AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Recent progress and challenges on two-dimensional material photodetectors from the perspective of advanced characterization technologies

Fang Zhong1,2,3,§Hao Wang1,2,§Zhen Wang1,2( )Yang Wang1Ting He1,2Peisong Wu1,2Meng Peng1,2Hailu Wang1Tengfei Xu1Fang Wang1Peng Wang1,2Jinshui Miao1Weida Hu1,2( )
State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
University of Chinese Academy of Sciences, Beijing 100049, China
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China

§ Fang Zhong and Hao Wang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Atomically thin two-dimensional (2D) materials exhibit enormous potential in photodetectors because of novel and extraordinary properties, such as passivated surfaces, tunable bandgaps, and high mobility. High-performance photodetectors based on 2D materials have been fabricated for broadband, position, polarization-sensitive detection, and large-area array imaging. However, the current performance of 2D material photodetectors is not outstanding enough, including response speed, detectivity, and so forth. The way to further promote the development of 2D material photodetectors and their corresponding practical applications is still a tremendous challenge. In this article, these issues of 2D material photodetectors are analyzed and expected to be solved by combining micro-nano characterization technologies. The inherent physical properties of 2D materials and photodetectors can be accurately characterized by Raman spectroscopy, transmission electron microscopy (TEM), and scattering scanning near-field optical microscope (s-SNOM). In particular, the precise probe of lattice defects, doping concentration, and near-field light absorption characteristics can promote the researches of low-noise and high-responsivity photodetectors. Scanning photocurrent microscope (SPCM) can show the overall spatial distribution of photocurrent and analyze the mechanism of photocurrent. Photoluminescence (PL) spectroscopy and Kelvin probe force microscope (KPFM) can characterize the material bandgap, work function distribution and interlayer coupling characteristics, making it possible to design high-performance photodetectors through energy band engineering. These advanced characterization techniques cover the entire process from material growth, to device preparation, and to performance analysis, and systematically reveal the development status of 2D material photodetectors. Finally, the prospects and challenges are discussed to promote the application of 2D material photodetectors.

References

[1]
M. S. Long,; E. F. Liu,; P. Wang,; A. Y. Gao,; H. Xia,; W. Luo,; B. G. Wang,; J. W. Zeng,; Y. J. Fu,; K. Xu, et al. Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Lett. 2016, 16, 2254-2259.
[2]
M. Jung,; P. Rickhaus,; S. Zihlmann,; P. Makk,; C. Schönenberger, Microwave photodetection in an ultraclean suspended bilayer graphene p-n junction. Nano Lett. 2016, 16, 6988-6993.
[3]
K. Zhang,; X. Fang,; Y. L. Wang,; Y. Wan,; Q. J. Song,; W. H. Zhai,; Y. P. Li,; G. Z. Ran,; Y. Ye,; L. Dai, Ultrasensitive near-infrared photodetectors based on a graphene-MoTe2-graphene vertical van der waals heterostructure. ACS Appl. Mater. Interfaces 2017, 9, 5392-5398.
[4]
L. Ye,; P. Wang,; W. J. Luo,; F. Gong,; L. Liao,; T. D. Liu,; L. Tong,; J. F. Zang,; J. B. Xu,; W. D. Hu, Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure. Nano Energy 2017, 37, 53-60.
[5]
B. B. Zeng,; Z. Q. Huang,; A. Singh,; Y. Yao,; A. K. Azad,; A. D. Mohite,; A. J. Taylor,; D. R. Smith,; H. T. Chen, Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging. Light Sci. Appl. 2018, 7, 51.
[6]
S. Islam,; J. K. Mishra,; A. Kumar,; D. Chatterjee,; N. Ravishankar,; A. Ghosh, Ultra-sensitive graphene-bismuth telluride nano-wire hybrids for infrared detection. Nanoscale 2019, 11, 1579-1586.
[7]
J. L. Wang,; H. H. Fang,; X. D. Wang,; X. S. Chen,; W. Lu,; W. D. Hu, Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet—Visible to infrared. Small 2017, 13, 1700894.
[8]
H. S. Lee,; S. W. Min,; Y. G. Chang,; M. K. Park,; T. Nam,; H. Kim,; J. H. Kim,; S. Ryu,; S. Im, MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 2012, 12, 3695-3700.
[9]
J. Mao,; Y. Q. Yu,; L. Wang,; X. J. Zhang,; Y. M. Wang,; Z. B. Shao,; J. S. Jie, Ultrafast, broadband photodetector based on MoSe2/silicon heterojunction with vertically standing layered structure using graphene as transparent electrode. Adv. Sci. 2016, 3, 1600018.
