocatalytic natural or simulated seawater splitting. Nano Res. 2020, 13, 2313-2322.
[21]
Zhang, M.; Hu, Z.; Gu, L.; Zhang, Q. H.; Zhang, L. H.; Song, Q.; Zhou, W.; Hu, S. Electrochemical conversion of CO2 to syngas with a wide range of CO/H2 ratio over Ni/Fe binary single-atom catalysts. Nano Res. 2020, 13, 3206-3211.
[22]
Zhao, C. L.; Lu, Y. X.; Chen, L. Q.; Hu, Y. S. Ni-based cathode materials for Na-ion batteries. Nano Res. 2019, 12, 2018-2030.
[23]
Zhu, S. H.; Chen, C.; He, P.; Tan, S. S.; Xiong, F. Y.; Liu, Z. A.; Peng, Z.; An, Q. Y.; Mai, L. Q. Novel hollow Ni0.33Co0.67Se nanoprisms for high capacity lithium storage. Nano Res. 2019, 12, 1371-1374.
[24]
Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856-1866.
[25]
Faber, M. S.; Jin, S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 2014, 7, 3519-3542.
[26]
Qiu, H. J.; Xu, H. T.; Liu, L.; Wang, Y. Correlation of the structure and applications of dealloyed nanoporous metals in catalysis and energy conversion/storage. Nanoscale 2015, 7, 386-400.
[27]
Mohamed, S. A.; Al-Sulaiman, F. A.; Ibrahim, N. I.; Zahir, H.; Al-Ahmed, A.; Saidur, R.; Yılbaş, B. S.; Sahin, A. Z. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems. Renew. Sustain. Energy Rev. 2017, 70, 1072-1089.
[28]
Song, H. K.; Lee, K. T.; Kim, M. G.; Nazar, L. F.; Cho, J. Recent progress in nanostructured cathode materials for lithium secondary batteries. Adv. Funct. Mater. 2010, 20, 3818-3834.
[29]
Sajan, C. P.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J. G.; Cao, S. W. TiO2 nanosheets with exposed {001} facets for photocatalytic applications. Nano Res. 2016, 9, 3-27.
[30]
Luciani, G.; Imparato, C.; Vitiello, G. Photosensitive hybrid nanostructured materials: The big challenges for sunlight capture. Catalysts 2020, 10, 103.
[31]
Lee, T. D.; Ebong, A. U. A review of thin film solar cell technologies and challenges. Renew. Sustain. Energy Rev. 2017, 70, 1286-1297.
[32]
Yan, X. F.; Han, W. Q. Preparation and application of garnet electrolyte thin films: Promise and challenges. Org. Chem. Plus 2020, 1, 6-22.
[33]
Kumar, S.; Saralch, S.; Jabeen, U.; Pathak, D. Metal oxides for energy applications. In Colloidal Metal Oxide Nanoparticles; Thomas, A.; Sunny, A. T.; Velayudhan, P., Eds.; Elsevier: Amsterdam, 2020; pp 471-504.
[34]
Graedel, T. E. On the future availability of the energy metals. Annu. Rev. Mater. Res. 2011, 41, 323-335.
[35]
Wang, H. L.; Zhu, Q. L.; Zou, R. Q.; Xu, Q. Metal-organic frameworks for energy applications. Chem 2017, 2, 52-80.
[36]
Huang, A. Q.; He, Y. Z.; Zhou, Y. Z.; Zhou, Y. Y.; Yang, Y.; Zhang, J. C.; Luo, L.; Mao, Q. M.; Hou, D. M.; Yang, J. A review of recent applications of porous metals and metal oxide in energy storage, sensing and catalysis. J. Mater. Sci. 2019, 54, 949-973.
[37]
Ambrosi, A.; Webster, R. D. 3D printing for aqueous and non-aqueous redox flow batteries. Curr. Opin. Electrochem. 2020, 20, 28-35.
[38]
Ambrosi, A.; Pumera, M. 3D-printing technologies for electrochemical applications. Chem. Soc. Rev. 2016, 45, 2740-2755.
[39]
Buchanan, C.; Gardner, L. Metal 3D printing in construction: A review of methods, research, applications, opportunities and challenges. Eng. Struct. 2019, 180, 332-348.
[40]
Chen, Z. W.; Li, Z. Y.; Li, J. J.; Liu, C. B.; Lao, C. S.; Fu, Y. L.; Liu, C. Y.; Li, Y.; Wang, P.; He, Y. 3D printing of ceramics: A review. J. Eur. Ceram. Soc. 2019, 39, 661-687.
[41]
Chen, L.; Tang, X. W.; Xie, P. W.; Xu, J.; Chen, Z. H.; Cai, Z. C.; He, P. S.; Zhou, H.; Zhang, D.; Fan, T. X. 3D printing of artificial leaf with tunable hierarchical porosity for CO2 photoreduction. Chem. Mater. 2018, 30, 799-806.
[42]
Sun, K.; Wei, T. S.; Ahn, B. Y.; Seo, J. Y.; Dillon, S. J.; Lewis, J. A. 3D printing of interdigitated Li-ion microbattery architectures. Adv. Mater. 2013, 25, 4539-4543.
[43]
Ambrosi, A.; Moo, J. G. S.; Pumera, M. Helical 3D-printed metal electrodes as custom-shaped 3D platform for electrochemical devices. Adv. Funct. Mater. 2016, 26, 698-703.
[44]
Egorov, V.; Gulzar, U.; Zhang, Y.; Breen, S.; O’Dwyer, C. Evolution of 3D printing methods and materials for electrochemical energy storage. Adv. Mater. 2020, 32, 2000556.
[45]
Ruiz-Morales, J. C.; Tarancón, A.; Canales-Vázquez, J.; Méndez- Ramos, J.; Hernández-Afonso, L.; Acosta-Mora, P.; Marín Rueda, J. R.; Fernández-González, R. Three dimensional printing of components and functional devices for energy and environmental applications. Energy Environ. Sci. 2017, 10, 846-859.
[46]
Browne, M. P.; Redondo, E.; Pumera, M. 3D printing for electrochemical energy applications. Chem. Rev. 2020, 120, 2783-2810.
[47]
Anant Pidge, P.; Kumar, H. Additive manufacturing: A review on 3D printing of metals and study of residual stress, buckling load capacity of strut members. Mater. Today 2020, 21, 1689-1694.
[48]
Gorsse, S.; Hutchinson, C.; Gouné, M.; Banerjee, R. Additive manufacturing of metals: A brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys. Sci. Technol. Adv. Mater. 2017, 18, 584-610.
