AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Tuning the dual-active sites of ZIF-67 derived porous nanomaterials for boosting oxygen catalysis and rechargeable Zn-air batteries

Zeyi Zhang1,§Yangyang Tan1,§Tang Zeng1Liyue Yu1Runzhe Chen1Niancai Cheng1( )Shichun Mu2( )Xueliang Sun3( )
College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON N6A 5B9, Canada

§ Zeyi Zhang and Yangyang Tan contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The rational control of the active site of metal-organic frameworks (MOFs) derived nanomaterials is essential to build efficient bifunctional oxygen reduction/evolution reaction (ORR/OER) catalysts. Accordingly, through designing and constructing a Co3O4-Co heterostructure embedded in Co, N co-doped carbon polyhedra derived (Co3O4-Co@NC) from the in-situ compositions of ZIF-67 and cobalt nanocrystals synthesized by the strategy of in-situ NaBH4 reduction, the dual-active site (Co3O4-Co and Co-Nx) is synchronously realized in a MOFs derived nanomaterials. The formed Co3O4-Co@NC shows excellent bifunctional electrocatalytic activity with ultra-small potential gap (ΔE = Ej=10 (OER) - E1/2 (ORR)) of 0.72 V, which surpasses the commercial Pt/C and RuO2 catalysts. The theory calculation results reveal that the excellent bifunctional electrocatalytic activity can be attributed to the charge redistribution of Co of Co-Nx induced by the synergistic effects of well-tuned active sites of Co3O4-Co nanoparticle and Co-Nx, thus optimizing the rate-determining step of the desorption of O2* intermediate in ORR and OH* intermediate in OER. The rechargeable Zn-air batteries with our bifunctional catalysts exhibit superior performance as well as high cycling stability. This simple-effective optimization strategy offers prospects for tuning the active site of MOF derived bifunctional catalyst in electrochemical energy devices.

Electronic Supplementary Material

Download File(s)
12274_2020_3234_MOESM1_ESM.pdf (3.9 MB)