[10]
X. Wei,; F. G. Yan,; Q. S. Lv,; C. Shen,; K. Y. Wang, Fast gate-tunable photodetection in the graphene sandwiched WSe2/GaSe heterojunctions. Nanoscale 2017, 9, 8388-8392.
[11]
Q. S. Lv,; F. G. Yan,; X. Wei,; K. Y. Wang, High-performance, self- driven photodetector based on graphene sandwiched GaSe/WS2 heterojunction. Adv. Opt. Mater. 2018, 6, 1700490.
[12]
C. S. Liu,; H. W. Chen,; S. Y. Wang,; Q. Liu,; Y. G. Jiang,; D. W. Zhang,; M. Liu,; P. Zhou, Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 2020, 15, 545-557.
[13]
D. S. Tsai,; K. K. Liu,; D. H. Lien,; M. L. Tsai,; C. F. Kang,; C. A. Lin,; L. J. Li,; J. H. He, Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano 2013, 7, 3905-3911.
[14]
L. Britnell,; R. M. Ribeiro,; A. Eckmann,; R. Jalil,; B. D. Belle,; A. Mishchenko,; Y. J. Kim,; R. V. Gorbachev,; T. Georgiou,; S. V. Morozov, et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 2013, 340, 1311-1314.
[15]
Q. J. Liang,; Q. X. Wang,; Q. Zhang,; J. X. Wei,; S. X. Lim,; R. Zhu,; J. X. Hu,; W. Wei,; C. Lee,; C. H. Sow, et al. High-performance, room temperature, ultra-broadband photodetectors based on air-stable PdSe2. Adv. Mater. 2019, 31, 1807609.
[16]
D. Jariwala,; A. R. Davoyan,; J. Wong,; H. A. Atwater, van der Waals materials for atomically-thin photovoltaics: Promise and outlook. ACS Photonics 2017, 4, 2962-2970.
[17]
A. L. Li,; Q. X. Chen,; P. P. Wang,; Y. Gan,; T. L. Qi,; P. Wang,; F. D. Tang,; J. Z. Wu,; R. Chen,; L. Y. Zhang, et al. Ultrahigh-sensitive broadband photodetectors based on dielectric shielded MoTe2/ graphene/SnS2 p-g-n junctions. Adv. Mater. 2019, 31, 1805656.
[18]
B. Tang,; L. F. Hou,; M. Sun,; F. J. Lv,; J. H. Liao,; W. Ji,; Q. Chen, UV-SWIR broad range photodetectors made from few-layer α-In2Se3 nanosheets. Nanoscale 2019, 11, 12817-12828.
[19]
W. J. Chen,; R. R. Liang,; S. Q. Zhang,; Y. Liu,; W. J. Cheng,; C. C. Sun,; J. Xu, Ultrahigh sensitive near-infrared photodetectors based on MoTe2/germanium heterostructure. Nano Res. 2020, 13, 127-132.
[20]
S. J. Haigh,; A. Gholinia,; R. Jalil,; S. Romani,; L. Britnell,; D. C. Elias,; K. S. Novoselov,; L. A. Ponomarenko,; A. K. Geim,; R. Gorbachev, Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 2012, 11, 764-767.
[21]
T. Roy,; M. Tosun,; J. S. Kang,; A. B. Sachid,; S. B. Desai,; M. Hettick,; C. C. Hu,; A. Javey, Field-effect transistors built from all two-dimensional material components. ACS Nano 2014, 8, 6259-6264.
[22]
K. Choi,; Y. T. Lee,; J. S. Kim,; S. W. Min,; Y. Cho,; A. Pezeshki,; D. K. Hwang,; S. Im, Non-lithographic fabrication of all-2D α-MoTe2 dual gate transistors. Adv. Funct. Mater. 2016, 26, 3146-3153.
[23]
M. Z. Liao,; Z. W. Wu,; L. J. Du,; T. T. Zhang,; Z. Wei,; J. Q. Zhu,; H. Yu,; J. Tang,; L. Gu,; Y. X. Xing, et al. Twist angle-dependent conductivities across MoS2/graphene heterojunctions. Nat. Commun. 2018, 9, 4068.
[24]
P. Y. Chen,; X. Q. Zhang,; Y. Y. Lai,; E. C. Lin,; C. A. Chen,; S. Y. Guan,; J. J. Chen,; Z. H. Yang,; Y. W. Tseng,; S. Gwo, et al. Tunable moiré superlattice of artificially twisted monolayers. Adv. Mater. 2019, 31, 1901077.
[25]
M. Z. Liao,; Z. Wei,; L. J. Du,; Q. Q. Wang,; J. Tang,; H. Yu,; F. F. Wu,; J. J. Zhao,; X. Z. Xu,; B. Han, et al. Precise control of the interlayer twist angle in large scale MoS2 homostructures. Nat. Commun. 2020, 11, 2153.
[26]
Y. M. Shi,; C. Hamsen,; X. T. Jia,; K. K. Kim,; A. Reina,; M. Hofmann,; A. L. Hsu,; K. Zhang,; H. A. Li,; Z. Y. Juang, et al. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 2010, 10, 4134-4139.
[27]
X. F. Zhang,; T. R. Wu,; Q. Jiang,; H. S. Wang,; H. L. Zhu,; Z. Y. Chen,; R. Jiang,; T. C. Niu,; Z. J. Li,; Y. W. Zhang, et al. Epitaxial growth of 6 in. Single-crystalline graphene on a Cu/Ni (111) film at 750 °C via chemical vapor deposition. Small 2019, 15, 1805395.
[28]
B. G. Shin,; D. H. Boo,; B. Song,; S. Jeon,; M. Kim,; S. Park,; E. S. An,; J. S. Kim,; Y. J. Song,; Y. H. Lee, Single-crystalline monolayer graphene wafer on dielectric substrate of SiON without metal catalysts. ACS Nano 2019, 13, 6662-6669.
[29]
Z. L. Chen,; Y. Qi,; X. D. Chen,; Y. F. Zhang,; Z. F. Liu, Direct CVD growth of graphene on traditional glass: Methods and mechanisms. Adv. Mater. 2019, 31, 1803639.
[30]
L. Wang,; X. Z. Xu,; L. N. Zhang,; R. X. Qiao,; M. H. Wu,; Z. C. Wang,; S. Zhang,; J. Liang,; Z. H. Zhang,; Z. B. Zhang, et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 2019, 570, 91-95.
[31]
J. D. Li,; Z. L. Hu,; Y. F. Yi,; M. L. Yu,; X. M. Li,; J. X. Zhou,; J. Yin,; S. W. Wu,; W. L. Guo, Hexagonal boron nitride growth on Cu-Si alloy: Morphologies and large domains. Small 2019, 15, 1805188.
[32]
R. Mas-Ballesté,; C. Gómez-Navarro,; J. Gómez-Herrero,; F. Zamora, 2D materials: To graphene and beyond. Nanoscale 2011, 3, 20-30.
[33]
K. S. Novoselov,; A. Mishchenko,; A. Carvalho,; A. H. Castro Neto, 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.
[34]
Y. Wen,; Q. S. Wang,; L. Yin,; Q. Liu,; F. Wang,; F. M. Wang,; Z. X. Wang,; K. L. Liu,; K. Xu,; Y. Huang, et al. Epitaxial 2D PbS nanoplates arrays with highly efficient infrared response. Adv. Mater. 2016, 28, 8051-8057.
[35]
X. Z. Hu,; P. Huang,; B. Jin,; X. W. Zhang,; H. Q. Li,; X. Zhou,; T. Y. Zhai, Halide-induced self-limited growth of ultrathin nonlayered Ge flakes for high-performance phototransistors. J. Am. Chem. Soc. 2018, 140, 12909-12914.
[36]
X. X. Zhao,; Q. Yin,; H. Huang,; Q. Yu,; B. Liu,; J. Yang,; Z. Dong,; Z. J. Shen,; B. P. Zhu,; L. Liao, et al. van der Waals epitaxy of ultrathin crystalline PbTe nanosheets with high near-infrared photoelectric response. Nano Res., in press, .
[37]
N. Mounet,; M. Gibertini,; P. Schwaller,; D. Campi,; A. Merkys,; A. Marrazzo,; T. Sohier,; I. E. Castelli,; A. Cepellotti,; G. Pizzi, et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 2018, 13, 246-252.
[38]
J. Tao,; W. F. Shen,; S. Wu,; L. Liu,; Z. H. Feng,; C. Wang,; C. G. Hu,; P. Yao,; H. Zhang,; W. Pang, et al. Mechanical and electrical anisotropy of few-layer black phosphorus. ACS Nano 2015, 9, 11362-11370.
[39]
L. Li,; W. K. Wang,; P. L. Gong,; X. D. Zhu,; B. Deng,; X. Q. Shi,; G. Y. Gao,; H. Q. Li,; T. Y. Zhai, 2D GeP: An unexploited low-symmetry semiconductor with strong in-plane anisotropy. Adv. Mater. 2018, 30, 1706771.
[40]
M. Yankowitz,; S. W. Chen,; H. Polshyn,; Y. X. Zhang,; K. Watanabe,; T. Taniguchi,; D. Graf,; A. F. Young,; C. R. Dean, Tuning superconductivity in twisted bilayer graphene. Science 2019, 363, 1059-1064.
[41]
H. Y. Li,; H. Ying,; X. P. Chen,; D. L. Nika,; A. I. Cocemasov,; W. W. Cai,; A. A. Balandin,; S. S. Chen, