AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Weakly hydrophobic nanoconfinement by graphene aerogels greatly enhances the reactivity and ambient stability of reactivity of MIL-101-Fe in Fenton-like reaction

Yuwei Zhang1Fei Liu1Zhichao Yang2Jieshu Qian1,3( )Bingcai Pan2,3
Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
Show Author Information

Graphical Abstract

Abstract

In the pursuit of heterogeneous catalysts with high reactivity, metal organic framework (MOF) nanomaterials have received tremendous attentions. However, many MOF catalysts especially Fe-based MOFs need to be utilized immediately after synthesis or being activated using high temperature, because of the easy loss of reactivity in humid environments resulting from the occupation of active Fe sites by water molecules. Here, we describe an inspiring strategy of growing MIL-101-Fe nanoparticles inside the three-dimensional confined space of graphene aerogel (GA), generating shapeable GA/MIL-101-Fe nanocomposite convenient for practical use. Compared to MIL-101-Fe, GA/MIL-101-Fe as catalyst demonstrates much higher reactivity in Fenton-like reaction, attributing to smaller MIL-101-Fe particle size, presence of active Fe(II) sites, and abundant defects in GA. Strikingly, the weakly hydrophobic nature of the composite greatly inhibits the loss of catalytic reactivity after being stored in humid air and accelerates the recovery of reactivity in mild temperature, by resisting the entrance of water molecules and helping to exclude water molecules. This work demonstrates that a delicate design of nanocomposite structure could not only improve the reactivity of the catalytic component, but also overcome its intrinsic drawback by taking advantage of the properties of host. We hope this functional nanoconfinement strategy could be extended to more scenarios in other fields.

Electronic Supplementary Material

Download File(s)
12274_2020_3239_MOESM1_ESM.pdf (2.1 MB)