[49]
Ngo, T. D.; Kashani, A.; Imbalzano, G.; Nguyen, K. T. Q.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. B Eng. 2018, 143, 172-196.
[50]
Fu, Y. L.; Xu, G.; Chen, Z. W.; Liu, C. Y.; Wang, D. M.; Lao, C. S. Multiple metals doped polymer-derived SiOC ceramics for 3D printing. Ceram. Int. 2018, 44, 11030-11038.
[51]
Chen, W.; Watts, S.; Jackson, J. A.; Smith, W. L.; Tortorelli, D. A.; Spadaccini, C. M. Stiff isotropic lattices beyond the Maxwell criterion. Sci. Adv. 2019, 5, eaaw1937.
[52]
Bartolo, P. J.; Gaspar, J. Metal filled resin for stereolithography metal part. CIRP Ann 2008, 57, 235-238.
[53]
Zheng, X. Y.; Lee, H.; Weisgraber, T. H.; Shusteff, M.; DeOtte, J.; Duoss, E. B.; Kuntz, J. D.; Biener, M. M.; Ge, Q.; Jackson, J. A. et al. Ultralight, ultrastiff mechanical metamaterials. Science 2014, 344, 1373-1377.
[54]
Li, Y.; Wang, C. T.; Yuan, H. W.; Liu, N.; Zhao, H. L.; Li, X. L. A 5G MIMO antenna manufactured by 3-D printing method. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 657-660.
[55]
Yang, Y.; Chen, Z. Y.; Song, X.; Zhu, B. P.; Hsiai, T.; Wu, P. I.; Xiong, R.; Shi, J.; Chen, Y.; Zhou, Q. F. et al. Three dimensional printing of high dielectric capacitor using projection based stereolithography method. Nano Energy 2016, 22, 414-421.
[56]
Duda, T.; Raghavan, L. V. 3D metal printing technology. IFAC-PapersOnLine 2016, 49, 103-110.
[57]
Uriondo, A.; Esperon-Miguez, M.; Perinpanayagam, S. The present and future of additive manufacturing in the aerospace sector: A review of important aspects. Proc. Inst. Mech. Eng. G J. Aerosp. Eng. 2015, 229, 2132-2147.
[58]
Frazier, W. E. Metal additive manufacturing: A review. J. Mater. Eng. Perform. 2014, 23, 1917-1928.
[59]
King, W. E.; Anderson, A. T.; Ferencz, R. M.; Hodge, N. E.; Kamath, C.; Khairallah, S. A.; Rubenchik, A. M. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Appl. Phys. Rev. 2015, 2, 041304.
[60]
Shirazi, S. F. S.; Gharehkhani, S.; Mehrali, M.; Yarmand, H.; Metselaar, H. S. C.; Adib Kadri, N.; Osman, N. A. A. A review on powder- based additive manufacturing for tissue engineering: Selective laser sintering and inkjet 3D printing. Sci. Technol. Adv. Mater. 2015, 16, 033502.
[61]
Wang, Y. M.; Voisin, T.; McKeown, J. T.; Ye, J. C.; Calta, N. P.; Li, Z.; Zeng, Z.; Zhang, Y.; Chen, W.; Roehling, T. T. et al. Additively manufactured hierarchical stainless steels with high strength and ductility. Nat. Mater. 2018, 17, 63-71.
[62]
Ren, J.; Mahajan, C.; Liu, L.; Follette, D.; Chen, W.; Mukherjee, S. Corrosion behavior of selectively laser melted CoCrFeMnNi high entropy alloy. Metals 2019, 9, 1029.
[63]
Lieberwirth, C.; Harder, A.; Seitz, H. Extrusion based additive manufacturing of metal parts. J. Mech. Eng. Autom. 2017, 7, 79-83.
[64]
Ren, X. Y.; Shao, H. P.; Lin, T.; Zheng, H. 3D gel-printing—An additive manufacturing method for producing complex shape parts. Mater. Des. 2016, 101, 80-87.
[65]
Xu, C.; Quinn, B.; Lebel, L. L.; Therriault, D.; L’Espérance, G. Multi- material direct ink writing (DIW) for complex 3D metallic structures with removable supports. ACS Appl. Mater. Interfaces 2019, 11, 8499-8506.
[66]
Gysling, H. J. Nanoinks in inkjet metallization—Evolution of simple additive-type metal patterning. Curr. Opin. Colloid Interface Sci. 2014, 19, 155-162.
[67]
Agarwala, S.; Goh, G. L.; Yeong, W. Y. Optimizing aerosol jet printing process of silver ink for printed electronics. IOP Conf. Ser. Mater. Sci. Eng. 2017, 191, 012027.
[68]
Zhu, C.; Qi, Z.; Beck, V. A.; Luneau, M.; Lattimer, J.; Chen, W.; Worsley, M. A.; Ye, J. C.; Duoss, E. B.; Spadaccini, C. M. et al. Toward digitally controlled catalyst architectures: Hierarchical nanoporous gold via 3D printing. Sci. Adv. 2018, 4, eaas9459.
[69]
Jakus, A. E.; Taylor, S. L.; Geisendorfer, N. R.; Dunand, D. C.; Shah, R. N. Metallic architectures from 3D-printed powder-based liquid inks. Adv. Funct. Mater. 2015, 25, 6985-6995.
[70]
Skylar-Scott, M. A.; Gunasekaran, S.; Lewis, J. A. Laser-assisted direct ink writing of planar and 3D metal architectures. Proc Natl Acad Sci USA 2016, 113, 6137-6142.
[71]
Jordan, R. S.; Wang, Y. 3D printing of conjugated polymers. J. Polym. Sci. Part B: Polym. Phys. 2019, 57, 1592-1605.
[72]
An, B. W.; Kim, K.; Lee, H.; Kim, S. Y.; Shim, Y.; Lee, D. Y.; Song, J. Y.; Park, J. U. High-resolution printing of 3D structures using an electrohydrodynamic inkjet with multiple functional inks. Adv. Mater. 2015, 27, 4322-4328.
[73]
Chou, D. T.; Wells, D.; Hong, D.; Lee, B.; Kuhn, H.; Kumta, P. N. Novel processing of iron-manganese alloy-based biomaterials by inkjet 3-D printing. Acta Biomater. 2013, 9, 8593-8603.
[74]
Maleksaeedi, S.; Wang, J. K.; El-Hajje, A.; Harb, L.; Guneta, V.; He, Z. M.; Wiria, F. E.; Choong, C.; Ruys, A. J. Toward 3D printed bioactive titanium scaffolds with bimodal pore size distribution for bone ingrowth. Procedia CIRP 2013, 5, 158-163.
[75]
Rahman, T.; Renaud, L.; Heo, D.; Renn, M.; Panat, R. Aerosol based direct-write micro-additive fabrication method for sub-mm 3D metal-dielectric structures. J. Micromech. Microeng. 2015, 25, 107002.
[76]
Foresti, D.; Kroll, K. T.; Amissah, R.; Sillani, F.; Homan, K. A.; Poulikakos, D.; Lewis, J. A. Acoustophoretic printing. Sci. Adv. 2018, 4, eaat1659.
[77]
Hascoët, J. Y.; Parrot, J.; Mognol, P.; Willmann, E. Induction heating in a wire additive manufacturing approach. Weld World 2018, 62, 249-257.
[78]
Sukhotskiy, V.; Karampelas, I. H.; Garg, G.; Verma, A.; Tong, M.; Vader, S.; Vader, Z.; Furlani, E. P. Magnetohydrodynamic drop-on- demand liquid metal 3D printing. In Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium, An Additive Manufacturing Conference, Austin, USA, 2017, pp 1806-1811.
[79]
Wittstock, A.; Bäumer, M. Catalysis by unsupported skeletal gold catalysts. Acc. Chem. Res. 2014, 47, 731-739.
[80]
Erlebacher, J.; Snyder, J. Dealloyed nanoporous metals for PEM fuel cell catalysis. ECS Trans. 2009, 25, 603-612.
[81]
Hoang, T. T. H.; Ma, S. C.; Gold, J. I.; Kenis, P. J. A.; Gewirth, A. A. Nanoporous copper films by additive-controlled electrodeposition: CO2 reduction catalysis. ACS Catal. 2017, 7, 3313-3321.
[82]
Yao, R. Q.; Lang, X. Y.; Jiang, Q. Recent advances of nanoporous metal-based catalyst: Synthesis, application and perspectives. J. Iron Steel Res. Int. 2019, 26, 779-795.
[83]
Ding, Y.; Chen, M. W. Nanoporous metals for catalytic and optical applications. MRS Bull. 2009, 34, 569-576.
[84]
Erlebacher, J.; Sieradzki, K. Pattern formation during dealloying. Scr. Mater. 2003, 49, 991-996.
[85]
Artymowicz, D. M.; Erlebacher, J.; Newman, R. C. Relationship between the parting limit for de-alloying and a particular geometric high-density site percolation threshold. Philos. Mag. 2009, 89, 1663-1693.
[86]
Hayes, J. R.; Hodge, A. M.; Biener, J.; Hamza, A. V.; Sieradzki, K. Monolithic nanoporous copper by dealloying Mn-Cu. J. Mater. Res. 2006, 21, 2611-2616.
[87]
Wang, N.; Pan, Y.; Wu, S. K. Relationship between dealloying conditions and coarsening behaviors of nanoporous copper fabricated by dealloying Cu-Ce metallic glasses. J. Mater. Sci. Technol. 2018, 34, 1162-1171.
[88]
Tompsett, G. A.; Conner, W. C.; Yngvesson, K. S. Microwave synthesis of nanoporous materials. ChemPhysChem, 2006, 7, 296-319.
[89]
Zhou, M.; Gao, Y. A.; Wang, B. X.; Rozynek, Z.; Fossum, J. O. Carbonate-assisted hydrothermal synthesis of nanoporous CuO microstructures and their application in catalysis. Eur. J. Inorg. Chem. 2010, 2010, 729-734.
[90]
Dabbawala, A. A.; Tzitzios, V.; Sunny, K.; Polychronopoulou, K.; Basina, G.; Ismail, I.; Pillai, V.; Tharalekshmy, A.; Stephen, S.; Alhassan, S. M. Synthesis of nanoporous zeolite-Y and zeolite-Y/GO nanocomposite using polyelectrolyte functionalized graphene oxide. Surf. Coat. Technol. 2018, 350, 369-375.
[91]
Zhao, J. Z.; Tao, Z. L.; Liang, J.; Chen, J. Facile synthesis of nanoporous γ-MnO2 structures and their application in rechargeable Li-ion batteries. Cryst. Growth Des. 2008, 8, 2799-2805.
[92]
Yang, L. T.; Qiu, L. G.; Hu, S. M.; Jiang, X.; Xie, A. J.; Shen, Y. H. Rapid hydrothermal synthesis of MIL-101(Cr) metal-organic framework nanocrystals using expanded graphite as a structure- directing template. Inorg. Chem. Commun. 2013, 35, 265-267.
[93]
Zhang, Y. Z.; Sun, X. H.; Nomura, N.; Fujita, T. Hierarchical nanoporous copper architectures via 3D printing technique for highly efficient catalysts. Small 2019, 15, 1805432.
[94]
Yang, C.; Zhang, C.; Liu, L. Excellent degradation performance of 3D hierarchical nanoporous structures of copper towards organic pollutants. J. Mater. Chem. A 2018, 6, 20992-21002.
[95]
Tian, C. H.; Zhang, S. F.; Wang, H. B.; Chen, C.; Han, Z. D.; Chen, M. L.; Zhu, Y. Y.; Cui, R. J.; Zhang, G. H. Three-dimensional nanoporous copper and reduced graphene oxide composites as enhanced sensing platform for electrochemical detection of carbendazim. J. Electroanal. Chem. 2019, 847, 113243.
[96]
Sattayasamitsathit, S.; Thavarungkul, P.; Thammakhet, C.; Limbut, W.; Numnuam, A.; Buranachai, C.; Kanatharana, P. Fabrication of nanoporous copper film for electrochemical detection of glucose. Electroanalysis 2009, 21, 2371-2377.
[97]
Hakamada, M.; Mabuchi, M. Preparation of nanoporous Ni and Ni-Cu by dealloying of rolled Ni-Mn and Ni-Cu-Mn alloys. J. Alloys Compd. 2009, 485, 583-587.
[98]
Lim, G. J. H.; Wu, Y.; Shah, B. B.; Koh, J. J.; Liu, C. K.; Zhao, D.; Cheetham, A. K.; Wang, J.; Ding, J. 3D-printing of pure metal- organic framework monoliths. ACS Mater. Lett. 2019, 1, 147-153.
[99]
Hughes, J. P.; dos Santos, P. L.; Down, M. P.; Foster, C. W.; Bonacin, J. A.; Keefe, E. M.; Rowley-Neale, S. J.; Banks, C. E. Single step additive manufacturing (3D printing) of electrocatalytic anodes and cathodes for efficient water splitting. Sustainable Energy Fuels 2020, 4, 302-311.