References

[1]
Li, Y. G.; Dai, H. J. Recent advances in zinc-air batteries. Chem. Soc. Rev. 2014, 43, 5257-5275.
[2]
Lei, W.; Deng, Y. P.; Li, G. R.; Cano, Z. P.; Wang, X. L.; Luo, D.; Liu, Y. S.; Wang, D. L.; Chen, Z. W. Two-dimensional phosphorus- doped carbon nanosheets with tunable porosity for oxygen reactions in zinc-air batteries. ACS Catal. 2018, 8, 2464-2472.
[3]
Wu, M. J.; Zhang, G. X.; Wu, M. H.; Prakash, J.; Sun, S. H. Rational design of multifunctional air electrodes for rechargeable Zn-air batteries: Recent progress and future perspectives. Energy Storage Mater. 2019, 21, 253-286.
[4]
Li, M.; Bi, X. X.; Wang, R. Y.; Li, Y. B.; Jiang, G. P.; Li, L.; Zhong, C.; Chen, Z. W.; Lu, J. Relating catalysis between fuel cell and metal-air batteries. Matter 2020, 2, 32-49.
[5]
Wang, Y. J.; Fang, B. Z.; Zhang, D.; Li, A. J.; Wilkinson, D. P.; Ignaszak, A.; Zhang, L.; Zhang, J. J. A review of carbon-composited materials as air-electrode bifunctional electrocatalysts for metal-air batteries. Electrochem. Energy Rev. 2018, 1, 1-34.
[6]
Lai, C. L.; Gong, M. X.; Zhou, Y. C.; Fang, J. Y.; Huang, L.; Deng, Z. P.; Liu, X. P.; Zhao, T. H.; Lin, R. Q.; Wang, K. L. et al. Sulphur modulated Ni3FeN supported on N/S co-doped graphene boosts rechargeable/flexible Zn-air battery performance. Appl. Catal. B Environ. 2020, 274, 119086.
[7]
Li, Y. G.; Zhou, W.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Wei, F.; Idrobo, J. C.; Pennycook, S. J.; Dai, H. J. An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nat. Nanotechnol. 2012, 7, 394-400.
[8]
Guan, C.; Sumboja, A.; Wu, H. J.; Ren, W. N.; Liu, X. M.; Zhang, H.; Liu, Z. L.; Cheng, C. W.; Pennycook, S. J.; Wang, J. Hollow Co3O4 nanosphere embedded in carbon arrays for stable and flexible solid-state zinc-air batteries. Adv. Mater. 2017, 29, 1704117.
[9]
Amiinu, I. S.; Liu, X. B.; Pu, Z. H.; Li, W. Q.; Li, Q. D.; Zhang, J.; Tang, H. L.; Zhang, H. N.; Mu, S. C. From 3D ZIF nanocrystals to Co-Nx/C nanorod array electrocatalysts for ORR, OER, and Zn-air batteries. Adv. Funct. Mater. 2018, 28, 1704638.
[10]
Li, Y. H.; Li, Q. Y.; Wang, H. Q.; Zhang, L.; Wilkinson, D. P.; Zhang, J. J. Recent progresses in oxygen reduction reaction electrocatalysts for electrochemical energy applications. Electrochem. Energy Rev. 2019, 2, 518-538.
[11]
Wu, G.; Zelenay, P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc. Chem. Res. 2013, 46, 1878-1889.
[12]
Feng, T.; Zhao, X. R.; Dong, C. K.; Liu, H.; Du, X. W.; Yang, J. Boosting reversible oxygen electrocatalysis with enhanced interfacial pyridinic-N-Co bonding in cobalt oxide/mesoporous N-doped graphene hybrids. Nanoscale 2018, 10, 22140-22147.
[13]
Wei, Q. L.; Zhang, G. X.; Yang, X. H.; Fu, Y. Q.; Yang, G. H.; Chen, N.; Chen, W. F.; Sun, S. H. Litchi-like porous Fe/N/C spheres with atomically dispersed FeNx promoted by sulfur as highly efficient oxygen electrocatalysts for Zn-air batteries. J. Mater. Chem. A 2018, 6, 4605-4610.
[14]
Lai, C. L.; Wang, J.; Lei, W.; Xuan, C. J.; Xiao, W. P.; Zhao, T. H.; Huang, T.; Chen, L. X.; Zhu, Y.; Wang, D. L. Restricting growth of Ni3Fe nanoparticles on heteroatom-doped carbon nanotube/graphene nanosheets as air-electrode electrocatalyst for Zn-air battery. ACS Appl. Mater. Interfaces 2018, 10, 38093-38100.
[15]
She, Y. Y.; Liu, J.; Wang, H. K.; Li, L.; Zhou, J. S.; Leung, M. K. H. Bubble-like Fe-encapsulated N,S-codoped carbon nanofibers as efficient bifunctional oxygen electrocatalysts for robust Zn-air batteries. Nano Res. 2020, 13, 2175-2182.
[16]
Tan, Y. Y.; Zhang, Z. Y.; Lei, Z.; Wu, W.; Zhu, W. B.; Cheng, N. C.; Mu, S. C. Thiourea-zeolitic imidazolate Framework-67 assembly derived Co-CoO nanoparticles encapsulated in N, S codoped open carbon shell as bifunctional oxygen electrocatalyst for rechargeable flexible solid Zn-air batteries. J. Power Sources 2020, 473, 228570.
[17]
Zhu, B. J.; Liang, Z. B.; Xia, D. G.; Zou, R. Q. Metal-organic frameworks and their derivatives for metal-air batteries. Energy Storage Mater. 2019, 23, 757-771.
[18]
Yang, L.; Zeng, X. F.; Wang, W. C.; Cao, D. P. Recent progress in MOF-derived, heteroatom-doped porous carbons as highly efficient electrocatalysts for oxygen reduction reaction in fuel cells. Adv. Funct. Mater. 2018, 28, 1704537.
[19]
Wang, J.; Wang, Y. L.; Hu, H. B.; Yang, Q. P.; Cai, J. J. From metal- organic frameworks to porous carbon materials: Recent progress and prospects from energy and environmental perspectives. Nanoscale 2020, 12, 4238-4268.
[20]
Wu, X.; Meng, G.; Liu, W. X.; Li, T.; Yang, Q.; Sun, X. M.; Liu, J. F. Metal-organic framework-derived, Zn-doped porous carbon polyhedra with enhanced activity as bifunctional catalysts for rechargeable zinc-air batteries. Nano Res. 2018, 11, 163-173.
[21]
Cheng, N. Y.; Ren, L.; Xu, X.; Du, Y.; Dou, S. X. Recent development of zeolitic imidazolate frameworks (ZIFs) derived porous carbon based materials as electrocatalysts. Adv. Energy Mater. 2018, 8, 1801257.
[22]
Guo, J.; Gadipelli, S.; Yang, Y. C.; Li, Z. N.; Lu, Y.; Brett, D. J. L.; Guo, Z. X. An efficient carbon-based ORR catalyst from low- temperature etching of ZIF-67 with ultra-small cobalt nanoparticles and high yield. J. Mater. Chem. A 2019, 7, 3544-3551.
[23]
Fu, Y. Q.; Wei, Q. L.; Zhang, G. X.; Wang, X. M.; Zhang, J. H.; Hu, Y. F.; Wang, D. N.; Zuin, L.; Zhou, T.; Wu, Y. C. et al. High-performance reversible aqueous Zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon. Adv. Energy Mater. 2018, 8, 1801445.
[24]
Tang, C.; Wang, B.; Wang, H. F.; Zhang, Q. Defect engineering toward atomic Co-Nx-C in hierarchical graphene for rechargeable flexible solid Zn-air batteries. Adv. Mater. 2017, 29, 1703185.
[25]
Chen, Z. L.; Ha, Y.; Jia, H. X.; Yan, X. X.; Chen, M.; Liu, M.; Wu, R. B. Oriented transformation of Co-LDH into 2D/3D ZIF-67 to achieve Co-N-C hybrids for efficient overall water splitting. Adv. Energy Mater. 2019, 9, 1803918.
[26]
He, Y. H.; Hwang, S.; Cullen, D. A.; Uddin, M. A.; Langhorst, L.; Li, B. Y.; Karakalos, S.; Kropf, A. J.; Wegener, E. C.; Sokolowski, J. et al. Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: Carbon-shell confinement strategy. Energy Environ. Sci. 2019, 12, 250-260.
[27]
Lei, Z.; Tan, Y. Y.; Zhang, Z. Y.; Wu, W.; Cheng, N. C.; Chen, R. Z.; Mu, S. C.; Sun, X. L. Defects enriched hollow porous Co-N-doped carbons embedded with ultrafine CoFe/Co nanoparticles as bifunctional oxygen electrocatalyst for rechargeable flexible solid zinc-air batteries. Nano Res., in press, .
[28]
Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J. Am. Chem. Soc. 2014, 136, 13925-13931.
[29]
Xu, L.; Jiang, Q. Q.; Xiao, Z. H.; Li, X. Y.; Huo, J.; Wang, S. Y.; Dai, L. M. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 5277-5281.
[30]
Wang, Z. C.; Xu, W. J.; Chen, X. K.; Peng, Y. H.; Song, Y. Y.; Lv, C. X.; Liu, H. L.; Sun, J. W.; Yuan, D.; Li, X. Y. et al. Defect-rich nitrogen doped Co3O4/C porous nanocubes enable high-efficiency bifunctional oxygen electrocatalysis. Adv. Funct. Mater. 2019, 29, 1902875.
[31]
Cho, S. A.; Jang, Y. J.; Lim, H. D.; Lee, J. E.; Jang, Y. H.; Nguyen, T. T. H.; Mota, F. M.; Fenning, D. P.; Kang, K.; Shao-Horn, Y. et al. Hierarchical porous carbonized Co3O4 inverse opals via combined block copolymer and colloid templating as bifunctional electrocatalysts in Li-O2 battery. Adv. Energy Mater. 2017, 7, 1700391.
[32]
Lee, K. J.; Shin, D. Y.; Byeon, A.; Lim, A.; Jo, Y. S.; Begley, A.; Lim, D. H.; Sung, Y. E.; Park, H. S.; Chae, K. H. et al. Hierarchical cobalt-nitride and -oxide co-doped porous carbon nanostructures for highly efficient and durable bifunctional oxygen reaction electrocatalysts. Nanoscale 2017, 9, 15846-15855.
[33]
Zhu, Y.; Zhang, Z. Y.; Li, W. Q.; Lei, Z.; Cheng, N. C.; Tan, Y. Y.; Mu, S. C.; Sun, X. L. Highly exposed active sites of defect-enriched derived MOFs for enhanced oxygen reduction reaction. ACS Sustainable Chem. Eng. 2019, 7, 17855-17862.