References

[1]
Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Mariñas, B. J.; Mayes, A. M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301-310.
[2]
Bouwmeester, H.; Hollman, P. C. H.; Peters, R. J. B. Potential health impact of environmentally released micro- and nanoplastics in the human food production chain: Experiences from nanotoxicology. Environ. Sci. Technol. 2015, 49, 8932-8947.
[3]
Brillas, E.; Sirés, I.; Oturan, M. A. Electro-fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem. Rev. 2009, 109, 6570-6631.
[4]
Chong, M. N.; Jin, B.; Chow, C. W. K.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water. Res. 2010, 44, 2997-3027.
[5]
Fenton, H. J. H. LXXIII.—Oxidation of tartaric acid in presence of iron. J. Chem. Soc. Trans. 1894, 65, 899-910.
[6]
Pignatello, J. J.; Oliveros, E.; MacKay, A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit. Rev. Environ. Sci. Technol. 2006, 36, 1-84.
[7]
Ye, Z. H.; Padilla, J. A.; Xuriguera, E.; Beltran, J. L.; Alcaide, F.; Brillas, E.; Sirés, I. A highly stable metal-organic framework-engineered FeS2/C nanocatalyst for heterogeneous electro-Fenton treatment: Validation in wastewater at mild pH. Environ. Sci. Technol. 2020, 54, 4664-4674.
[8]
Yin, Y.; Shi, L.; Li, W. L.; Li, X. N.; Wu, H.; Ao, Z. M.; Tian, W. J.; Liu, S. B.; Wang, S. B.; Sun, H. Q. Boosting Fenton-like reactions via single atom Fe catalysis. Environ. Sci. Technol. 2019, 53, 11391-11400.
[9]
Yang, Z. C.; Yu, A. Q.; Shan, C.; Gao, G. D.; Pan, B. C. Enhanced Fe(III)-mediated Fenton oxidation of atrazine in the presence of functionalized multi-walled carbon nanotubes. Water. Res. 2018, 137, 37-46.
[10]
Brillas, E.; Garcia-Segura, S. Benchmarking recent advances and innovative technology approaches of Fenton, photo-Fenton, electro-Fenton, and related processes: A review on the relevance of phenol as model molecule. Sep. Purif. Technol. 2020, 237, 116337.
[11]
Yaghi, O. M.; Li, G. M.; Li, H. L. Selective binding and removal of guests in a microporous metal-organic framework. Nature 1995, 378, 703-706.
[12]
Zhu, Y. F.; Qiu, X. Y.; Zhao, S. L.; Guo, J.; Zhang, X. F.; Zhao, W. S.; Shi, Y. A.; Tang, Z. Y. Structure regulated catalytic performance of gold nanocluster-MOF nanocomposites. Nano Res. 2020, 13, 1928-1932.
[13]
Zeng, X. M.; Yan, S. Q.; Chen, P.; Du, W.; Liu, B. F. Modulation of tumor microenvironment by metal-organic-framework-derived nanoenzyme for enhancing nucleus-targeted photodynamic therapy. Nano Res. 2020, 13, 1527-1535.
[14]
Li, J. R.; Kuppler, R. J.; Zhou, H. C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1477-1504.
[15]
Broto-Ribas, A.; Vignatti, C.; Jimenez-Almarza, A.; Luis-Barrera, J.; Dolatkhah, Z.; Gandara, F.; Imaz, I.; Mas-Ballesté, R.; Alemán, J.; Maspoch, D. Heterogeneous catalysts with programmable topologies generated by reticulation of organocatalysts into metal-organic frameworks: The case of squaramide. Nano Res., in press, .
[16]
Tang, J. T.; Wang, J. L. Metal organic framework with coordinatively unsaturated sites as efficient Fenton-like catalyst for enhanced degradation of sulfamethazine. Environ. Sci. Technol. 2018, 52, 5367-5377.
[17]
Hu, H.; Zhang, H. X.; Chen, Y.; Chen, Y. J.; Zhuang, L.; Ou, H. S. Enhanced photocatalysis degradation of organophosphorus flame retardant using MIL-101(Fe)/persulfate: Effect of irradiation wavelength and real water matrixes. Chem. Eng. J. 2019, 368, 273-284.
[18]
Ahmad, M.; Quan, X.; Chen, S.; Yu, H. T. Tuning lewis acidity of MIL-88B-Fe with mix-valence coordinatively unsaturated iron centers on ultrathin Ti3C2 nanosheets for efficient photo-Fenton reaction. Appl. Catal. B Environ. 2020, 264, 118534.
[19]
Gao, C.; Chen, S.; Quan, X.; Yu, H. T.; Zhang, Y. B. Enhanced Fenton-like catalysis by iron-based metal organic frameworks for degradation of organic pollutants. J. Catal. 2017, 356, 125-132.
[20]
Wu, Q. S.; Yang, H. P.; Kang, L.; Gao, Z.; Ren, F. F. Fe-based metal- organic frameworks as Fenton-like catalysts for highly efficient degradation of tetracycline hydrochloride over a wide pH range: Acceleration of Fe(II)/Fe(III) cycle under visible light irradiation. Appl. Catal. B Environ. 2020, 263, 118282.
[21]
Sun, Z. J.; Jiang, J. Z.; Li, Y. F. A sensitive and selective sensor for biothiols based on the turn-on fluorescence of the Fe-MIL-88 metal-organic frameworks-hydrogen peroxide system. Analyst 2015, 140, 8201-8208.
[22]
Ma, M. Y.; Noei, H.; Mienert, B.; Niesel, J.; Bill, E.; Muhler, M.; Fischer, R. A.; Wang, Y. M.; Schatzschneider, U.; Metzler-Nolte, N. Iron metal-organic frameworks MIL-88B and NH2-MIL-88B for the loading and delivery of the gasotransmitter carbon monoxide. Chem. -Eur. J. 2013, 19, 6785-6790.
[23]
Xu, Y. Y.; Wang, Y.; Wan, J. Q.; Ma, Y. W. Reduced graphene oxide-supported metal organic framework as a synergistic catalyst for enhanced performance on persulfate induced degradation of trichlorophenol. Chemosphere 2020, 240, 124849.
[24]
Sun, H. Y.; Xu, Z.; Gao, C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv. Mater. 2013, 25, 2554-2560.
[25]
Zhu, G. Y.; Ma, L. B.; Lin, H. N.; Zhao, P. Y.; Wang, L.; Hu, Y.; Chen, R. P.; Chen, T.; Wang, Y. R.; Tie, Z. X. et al. High-performance Li-ion capacitor based on black-TiO2-x/graphene aerogel anode and biomass-derived microporous carbon cathode. Nano Res. 2019, 12, 1713-1719.
[26]
He, Q.; Yu, B.; Wang, H.; Rana, M.; Liao, X. B.; Zhao, Y. Oxygen defects boost polysulfides immobilization and catalytic conversion: First-principles computational characterization and experimental design. Nano Res. 2020, 13, 2299-2307.
[27]
Hong, J. Y.; Sohn, E. H.; Park, S.; Park, H. S. Highly-efficient and recyclable oil absorbing performance of functionalized graphene aerogel. Chem. Eng. J. 2015, 269, 229-235.
[28]
Qian, J. S.; Gao, X.; Pan, B. C. Nanoconfinement-mediated water treatment: From fundamental to application. Environ. Sci. Technol. 2020, 54, 8509-8526.
[29]
Liu, L.; Yan, Y.; Cai, Z.; Lin, S. X.; Hu, X. B. Growth-oriented Fe-based MOFs synergized with graphene aerogels for high-performance supercapacitors. Adv. Mater. Interfaces 2018, 5, 1701548.
[30]
Li, X. H.; Guo, W. L.; Liu, Z. H.; Wang, R. Q.; Liu, H. Fe-Based MOFs for efficient adsorption and degradation of acid orange 7 in aqueous solution via persulfate activation. Appl. Surf. Sci. 2016, 369, 130-136.
[31]
Jahan, M.; Bao, Q. L.; Yang, J. X.; Loh, K. P. Structure-directing role of graphene in the synthesis of metal-organic framework nanowire. J. Am. Chem. Soc. 2010, 132, 14487-14495.
[32]
Xu, L. M.; Xiao, G. Y.; Chen, C. B.; Li, R.; Mai, Y. Y.; Sun, G. M.; Yan, D. Y. Superhydrophobic and superoleophilic graphene aerogel prepared by facile chemical reduction. J. Mater. Chem. A 2015, 3, 7498-7504.
[33]
Bokare, A. D.; Choi, W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J. Hazard. Mater. 2014, 275, 121-135.
[34]
Chen, J. X.; Wang, Q. Q.; Huang, L.; Zhang, H.; Rong, K.; Zhang, H.; Dong, S. J. Prussian blue with intrinsic heme-like structure as peroxidase mimic. Nano Res. 2018, 11, 4905-4913.
[35]
Zhang, W.; Banerjee, D.; Liu, J.; Schaef, H. T.; Crum, J. V.; Fernandez, C. A.; Kukkadapu, R. K.; Nie, Z. M.; Nune, S. K.; Motkuri, R. K. et. al. Redox-active metal-organic composites for highly selective oxygen separation applications. Adv. Mater. 2016, 28, 3572-3577.
[36]
Kramm, U. I.; Ni, L. M.; Wagner, S. 57Fe Mössbauer spectroscopy characterization of electrocatalysts. Adv. Mater. 2019, 31, 1805623.
[37]
Gao, C.; Su, Y.; Quan, X.; Sharma, V. K.; Chen, S.; Yu, H. T.; Zhang, Y. B.; Niu, J. F. Electronic modulation of iron-bearing heterogeneous catalysts to accelerate Fe(III)/Fe(II) redox cycle for highly efficient Fenton-like catalysis. Appl. Catal. B Environ. 2020, 276, 119016.
[38]
Zhang, T.; Jiang, Z. Q.; Chen, L. B.; Pan, C. S.; Sun, S.; Liu, C.; Li, Z. H.; Ren, W. Z.; Wu, A. G.; Huang, P. T. PCN-Fe(III)-PTX nanoparticles for MRI guided high efficiency chemo-photodynamic therapy in pancreatic cancer through alleviating tumor hypoxia. Nano Res. 2020, 13, 273-281.
[39]
Hou, X. J.; Huang, X. P.; Jia, F. L.; Ai, Z. H.; Zhao, J. C.; Zhang, L. Z. Hydroxylamine promoted goethite surface fenton degradation of organic pollutants. Environ. Sci. Technol. 2017, 51, 5118-5126.
[40]
Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud'homme, R. K.; Aksay, I. A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8, 36-41.
[41]
Zhuang, Y.; Liu, Q. Z.; Kong, Y.; Shen, C. C.; Hao, H. T.; Dionysiou, D. D.; Shi, B. Y. Enhanced antibiotic removal through a dual- reaction-center Fenton-like process in 3D graphene based hydrogels. Environ. Sci. Nano 2019, 6, 388-398.
[42]
Li, S. H.; Yang, W.; Liu, Y.; Song, X. R.; Liu, R.; Chen, G. L.; Lu, C. H.; Yang, H. H. Engineering of tungsten carbide nanoparticles for imaging-guided single 1,064 nm laser-activated dual-type photodynamic and photothermal therapy of cancer. Nano Res. 2018, 11, 4859-4873.
[43]
Zhang, Y. Y.; Wang, M. L.; Gao, X.; Qian, J. S.; Pan, B. C. Structural evolution of lanthanum hydroxides during long-term phosphate mitigation: Effect of nanoconfinement. Environ. Sci. Technol., in press, .
Nano Research
Pages 2383-2389
Cite this article:
Zhang Y, Liu F, Yang Z, et al. Weakly hydrophobic nanoconfinement by graphene aerogels greatly enhances the reactivity and ambient stability of reactivity of MIL-101-Fe in Fenton-like reaction. Nano Research, 2021, 14(7): 2383-2389. https://doi.org/10.1007/s12274-020-3239-1
Topics:

909

Views

41

Crossref

0

Web of Science

48

Scopus

2

CSCD

Altmetrics

Received: 25 August 2020
Revised: 11 November 2020
Accepted: 13 November 2020
Published: 05 July 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return