AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Quaternized chitosan-assisted in situ synthesized CuS/cellulose nanofibers conductive paper for flexible electrode

Xiujie Huang1,§Bichong Luo1,§Chuanfu Liu1Linxin Zhong1Dongdong Ye2Xiaoying Wang1( )
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China

§ Xiujie Huang and Bichong Luo contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Cellulose nanofibers (CNF) are considered to be a potential substrate of energy material for energy storage devices due to the foldable, lightweight, recyclable and environmentally friendly feature. However, the energy materials tend to distribute unevenly or fall off from CNF easily, resulting in the decrease of the devices’ overall performance. Here, for the first time, we used quaternized chitosan (QCS) as stabilizer and adhesive to in situ synthesize and deposite copper sulfide nanocrystals (CuS-NCs) on CNF and further obtained the conductive paper for flexible supercapacitors. In the presence of QCS, CuS-NCs deposited in situ on CNF can be capped and stabilized by the QCS molecular chains for uniform distribution, which is conducive to the capacitive behavior and electrochemical stability of composite paper. The result shows that the specific capacitance of the composite paper was as high as 314.3 F/g at a current density of 1 A/g, a high rate capacitance of 252.6 F/g was achieved even at a high current density of 10 A/g. It reveals that the composite paper exhibited better electrochemical performance than many other CuS-based electrode materials for supercapacitor. More importantly, the composite paper performed well in various folding state without changing much electrochemical performance. Therefore, this work provides a novel strategy to in situ fabricate paper-based electrode for next- generation flexible energy-storage system.

Electronic Supplementary Material

Download File(s)
12274_2020_3240_MOESM1_ESM.pdf (1.2 MB)