[34]
Jiang, H.; Liu, Y.; Li, W. Z.; Li, J. Co nanoparticles confined in 3D nitrogen-doped porous carbon foams as bifunctional electrocatalysts for long-life rechargeable Zn-air batteries. Small 2018, 14, 1703739.
[35]
Xia, W.; Zou, R. Q.; An, L.; Xia, D. G.; Guo, S. J. A metal-organic framework route to in situ encapsulation of Co@Co3O4@C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction. Energy Environ. Sci. 2015, 8, 568-576.
[36]
Aijaz, A.; Masa, J.; Rosler, C.; Xia, W.; Weide, P.; Botz, A. J. R.; Fischer, R. A.; Schuhmann, W.; Muhler, M. Co@Co3O4 encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedra as an advanced bifunctional oxygen electrode. Angew. Chem., Int. Ed. 2016, 55, 4087-4091.
[37]
Jiang, Y.; Deng, Y. P.; Fu, J.; Lee, D. U.; Liang, R. L.; Cano, Z. P.; Liu, Y. S.; Bai, Z. Y.; Hwang, S.; Yang, L. et al. Interpenetrating triphase cobalt-based nanocomposites as efficient bifunctional oxygen electrocatalysts for long-lasting rechargeable Zn-air batteries. Adv. Energy Mater. 2018, 8, 1702900.
[38]
Guo, Z. Y.; Wang, F. M.; Xia, Y.; Li, J. L.; Tamirat, A. G.; Liu, Y. R.; Wang, L.; Wang, Y. G.; Xia, Y. Y. In situ encapsulation of core- shell-structured Co@Co3O4 into nitrogen-doped carbon polyhedra as a bifunctional catalyst for rechargeable Zn-air batteries. J. Mater. Chem. A 2018, 6, 1443-1453.
[39]
Zhou, Q. Y.; Zhang, Z.; Cai, J. J.; Liu, B.; Zhang, Y. L.; Gong, X. F.; Sui, X. L.; Yu, A. P.; Zhao, L.; Wang, Z. B. et al. Template-guided synthesis of Co nanoparticles embedded in hollow nitrogen doped carbon tubes as a highly efficient catalyst for rechargeable Zn-air batteries. Nano Energy 2020, 71, 104592.
[40]
Fu, J.; Hassan, F. M.; Zhong, C.; Lu, J.; Liu, H.; Yu, A. P.; Chen, Z. W. Defect engineering of chalcogen-tailored oxygen electrocatalysts for rechargeable quasi-solid-state zinc-air batteries. Adv. Mater. 2017, 29, 1702526.
[41]
Pachfule, P.; Shinde, D.; Majumder, M.; Xu, Q. Fabrication of carbon nanorods and graphene nanoribbons from a metal-organic framework. Nat. Chem. 2016, 8, 718-724.
[42]
Guo, J. X.; Ghen, B. L.; Hao, Q.; Nie, J.; Ma, G. P. Pod-like structured Co/CoOx nitrogen-doped carbon fibers as efficient oxygen reduction reaction electrocatalysts for Zn-air battery. Appl. Surf. Sci. 2018, 456, 959-966.
[43]
Ding, D. N.; Shen, K.; Chen, X. D.; Chen, H. R.; Chen, J. Y.; Fan, T.; Wu, R. F.; Li, Y. W. Multi-level architecture optimization of MOF- templated Co-based nanoparticles embedded in hollow N-doped carbon polyhedra for efficient OER and ORR. ACS Catal. 2018, 8, 7879-7888.
[44]
Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082-3087.
[45]
Guo, Y. Y.; Yuan, P. F.; Zhang, J. N.; Hu, Y. F.; Amiinu, I. S.; Wang, X.; Zhou, J. G.; Xia, H. C.; Song, Z. B.; Xu, Q. et al. Carbon nanosheets containing discrete Co-Nx-By-C active sites for efficient oxygen electrocatalysis and rechargeable Zn-air batteries. ACS Nano 2018, 12, 1894-1901.
[46]
Yu, P.; Wang, L.; Sun, F. F.; Xie, Y.; Liu, X.; Ma, J. Y.; Wang, X. W.; Tian, C. G.; Li, J. H.; Fu, H. G. Co nanoislands rooted on Co-N-C nanosheets as efficient oxygen electrocatalyst for Zn-air batteries. Adv. Mater. 2019, 31, 1901666.
[47]
Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361-365.
[48]
Cheng, Q. Q.; Han, S. B.; Mao, K.; Chen, C.; Yang, L. J.; Zou, Z. Q.; Gu, M.; Hu, Z.; Yang, H. Co nanoparticle embedded in atomically- dispersed Co-N-C nanofibers for oxygen reduction with high activity and remarkable durability. Nano Energy 2018, 52, 485-493.
[49]
Zhu, C. Z.; Shi, Q. R.; Xu, B. Z.; Fu, S. F.; Wan, G.; Yang, C.; Yao, S. Y.; Song, J. H.; Zhou, H.; Du, D. et al. Hierarchically porous M-N-C (M = Co and Fe) single-atom electrocatalysts with robust MNx active moieties enable enhanced ORR performance. Adv. Energy Mater. 2018, 8, 1801956.
[50]
Jiang, H.; Gu, J. X.; Zheng, X. S.; Liu, M.; Qiu, X. Q.; Wang, L. B.; Li, W. Z.; Chen, Z. F.; Ji, X. B.; Li, J. Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energy Environ. Sci. 2019, 12, 322-333.
[51]
Zhang, M. D.; Dai, Q. B.; Zheng, H. G.; Chen, M. D.; Dai, L. M. Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn-air batteries and water splitting. Adv. Mater. 2018, 30, 1705431.
[52]
Wang, Y. Q.; Yu, B. Y.; Liu, K.; Yang, X. T.; Liu, M.; Chan, T. S.; Qiu, X. Q.; Li, J.; Li, W. Z. Co single-atoms on ultrathin N-doped porous carbon via a biomass complexation strategy for high performance metal-air batteries. J. Mater. Chem. A 2020, 8, 2131-2139.
[53]
Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842-1855.
[54]
Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Single-atom materials: Small structures determine macroproperties. Small Struct., in press, .
[55]
Wang, T. T.; Kou, Z. K.; Mu, S. C.; Liu, J. P.; He, D. P.; Amiinu, I. S.; Meng, W.; Zhou, K.; Luo, Z. X.; Chaemchuen, S. et al. 2D dual-metal zeolitic-imidazolate-framework-(ZIF)-derived bifunctional air electrodes with ultrahigh electrochemical properties for rechargeable zinc-air batteries. Adv. Funct. Mater. 2018, 28, 1705048.
[56]
Wu, J. B.; Zhou, H.; Li, Q.; Chen, M.; Wan, J.; Zhang, N.; Xiong, L. K.; Li, S.; Xia, B. Y.; Feng, G. et al. Densely populated isolated single Co-N site for efficient oxygen electrocatalysis. Adv. Energy Mater. 2019, 9, 1900149.
[57]
Zhang, X. L.; Yang, Z. X.; Lu, Z. S.; Wang, W. C. Bifunctional CoNx embedded graphene electrocatalysts for OER and ORR: A theoretical evaluation. Carbon 2018, 130, 112-119.
[58]
Wang, H.; Kou, R. H.; Jin, Q.; Liu, Y. Z.; Yin, F. X.; Sun, C. J.; Wang, L.; Ma, Z. Y.; Ren, Y.; Liu, N. et al. Boosting the oxygen reduction performance via tuning the synergy between metal core and oxide shell of metal-organic frameworks-derived Co@CoOx. ChemElectroChem 2020, 7, 1590-1597.
[59]
Zhou, Y.; Sun, S. N.; Song, J. J.; Xi, S. B.; Chen, B.; Du, Y. H.; Fisher, A. C.; Cheng, F. Y.; Wang, X.; Zhang, H. et al. Enlarged Co-O covalency in octahedral sites leading to highly efficient spinel oxides for oxygen evolution reaction. Adv. Mater. 2018, 30, 1802912.
[60]
Qin, J. Y.; Liu, Z. W.; Wu, D. Y.; Yang, J. Optimizing the electronic structure of cobalt via synergized oxygen vacancy and Co-N-C to boost reversible oxygen electrocatalysis for rechargeable Zn-air batteries. Appl. Catal. B Environ. 2020, 278, 119300.
[61]
Peng, Y.; Chen, S. W. Electrocatalysts based on metal@carbon core@shell nanocomposites: An overview. Green Energy Environ. 2018, 3, 335-351.
[62]
Huang, Z. F.; Song, J. J.; Du, Y. H.; Xi, S. B.; Dou, S.; Nsanzimana, J. M. V.; Wang, C.; Xu, Z. J.; Wang, X. Chemical and structural origin of lattice oxygen oxidation in Co-Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 2019, 4, 329-338.
[63]
Nørskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 2009, 1, 37-46.
[64]
Nørskov, J. K.; Abild-Pedersen, F.; Studt, F.; Bligaard, T. Density functional theory in surface chemistry and catalysis. Proc. Natl. Acad. Sci. USA 2011, 108, 937-943.
[65]
Ling, T.; Yan, D. Y.; Jiao, Y.; Wang, H.; Zheng, Y.; Zheng, X. L.; Mao, J.; Du, X. W.; Hu, Z. P.; Jaroniec, M. et al. Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis. Nat. Commun. 2016, 7, 12876.
[66]
Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886-17892.
[67]
Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.
Nano Research
Pages 2353-2362
Cite this article:
Zhang Z, Tan Y, Zeng T, et al. Tuning the dual-active sites of ZIF-67 derived porous nanomaterials for boosting oxygen catalysis and rechargeable Zn-air batteries. Nano Research, 2021, 14(7): 2353-2362. https://doi.org/10.1007/s12274-020-3234-6
Topics:

1065

Views

79

Crossref

0

Web of Science

76

Scopus

3

CSCD

Altmetrics

Received: 08 October 2020
Revised: 09 November 2020
Accepted: 10 November 2020
Published: 05 July 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return