[100]
Lawson, S.; Al-Naddaf, Q.; Krishnamurthy, A.; Amour, M. S.; Griffin, C.; Rownaghi, A. A.; Knox, J. C.; Rezaei, F. UTSA-16 growth within 3D-printed Co-kaolin monoliths with high selectivity for CO2/CH4, CO2/N2, and CO2/H2 separation. ACS Appl. Mater. Interfaces 2018, 10, 19076-19086.
[101]
Wei, Q. H.; Li, H. J.; Liu, G. G.; He, Y. L.; Wang, Y.; Tan, Y. E.; Wang, D.; Peng, X. B.; Yang, G. H.; Tsubaki, N. Metal 3D printing technology for functional integration of catalytic system. Nat. Commun. 2020, 11, 4098.
[102]
Li, J.; Leu, M. C.; Panat, R.; Park, J. A hybrid three-dimensionally structured electrode for lithium-ion batteries via 3D printing. Mater. Des. 2017, 119, 417-424.
[103]
Chen, Y. T.; Hung, F. Y.; Lui, T. S.; Hong, J. Z. Microstructures and charge-discharging properties of selective laser sintering applied to the anode of magnesium matrix. Mater. Trans. 2017, 58, 525-529.
[104]
Cloots, M.; Uggowitzer, P. J.; Wegener, K. Investigations on the microstructure and crack formation of IN738LC samples processed by selective laser melting using Gaussian and Doughnut profiles. Mater. Des. 2016, 89, 770-784.
[105]
Hu, Y. B.; Ning, F. D.; Cong, W. L.; Li, Y. C.; Wang, X. L.; Wang, H. Ultrasonic vibration-assisted laser engineering net shaping of ZrO2-Al2O3 bulk parts: Effects on crack suppression, microstructure, and mechanical properties. Ceram. Int. 2018, 44, 2752-2760.
[106]
Braun, T. M.; Schwartz, D. T. The emerging role of electrodeposition in additive manufacturing. Electrochem. Soc. Interface 2016, 25, 69-73.
[107]
Zhu, C.; Pascall, A. J.; Dudukovic, N.; Worsley, M. A.; Kuntz, J. D.; Duoss, E. B.; Spadaccini, C. M. Colloidal materials for 3D printing. Annu. Rev. Chem. Biomol. Eng. 2019, 10, 17-42.
[108]
Foo, C. Y.; Lim, H. N.; Mahdi, M. A.; Wahid, M. H.; Huang, N. M. Three-dimensional printed electrode and its novel applications in electronic devices. Sci. Rep. 2018, 8, 7399.
[109]
Jafari, D.; Wits, W. W. The utilization of selective laser melting technology on heat transfer devices for thermal energy conversion applications: A review. Renew. Sustain. Energy Rev. 2018, 91, 420-442.
[110]
Ambrosi, A.; Pumera, M. Self-contained polymer/metal 3D printed electrochemical platform for tailored water splitting. Adv. Funct. Mater. 2018, 28, 1700655.
[111]
Benedetti, T. M.; Nattestad, A.; Taylor, A. C.; Beirne, S.; Wallace, G. G. 3D printed electrodes for improved gas reactant transport for electrochemical reactions. 3D Print. Addit. Manuf. 2018, 5, 215-219.
[112]
Danaci, S.; Protasova, L.; Middelkoop, V.; Ray, N.; Jouve, M.; Bengaouer, A.; Marty, P. Scaling up of 3D printed and Ni/Al2O3 coated reactors for CO2 methanation. React. Chem. Eng. 2019, 4, 1318-1330.
[113]
Liu, X. H.; Jervis, R.; Maher, R. C.; Villar-Garcia, I. J.; Naylor- Marlow, M.; Shearing, P. R.; Ouyang, M. Z.; Cohen, L.; Brandon, N. P.; Wu, B. 3D-printed structural pseudocapacitors. Adv. Mater. Technol. 2016, 1, 1600167.
[114]
Ho, C.; Murata, K.; Steingart, D. A.; Evans, J. W.; Wright, P. K. A super ink jet printed zinc-silver 3D microbattery. J. Micromech. Microeng. 2009, 19, 094013.
[115]
Weber, J.; Wain, A. J.; Piili, H.; Matilainen, V. P.; Vuorema, A.; Attard, G. A.; Marken, F. Residual porosity of 3D-LAM-printed stainless-steel electrodes allows galvanic exchange platinisation. ChemElectroChem 2016, 3, 1020-1025.
[116]
Lölsberg, J.; Starck, O.; Stiefel, S.; Hereijgers, J.; Breugelmans, T.; Wessling, M. 3D-printed electrodes with improved mass transport properties. Chemelectrochem 2017, 4, 3309-3313.
[117]
Arie, M. A.; Shooshtari, A. H.; Ohadi, M. M. Experimental characterization of an additively manufactured heat exchanger for dry cooling of power plants. Appl. Therm. Eng. 2018, 129, 187-198.
[118]
Landsberg, P. T.; Tonge, G. Thermodynamic energy conversion efficiencies. J. Appl. Phys. 1980, 51, R1-R20.
[119]
Froment, G. F.; Bischoff, K. B. Chemical Reactor Analysis and Design, 2nd ed.; Wiley: New York, 1990.
[120]
Salmi, T.; Mikkola, J. P.; Warna, J. P. Chemical Reaction Engineering and Reactor Technology, 2nd ed.; CRC Press: Boca Raton, 2018.
[121]
Westermann, T.; Melin, T. Flow-through catalytic membrane reactors—Principles and applications. Chem. Eng. Process. Process Intensif. 2009, 48, 17-28.
[122]
Lopes, M. G. M.; Santana, H. S.; Andolphato, V. F.; Russo, F. N.; Silva Jr, J. L.; Taranto, O. P. 3D printed micro-chemical plant for biodiesel synthesis in millireactors. Energy Convers. Manag. 2019, 184, 475-487.
[123]
Costa Junior, J. M.; Naveira-Cotta, C. P.; de Moraes, D. B.; Inforçatti Neto, P.; Maia, I. A.; da Silva, J. V. L.; Alves, H.; Tiwari, M. K.; de Souza, C. G. Innovative metallic microfluidic device for intensified biodiesel production. Ind. Eng. Chem. Res. 2020, 59, 389-398.
[124]
Stuecker, J. N.; Miller, J. E.; Ferrizz, R. E.; Mudd, J. E.; Cesarano, J. Advanced support structures for enhanced catalytic activity. Ind. Eng. Chem. Res. 2004, 43, 51-55.
[125]
Essa, K.; Hassanin, H.; Attallah, M. M.; Adkins, N. J.; Musker, A. J.; Roberts, G. T.; Tenev, N.; Smith, M. Development and testing of an additively manufactured monolithic catalyst bed for HTP thruster applications. Appl. Catal. A Gen. 2017, 542, 125-135.
[126]
Lucentini, I.; Serrano, I.; Soler, L.; Divins, N. J.; Llorca, J. Ammonia decomposition over 3D-printed CeO2 structures loaded with Ni. Appl. Catal. A Gen. 2020, 591, 117382.
[127]
Danaci, S.; Protasova, L.; Snijkers, F.; Bouwen, W.; Bengaouer, A.; Marty, P. Innovative 3D-manufacture of structured copper supports post-coated with catalytic material for CO2 methanation. Chem. Eng. Process. Process Intensif. 2018, 127, 168-177.
[128]
Papaharalabos, G.; Greenman, J.; Melhuish, C.; Ieropoulos, I. A novel small scale microbial fuel cell design for increased electricity generation and waste water treatment. Int. J. Hydrogen Energy 2015, 40, 4263-4268.
[129]
Bian, B.; Wang, C. G.; Hu, M. J.; Yang, Z. L.; Cai, X. B.; Shi, D.; Yang, J. Application of 3D printed porous copper anode in microbial fuel cells. Front. Energy Res. 2018, 6, 50.
[130]
Calignano, F.; Tommasi, T.; Manfredi, D.; Chiolerio, A. Additive manufacturing of a microbial fuel cell—A detailed study. Sci. Rep. 2015, 5, 17373.
[131]
Dawson, R. J.; Patel, A. J.; Rennie, A. E. W.; White, S. An investigation into the use of additive manufacture for the production of metallic bipolar plates for polymer electrolyte fuel cell stacks. J. Appl. Electrochem. 2015, 45, 637-645.
[132]
Gould, B. D.; Rodgers, J. A.; Schuette, M.; Bethune, K.; Louis, S.; Rocheleau, R.; Swider-Lyons, K. Performance and limitations of 3D-printed bipolar plates in fuel cells. ECS J. Solid State Sci. Technol. 2015, 4, P3063-P3068.
[133]
Hernández-Rodríguez, E. M.; Acosta-Mora, P.; Méndez-Ramos, J.; Borges Chinea, E.; Esparza Ferrera, P.; Canales-Vázquez, J.; Núñez, P.; Ruiz-Morales, J. C. Prospective use of the 3D printing technology for the microstructural engineering of solid oxide fuel cell components. Bol. Soc. Esp. Ceram. Vidr. 2014, 53, 213-216.
[134]
Lomberg, M.; Boldrin, P.; Tariq, F.; Offer, G.; Wu, B.; Brandon, N. P. Additive manufacturing for solid oxide cell electrode fabrication. ECS Trans. 2015, 68, 2119-2127.
[135]
Huang, W. H.; Finnerty, C.; Sharp, R.; Wang, K.; Balili, B. High-performance 3D printed microtubular solid oxide fuel cells. Adv. Mater. Technol. 2017, 2, 1600258.
[136]
Wei, L. Y.; Zhang, J. J.; Yu, F. Y.; Zhang, W. M.; Meng, X. X.; Yang, N. T.; Liu, S. M. A novel fabrication of yttria-stabilized-zirconia dense electrolyte for solid oxide fuel cells by 3D printing technique. Int. J. Hydrogen Energy 2019, 44, 6182-6191.
[137]
Ambrosi, A.; Pumera, M. Multimaterial 3D-printed water electrolyzer with earth-abundant electrodeposited catalysts. ACS Sustainable Chem. Eng. 2018, 6, 16968-16975.
[138]
Su, X. R.; Li, X. W.; Ong, C. Y. A.; Herng, T. S.; Wang, Y. Q.; Peng, E.; Ding, J. Metallization of 3D printed polymers and their application as a fully functional water-splitting system. Adv. Sci. 2019, 6, 1801670.
[139]
Lee, C. Y.; Taylor, A. C.; Beirne, S.; Wallace, G. G. A 3D-printed electrochemical water splitting cell. Adv. Mater. Technol. 2019, 4, 1900433.
[140]
Bui, J. C.; Davis, J. T.; Esposito, D. V. 3D-printed electrodes for membraneless water electrolysis. Sustainable Energy Fuels 2020, 4, 213-225.
[141]
Chang, S.; Huang, X. L.; Aaron Ong, C. Y.; Zhao, L. P.; Li, L. Q.; Wang, X. S.; Ding, J. High loading accessible active sites via designable 3D-printed metal architecture towards promoting electrocatalytic performance. J. Mater. Chem. A 2019, 7, 18338-18347.
[142]
James, S.; Contractor, R. Study on nature-inspired fractal design-based flexible counter electrodes for dye-sensitized solar cells fabricated using additive manufacturing. Sci. Rep. 2018, 8, 17032.
[143]
van Dijk, L.; Marcus, E. A. P.; Oostra, A. J.; Schropp, R. E. I.; Di Vece, M. 3D-printed concentrator arrays for external light trapping on thin film solar cells. Solar Energy Mater. Solar Cells 2015, 139, 19-26.
[144]
van Dijk, L.; Paetzold, U. W.; Blab, G. A.; Schropp, R. E. I.; Di Vece, M. 3D-printed external light trap for solar cells. Prog. Photovolt. Res. Appl. 2016, 24, 623-633.
[145]
Castedo, A.; Mendoza, E.; Angurell, I.; Llorca, J. Silicone microreactors for the photocatalytic generation of hydrogen. Catal. Today 2016, 273, 106-111.
[146]
Castedo, A.; Uriz, I.; Soler, L.; Gandía, L. M.; Llorca, J. Kinetic analysis and CFD simulations of the photocatalytic production of hydrogen in silicone microreactors from water-ethanol mixtures. Appl. Catal. B Environ. 2017, 203, 210-217.
[147]
Kim, F.; Kwon, B.; Eom, Y.; Lee, J. E.; Park, S.; Jo, S.; Park, S. H.; Kim, B. S.; Im, H. J.; Lee, M. H. et al. 3D printing of shape- conformable thermoelectric materials using all-inorganic Bi2Te3-based inks. Nat. Energy 2018, 3, 301-309.
[148]
He, M. H.; Zhao, Y.; Wang, B.; Xi, Q.; Zhou, J.; Liang, Z. Q. 3D printing fabrication of amorphous thermoelectric materials with ultralow thermal conductivity. Small 2015, 11, 5889-5894.
[149]
Qiu, J. H.; Yan, Y. G.; Luo, T. T.; Tang, K. C.; Yao, L.; Zhang, J.; Zhang, M.; Su, X. L.; Tan, G. J.; Xie, H. Y. et al. 3D printing of highly textured bulk thermoelectric materials: Mechanically robust BiSbTe alloys with superior performance. Energy Environ. Sci. 2019, 12, 3106-3117.
[150]
Su, N.; Zhu, P. F.; Pan, Y. H.; Li, F.; Li, B. 3D-printing of shape-controllable thermoelectric devices with enhanced output performance. Energy 2020, 195, 116892.
[151]
Shi, J. X.; Chen, H. L.; Jia, S. H.; Wang, W. J. 3D printing fabrication of porous bismuth antimony telluride and study of the thermoelectric properties. J. Manuf. Process. 2019, 37, 370-375.
[152]
Burton, M. R.; Mehraban, S.; Beynon, D.; McGettrick, J.; Watson, T.; Lavery, N. P.; Carnie, M. J. 3D printed SnSe thermoelectric generators with high figure of merit. Adv. Energy Mater. 2019, 9, 1900201.
[153]
Peng, J.; Witting, I.; Geisendorfer, N.; Wang, M.; Chang, M.; Jakus, A.; Kenel, C.; Yan, X.; Shah, R.; Snyder, G. J. et al. 3D extruded composite thermoelectric threads for flexible energy harvesting. Nat. Commun. 2019, 10, 5590.
[154]
Saeidi-Javash, M.; Kuang, W. Z.; Dun, C. C.; Zhang, Y. L. 3D conformal printing and photonic sintering of high-performance flexible thermoelectric films using 2D nanoplates. Adv. Funct. Mater. 2019, 29, 1901930.
[155]
Dun, C. C.; Kuang, W. Z.; Kempf, N.; Saeidi-Javash, M.; Singh, D. J.; Zhang, Y. L. 3D printing of solution-processable 2D nanoplates and 1D nanorods for flexible thermoelectrics with ultrahigh power factor at low-medium temperatures. Adv. Sci. 2019, 6, 1901788.
[156]
Li, Y. Y.; Li, L. T.; Li, B. Direct ink writing of three-dimensional (K, Na)NbO3-based piezoelectric ceramics. Materials 2015, 8, 1729-1737.
[157]
Gao, M.; Li, L. H.; Li, W. B.; Zhou, H. H.; Song, Y. L. Direct writing of patterned, lead-free nanowire aligned flexible piezoelectric device. Adv. Sci. 2016, 3, 1600120.
[158]
Kim, K.; Zhu, W.; Qu, X.; Aaronson, C.; McCall, W. R.; Chen, S. C.; Sirbuly, D. J. 3D optical printing of piezoelectric nanoparticle- polymer composite materials. ACS Nano 2014, 8, 9799-9806.
[159]
Chen, Z. Y.; Qian, X. J.; Song, X.; Jiang, Q. G.; Huang, R. J.; Yang, Y.; Li, R. Z.; Shung, K.; Chen, Y.; Zhou, Q. F. Three-dimensional printed piezoelectric array for improving acoustic field and spatial resolution in medical ultrasonic imaging. Micromachines 2019, 10, 170.
[160]
Cui, H. C.; Hensleigh, R.; Yao, D. S.; Maurya, D.; Kumar, P.; Kang, M. G.; Priya, S.; Zheng, X. Y. Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response. Nat. Mater. 2019, 18, 234-241.
[161]
Shahzad, U. The need for renewable energy sources. Inf. Technol. Elect. Eng. 2015, 4, 16-19.
[162]
Wang, Y. G.; Song, Y. F.; Xia, Y. Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 2016, 45, 5925-5950.
[163]
Simon, P.; Gogotsi, Y.; Dunn, B. Where do batteries end and supercapacitors begin? Science 2014, 343, 1210-1211.
[164]
Kim, B. K.; Sy, S.; Yu, A. P.; Zhang, J. J. Electrochemical supercapacitors for energy storage and conversion. In Handbook of Clean Energy Systems; Boehm, R. F.; Yang, H. X.; Yan, J. Y., Eds.; John Wiley & Sons, Inc.: Chichester, 2015; pp 1-25.
[165]
Jiang, H.; Lee, P. S.; Li, C. Z. 3D carbon based nanostructures for advanced supercapacitors. Energy Environ. Sci. 2013, 6, 41-53.
[166]
Zhang, L. L.; Zhao, X. S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520-2531.
[167]
Chen, X. L.; Paul, R.; Dai, L. M. Carbon-based supercapacitors for efficient energy storage. Nat. Sci. Rev. 2017, 4, 453-489.
[168]
Borenstein, A.; Hanna, O.; Attias, R.; Luski, S.; Brousse, T.; Aurbach, D. Carbon-based composite materials for supercapacitor electrodes: A review. J. Mater. Chem. A 2017, 5, 12653-12672.
[169]
Wang, J.; Dong, S. Y.; Ding, B.; Wang, Y.; Hao, X. D.; Dou, H.; Xia, Y. Y.; Zhang, X. G. Pseudocapacitive materials for electrochemical capacitors: From rational synthesis to capacitance optimization. Nat. Sci. Rev. 2017, 4, 71-90.
[170]
Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014, 7, 1597-1614.
[171]
Wang, G. P.; Zhang, L.; Zhang, J. J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797-828.
[172]
Brousse, T.; Bélanger, D.; Long, J. W. To be or not to be pseudocapacitive? J. Electrochem. Soc. 2015, 162, A5185-A5189.
[173]
Bose, S.; Kuila, T.; Mishra, A. K.; Rajasekar, R.; Kim, N. H.; Lee, J. H. Carbon-based nanostructured materials and their composites as supercapacitor electrodes. J. Mater. Chem. 2012, 22, 767-784.
[174]
Zhi, M. J.; Xiang, C. C.; Li, J. T.; Li, M.; Wu, N. Q. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: A review. Nanoscale 2013, 5, 72-88.
[175]
Jiang, H.; Ma, J.; Li, C. Z. Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes. Adv. Mater. 2012, 24, 4197-4202.
[176]
Dong, L. B.; Xu, C. J.; Li, Y.; Huang, Z. H.; Kang, F. Y.; Yang, Q. H.; Zhao, X. Flexible electrodes and supercapacitors for wearable energy storage: A review by category. J. Mater. Chem. A 2016, 4, 4659-4685.
[177]
Kaempgen, M.; Chan, C. K.; Ma, J.; Cui, Y.; Gruner, G. Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 2009, 9, 1872-1876.
[178]
Johns, P. A.; Roberts, M. R.; Wakizaka, Y.; Sanders, J. H.; Owen, J. R. How the electrolyte limits fast discharge in nanostructured batteries and supercapacitors. Electrochem. Commun. 2009, 11, 2089-2092.
[179]
Li, H.; Tao, Y.; Zheng, X. Y.; Luo, J. Y.; Kang, F. Y.; Cheng, H. M.; Yang, Q. H. Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage. Energy Environ. Sci. 2016, 9, 3135-3142.
[180]
Conway, B. E.; Pell, W. G. Power limitations of supercapacitor operation associated with resistance and capacitance distribution in porous electrode devices. J. Power Sources 2002, 105, 169-181.
[181]
Liu, T. Y.; Zhu, C.; Kou, T. Y.; Worsley, M. A.; Qian, F.; Condes, C.; Duoss, E. B.; Spadaccini, C. M.; Li, Y. Ion intercalation induced capacitance improvement for graphene-based supercapacitor electrodes. ChemNanoMat 2016, 2, 635-641.
[182]
Zhu, C.; Han, T. Y. J.; Duoss, E. B.; Golobic, A. M.; Kuntz, J. D.; Spadaccini, C. M.; Worsley, M. A. Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 2015, 6, 6962.
[183]
Zhu, C.; Liu, T. Y.; Qian, F.; Chen, W.; Chandrasekaran, S.; Yao, B.; Song, Y.; Duoss, E. B.; Kuntz, J. D.; Spadaccini, C. M. et al. 3D printed functional nanomaterials for electrochemical energy storage. Nano Today 2017, 15, 107-120.
[184]
Zhu, C.; Liu, T. Y.; Qian, F.; Han, T. Y. J.; Duoss, E. B.; Kuntz, J. D.; Spadaccini, C. M.; Worsley, M. A.; Li, Y. Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 2016, 16, 3448-3456.
[185]
Zhao, C.; Wang, C. Y.; Gorkin III, R.; Beirne, S.; Shu, K. W.; Wallace, G. G. Three dimensional (3D) printed electrodes for interdigitated supercapacitors. Electrochem. Commun. 2014, 41, 20-23.
[186]
Lu, X. F.; Zhao, T. K.; Ji, X. L.; Hu, J. T.; Li, T. H.; Lin, X.; Huang, W. D. 3D printing well organized porous iron-nickel/polyaniline nanocages multiscale supercapacitor. J. Alloys Compd. 2018, 760, 78-83.
[187]
Azhari, A.; Marzbanrad, E.; Yilman, D.; Toyserkani, E.; Pope, M. A. Binder-jet powder-bed additive manufacturing (3D printing) of thick graphene-based electrodes. Carbon 2017, 119, 257-266.
[188]
Shen, K.; Ding, J. W.; Yang, S. B. 3D printing quasi-solid-state asymmetric micro-supercapacitors with ultrahigh areal energy density. Adv. Energy Mater. 2018, 8, 1800408.
[189]
Yao, B.; Chandrasekaran, S.; Zhang, J.; Xiao, W.; Qian, F.; Zhu, C.; Duoss, E. B.; Spadaccini, C. M.; Worsley, M. A.; Li, Y. Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule 2019, 3, 459-470.
[190]
Yang, W. J.; Yang, J.; Byun, J. J.; Moissinac, F. P.; Xu, J. Q.; Haigh, S. J.; Domingos, M.; Bissett, M. A.; Dryfe, R. A. W.; Barg, S. 3D printing of freestanding MXene architectures for current-collector- free supercapacitors. Adv. Mater. 2019, 31, 1902725.
[191]
Orangi, J.; Hamade, F.; Davis, V. A.; Beidaghi, M. 3D printing of additive-free 2D Ti3C2Tx (MXene) ink for fabrication of micro-supercapacitors with ultra-high energy densities. ACS Nano 2020, 14, 640-650.
[192]
Fan, Z. D.; Wei, C. H.; Yu, L. H.; Xia, Z.; Cai, J. S.; Tian, Z. N.; Zou, G. F.; Dou, S. X.; Sun, J. Y. 3D printing of porous nitrogen-doped Ti3C2 MXene scaffolds for high-performance sodium-ion hybrid capacitors. ACS Nano 2020, 14, 867-876.
[193]
Park, S. H.; Kaur, M.; Yun, D.; Kim, W. S. Hierarchically designed electron paths in 3D printed energy storage devices. Langmuir 2018, 34, 10897-10904.
[194]
Song, J.; Chen, Y. J.; Cao, K.; Lu, Y.; Xin, J. H.; Tao, X. M. Fully controllable design and fabrication of three-dimensional lattice supercapacitors. ACS Appl. Mater. Interfaces 2018, 10, 39839-39850.
[195]
Xue, J. Z.; Gao, L. B.; Hu, X. K.; Cao, K.; Zhou, W. Z.; Wang, W. D.; Lu, Y. Stereolithographic 3D printing-based hierarchically cellular lattices for high-performance quasi-solid supercapacitor. Nano-Micro Lett. 2019, 11, 46.
[196]
Conway, B. E. Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage. J. Electrochem. Soc. 1991, 138, 1539-1548.
[197]
Kumar, Y.; Malackowski, D. Battery charger especially useful with sterilizable, rechargeable battery packs. U.S. Patent 6018227, January 25, 2000.
[198]
Goodenough, J. B.; Kim, Y. Challenges for rechargeable batteries. J. Power Sources 2011, 196, 6688-6694.
[199]
Fu, K.; Wang, Y. B.; Yan, C. Y.; Yao, Y. G.; Chen, Y. N.; Dai, J. Q.; Lacey, S.; Wang, Y. B.; Wan, J. Y.; Li, T. et al. Graphene oxide- based electrode inks for 3D-printed lithium-ion batteries. Adv. Mater. 2016, 28, 2587-2594.
[200]
Wang, Y. B.; Chen, C. J.; Xie, H.; Gao, T. T.; Yao, Y. G.; Pastel, G.; Han, X. G.; Li, Y. J.; Zhao, J. P.; Fu, K. et al. 3D-printed all-fiber Li-ion battery toward wearable energy storage. Adv. Funct. Mater. 2017, 27, 1703140.
[201]
Wei, T. S.; Ahn, B. Y.; Grotto, J.; Lewis, J. A. 3D printing of customized Li-ion batteries with thick electrodes. Adv. Mater. 2018, 30, 1703027.
[202]
Saleh, M. S.; Li, J.; Park, J.; Panat, R. 3D printed hierarchically-porous microlattice electrode materials for exceptionally high specific capacity and areal capacity lithium ion batteries. Addit. Manuf. 2018, 23, 70-78.
[203]
Ragones, H.; Menkin, S.; Kamir, Y.; Gladkikh, A.; Mukra, T.; Kosa, G.; Golodnitsky, D. Towards smart free form-factor 3D printable batteries. Sustain Energy Fuels 2018, 2, 1542-1549.
[204]
Reyes, C.; Somogyi, R.; Niu, S. B.; Cruz, M. A.; Yang, F. C.; Catenacci, M. J.; Rhodes, C. P.; Wiley, B. J. Three-dimensional printing of a complete lithium ion battery with fused filament fabrication. ACS Appl. Energy Mater. 2018, 1, 5268-5279.
[205]
Cheng, M.; Jiang, Y. Z.; Yao, W. T.; Yuan, Y. F.; Deivanayagam, R.; Foroozan, T.; Huang, Z. N.; Song, B. A.; Rojaee, R.; Shokuhfar, T. et al. Elevated-temperature 3D printing of hybrid solid-state electrolyte for Li-ion batteries. Adv. Mater. 2018, 30, 1800615.
[206]
Zekoll, S.; Marriner-Edwards, C.; Hekselman, A. K. O.; Kasemchainan, J.; Kuss, C.; Armstrong, D. E. J.; Cai, D. Y.; Wallace, R. J.; Richter, F. H.; Thijssen, J. H. J. et al. Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries. Energy Environ. Sci. 2018, 11, 185-201.
[207]
McOwen, D. W.; Xu, S. M.; Gong, Y. H.; Wen, Y.; Godbey, G. L.; Gritton, J. E.; Hamann, T. R.; Dai, J. Q.; Hitz, G. T.; Hu, L. B. et al. 3D-printing electrolytes for solid-state batteries. Adv. Mater. 2018, 30, 1707132.
[208]
Blake, A. J.; Kohlmeyer, R. R.; Hardin, J. O.; Carmona, E. A.; Maruyama, B.; Berrigan, J. D.; Huang, H.; Durstock, M. F. 3D printable ceramic-polymer electrolytes for flexible high-performance Li-ion batteries with enhanced thermal stability. Adv. Energy Mater. 2017, 7, 1602920.
[209]
Cao, D. X.; Xing, Y. J.; Tantratian, K.; Wang, X.; Ma, Y.; Mukhopadhyay, A.; Cheng, Z.; Zhang, Q.; Jiao, Y. C.; Chen, L. et al. 3D printed high-performance lithium metal microbatteries enabled by nanocellulose. Adv. Mater. 2019, 31, 1807313.
[210]
Lyu, Z. Y.; Lim, G. J. H.; Guo, R.; Pan, Z. H.; Zhang, X.; Zhang, H.; He, Z. M.; Adams, S.; Chen, W.; Ding, J. et al. 3D-printed electrodes for lithium metal batteries with high areal capacity and high-rate capability. Energy Storage Mater. 2020, 24, 336-342.
[211]
Lyu, Z.; Lim, G. J. H.; Guo, R.; Kou, Z. K.; Wang, T. T.; Guan, C.; Ding, J.; Chen, W.; Wang, J. 3D-printed MOF-derived hierarchically porous frameworks for practical high-energy density Li-O2 batteries. Adv. Funct. Mater. 2019, 29, 1806658.
[212]
Lin, X. T.; Wang, J. W.; Gao, X.; Wang, S.; Sun, Q.; Luo, J.; Zhao, C. T.; Zhao, Y. F.; Yang, X. F.; Wang, C. H. et al. 3D printing of free-standing “O2 breathable” air electrodes for high-capacity and long-life Na-O2 batteries. Chem. Mater. 2020, 32, 3018-3027.
[213]
Zhang, J.; Li, X. L.; Fan, S.; Huang, S. Z.; Yan, D.; Liu, L.; Valdivia y Alvarado, P.; Yang, H. Y. 3D-printed functional electrodes towards Zn-air batteries. Mater. Today Energy 2020, 16, 100407.
[214]
Cai, J. S.; Fan, Z. D.; Jin, J.; Shi, Z. X.; Dou, S. X.; Sun, J. Y.; Liu, Z. F. Expediting the electrochemical kinetics of 3D-printed sulfur cathodes for Li-S batteries with high rate capability and areal capacity. Nano Energy 2020, 75, 104970.
[215]
Shen, C. L.; Wang, T.; Xu, X.; Tian, X. C. 3D printed cellular cathodes with hierarchical pores and high mass loading for Li-SeS2 battery. Electrochim. Acta 2020, 349, 136331.
[216]
Brown, E.; Yan, P. L.; Tekik, H.; Elangovan, A.; Wang, J.; Lin, D.; Li, J. 3D printing of hybrid MoS2-graphene aerogels as highly porous electrode materials for sodium ion battery anodes. Mater. Des. 2019, 170, 107689.
[217]
Qiao, Y.; Liu, Y.; Chen, C. J.; Xie, H.; Yao, Y. G.; He, S. M.; Ping, W. W.; Liu, B. Y.; Hu, L. B. 3D-printed graphene oxide framework with thermal shock synthesized nanoparticles for Li-CO2 batteries. Adv. Funct. Mater. 2018, 28, 1805899.
[218]
Moon, H.; Miljkovic, N.; King, W. P. High power density thermal energy storage using additively manufactured heat exchangers and phase change material. Int. J. Heat Mass Transf. 2020, 153, 119591.
[219]
Kreider, M. C.; Sefa, M.; Fedchak, J. A.; Scherschligt, J.; Bible, M.; Natarajan, B.; Klimov, N. N.; Miller, A. E.; Ahmed, Z.; Hartings, M. R. Toward 3D printed hydrogen storage materials made with ABS-MOF composites. Polym. Adv. Technol. 2018, 29, 867-873.
Nano Research
Pages 2105-2132
Cite this article:
Mooraj S, Qi Z, Zhu C, et al. 3D printing of metal-based materials for renewable energy applications. Nano Research, 2021, 14(7): 2105-2132. https://doi.org/10.1007/s12274-020-3230-x
Topics:

1342

Views

33

Crossref

0

Web of Science

36

Scopus

0

CSCD

Altmetrics

Received: 11 September 2020
Revised: 02 November 2020
Accepted: 09 November 2020
Published: 05 July 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return