References

[1]
Fan, F. R.; Tang, W.; Wang, Z. L. Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. 2016, 28, 4283-4305.
[2]
Fu, L.; Guo, Y. L.; Wang, Y. Preface: Innovative flexible energy. Sci. China Mater. 2016, 59, 409.
[3]
Ramadoss, A.; Yoon, K. Y.; Kwak, M. J.; Kim, S. I.; Ryu, S. T.; Jang, J. H. Fully flexible, lightweight, high performance all-solid-state supercapacitor based on 3-dimensional-graphene/graphite-paper. J. Power Sources 2017, 337, 159-165.
[4]
Raj, C. J.; Kim, B. C.; Cho, W. J.; Lee, W. G.; Jung, S. D.; Kim, Y. H.; Park, S. Y.; Yu, K. H. Highly flexible and planar supercapacitors using graphite flakes/polypyrrole in polymer lapping film. ACS Appl. Mater. Interfaces 2015, 7, 13405-13414.
[5]
Vangari, M.; Pryor, T.; Jiang, L. Supercapacitors: Review of materials and fabrication methods. J. Energy Eng. 2013, 139, 72-79.
[6]
Zhong, C.; Deng, Y. D.; Hu, W. B.; Qiao, J. L.; Zhang, L.; Zhang, J. J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 2015, 44, 7484-7539.
[7]
González, A.; Goikolea, E.; Barrena, J. A.; Mysyk, R. Review on supercapacitors: Technologies and materials. Renew. Sustain. Energy Rev. 2016, 58, 1189-1206.
[8]
Mahmood, N.; Zhang, C. Z.; Yin, H.; Hou, Y. L. Graphene-based nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells. J. Mater. Chem. A 2014, 2, 15-32.
[9]
Dong, L. B.; Xu, C. J.; Li, Y.; Pan, Z. Z.; Liang, G. M.; Zhou, E. L.; Kang, F. Y.; Yang, Q. H. Breathable and wearable energy storage based on highly flexible paper electrodes. Adv. Mater. 2016, 28, 9313-9319.
[10]
Ge, D. T.; Yang, L. L.; Fan, L.; Zhang, C. F.; Xiao, X.; Gogotsi, Y.; Yang, S. Foldable supercapacitors from triple networks of macroporous cellulose fibers, single-walled carbon nanotubes and polyaniline nanoribbons. Nano Energy 2015, 11, 568-578.
[11]
Song, N. N.; Tan, H. J.; Zhao, Y. P. Carbon fiber-bridged polyaniline/ graphene paper electrode for a highly foldable all-solid-state supercapacitor. J. Solid State Electrochem. 2019, 23, 9-17.
[12]
Ning, F. D.; He, X. D.; Shen, Y. B.; Jin, H. H.; Li, Q. W.; Li, D.; Li, S. P.; Zhan, Y. L.; Du, Y.; Jiang, J. J. et al. Flexible and lightweight fuel cell with high specific power density. ACS Nano 2017, 11, 5982-5991.
[13]
Ma, Z. Q. An electronic second skin. Science 2011, 333, 830-831.
[14]
Xu, H.; Luo, D. X.; Li, M.; Xu, M.; Zou, J. H.; Tao, H.; Lan, L. F.; Wang, W.; Peng, J. B.; Cao, Y. A flexible AMOLED display on the PEN substrate driven by oxide thin-film transistors using anodized aluminium oxide as dielectric. J. Mater. Chem. C 2014, 2, 1255-1259.
[15]
Spechler, J. A.; Koh, T. W.; Herb, J. T.; Rand, B. P.; Arnold, C. B. A transparent, smooth, thermally robust, conductive polyimide for flexible electronics. Adv. Funct. Mater. 2015, 25, 7428-7434.
[16]
Hashmi, S. G.; Moehl, T.; Halme, J.; Ma, Y.; Saukkonen, T.; Yella, A.; Giordano, F.; Decoppet, J. D.; Zakeeruddin, S. M.; Lund, P. et al. A durable SWCNT/PET polymer foil based metal free counter electrode for flexible dye-sensitized solar cells. J. Mater. Chem. A 2014, 2, 19609-19615.
[17]
Zhao, X. N.; Ran, F.; Shen, K. W.; Yang, Y. L.; Wu, J. Y.; Niu, X. Q.; Kong, B. B.; Kang, L.; Chen, S. W. Facile fabrication of ultrathin hybrid membrane for highly flexible supercapacitors via in-situ phase separation of polyethersulfone. J. Power Sources 2016, 329, 104-114.
[18]
Zhu, H. L.; Xiao, Z. G.; Liu, D. T.; Li, Y. Y.; Weadock, N. J.; Fang, Z. Q.; Huang, J. S.; Hu, L. B. Biodegradable transparent substrates for flexible organic-light-emitting diodes. Energy Environ. Sci. 2013, 6, 2105-2111.
[19]
Jung, Y. H.; Chang, T. H.; Zhang, H. L.; Yao, C. H.; Zheng, Q. F.; Yang, V. W.; Mi, H. Y.; Kim, M.; Cho, S. J.; Park, D. W. et al. High- performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat. Commun. 2015, 6, 7170.
[20]
Wang, X.; Gao, K. Z.; Shao, Z. Q.; Peng, X. Q.; Xu, X.; Wang, F. J. Layer-by-layer assembled hybrid multilayer thin film electrodes based on transparent cellulose nanofibers paper for flexible supercapacitors applications. J. Power Sources 2014, 249, 148-155.
[21]
Huang, J.; Zhu, H. L.; Chen, Y. C.; Preston, C.; Rohrbach, K.; Cumings, J.; Hu, L. B. Highly transparent and flexible nanopaper transistors. ACS Nano 2013, 7, 2106-2113.
[22]
Gao, K. Z.; Shao, Z. Q.; Li, J.; Wang, X.; Peng, X. Q.; Wang, W. J.; Wang, F. J. Cellulose nanofiber-graphene all solid-state flexible supercapacitors. J. Mater. Chem. A 2013, 1, 63-67.
[23]
Zheng, G. Y.; Cui, Y.; Karabulut, E.; Wågberg, L.; Zhu, H. L.; Hu, L. B. Nanostructured paper for flexible energy and electronic devices. MRS Bull. 2013, 38, 320-325.
[24]
Shen, F.; Zhu, H. L.; Luo, W.; Wan, J. Y.; Zhou, L. H.; Dai, J. Q.; Zhao, B.; Han, X. G.; Fu, K.; Hu, L. B. Chemically crushed wood cellulose fiber towards high-performance sodium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 23291-23296.
[25]
Li, X.; Wang, Y. H.; Zhao, C.; Liu, X. Y. Paper-based piezoelectric touch pads with hydrothermally grown zinc oxide nanowires. ACS Appl. Mater. Interfaces 2014, 6, 22004-22012.
[26]
Hu, S.; Rajamani, R.; Yu, X. Flexible solid-state paper based carbon nanotube supercapacitor. Appl. Phys. Lett. 2012, 100, 104103.
[27]
Zhang, J.; Feng, H. J.; Yang, J. Q.; Qin, Q.; Fan, H. M.; Wei, C. Y.; Zheng, W. J. Solvothermal synthesis of three-dimensional hierarchical CuS microspheres from a Cu-based ionic liquid precursor for high- performance asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 21735-21744.
[28]
Heydari, H.; Moosavifard, S. E.; Elyasi, S.; Shahraki, M. Nanoporous CuS nano-hollow spheres as advanced material for high-performance supercapacitors. Appl. Surf. Sci. 2017, 394, 425-430.
[29]
Yu, X. Y.; Yu, L.; Shen, L. F.; Song, X. H.; Chen, H. Y.; Lou, X. W. General formation of MS (M = Ni, Cu, Mn) box-in-box hollow structures with enhanced pseudocapacitive properties. Adv. Funct. Mater. 2014, 24, 7440-7446.
[30]
Javed, M. S.; Dai, S. G.; Wang, M. J.; Xi, Y.; Lang, Q.; Guo, D. L.; Hu, C. G. Faradic redox active material of Cu7S4 nanowires with a high conductance for flexible solid state supercapacitors. Nanoscale 2015, 7, 13610-13618.
[31]
Tian, Z.; Dou, H. L.; Zhang, B.; Fan, W. H.; Wang, X. M. Three- dimensional graphene combined with hierarchical CuS for the design of flexible solid-state supercapacitors. Electrochim. Acta 2017, 237, 109-118.
[32]
De, B.; Kuila, T.; Kim, N. H.; Lee, J. H. Carbon dot stabilized copper sulphide nanoparticles decorated graphene oxide hydrogel for high performance asymmetric supercapacitor. Carbon 2017, 122, 247-257.
[33]
Krishnamoorthy, K.; Veerasubramani, G. K.; Rao, A. N.; Kim, S. J. One-pot hydrothermal synthesis, characterization and electrochemical properties of CuS nanoparticles towards supercapacitor applications. Mater. Res. Express 2014, 1, 035006.
[34]
Kwon, S. G.; Hyeon, T. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides. Acc. Chem. Res. 2008, 41, 1696-1709.
[35]
Bayat, A.; Dorkoosh, F. A.; Dehpour, A. R.; Moezi, L.; Larijani, B.; Junginger, H. E.; Rafiee-Tehrani, M. Nanoparticles of quaternized chitosan derivatives as a carrier for colon delivery of insulin: Ex vivo and in vivo studies. Int. J. Pharm. 2008, 356, 259-266.
[36]
Raj, C. J.; Kim, B. C.; Cho, W. J.; Lee, W. G.; Seo, Y.; Yu, K. H. Electrochemical capacitor behavior of copper sulfide (CuS) nanoplatelets. J. Alloys Compd. 2014, 586, 191-196.
[37]
Wang, G. K.; Sun, X.; Lu, F. Y.; Sun, H. T.; Yu, M. P.; Jiang, W. L.; Liu, C. S.; Lian, J. Flexible pillared graphene-paper electrodes for high-performance electrochemical supercapacitors. Small 2012, 8, 452-459.
[38]
Zhu, T.; Xia, B. Y.; Zhou, L.; Lou, X. W. Arrays of ultrafine CuS nanoneedles supported on a CNT backbone for application in supercapacitors. J. Mater. Chem. 2012, 22, 7851-7855.
[39]
Wu, R. B.; Wang, D. P.; Kumar, V.; Zhou, K.; Law, A. W. K.; Lee, P. S.; Lou, J.; Chen, Z. MOFs-derived copper sulfides embedded within porous carbon octahedra for electrochemical capacitor applications. Chem. Commun. 2015, 51, 3109-3112.
[40]
Wang, T. W.; Xu, Q.; Wu, Y.; Zeng, A. J.; Li, M. J.; Gao, H. X. Quaternized chitosan (QCS)/poly (aspartic acid) nanoparticles as a protein drug-delivery system. Carbohydr. Res. 2009, 344, 908-914.
[41]
Yu, H. Y.; Qin, Z. Y. Surface grafting of cellulose nanocrystals with poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Carbohydr. Polym. 2014, 101, 471-478.
[42]
Jia, Z. S.; Shen, D. F.; Xu, W. L. Synthesis and antibacterial activities of quaternary ammonium salt of chitosan. Carbohydr. Res. 2001, 333, 1-6.
[43]
Da Róz, A. L.; Leite, F. L.; Pereiro, L. V.; Nascente, P. A. P.; Zucolotto, V.; Oliveira, O. N. Jr; Carvalho, A. J. F. Adsorption of chitosan on spin-coated cellulose films. Carbohydr. Polym. 2010, 80, 65-70.
[44]
Tang, R. L.; Zhang, Y.; Zhang, Y.; Yu, Z. M. Synthesis and characterization of chitosan based dye containing quaternary ammonium group. Carbohydr. Polym. 2016, 139, 191-196.
[45]
Qin, Y. S.; Chen, L. J.; Wang, X. H.; Zhao, X. J.; Wang, F. S. Enhanced mechanical performance of poly(propylene carbonate) via hydrogen bonding interaction with o-lauroyl chitosan. Carbohydr. Polym. 2011, 84, 329-334.
[46]
Huang, X. J.; Shen, J.; Qian, X. R. Filler modification for papermaking with starch/oleic acid complexes with the aid of calcium ions. Carbohydr. Polym. 2013, 98, 931-935.
[47]
Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy & Environ. Sci. 2014, 7, 1597-1614.
[48]
Weng, Z.; Su, Y.; Wang, D. W.; Li, F.; Du, J. H.; Cheng, H. M. Graphene-cellulose paper flexible supercapacitors. Adv. Energy Mater. 2011, 1, 917-922.
[49]
Hsu, Y. K.; Chen, Y. C.; Lin, Y. G. Synthesis of copper sulfide nanowire arrays for high-performance supercapacitors. Electrochim. Acta 2014, 139, 401-407.
[50]
Huang, K. J.; Zhang, J. Z.; Fan, Y. One-step solvothermal synthesis of different morphologies CuS nanosheets compared as supercapacitor electrode materials. J. Alloys Compd. 2015, 625, 158-163.
Nano Research
Pages 2390-2397
Cite this article:
Huang X, Luo B, Liu C, et al. Quaternized chitosan-assisted in situ synthesized CuS/cellulose nanofibers conductive paper for flexible electrode. Nano Research, 2021, 14(7): 2390-2397. https://doi.org/10.1007/s12274-020-3240-8
Topics:

1312

Views

24

Crossref

0

Web of Science

22

Scopus

0

CSCD

Altmetrics

Received: 11 September 2020
Revised: 10 November 2020
Accepted: 13 November 2020
Published: 05 July 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return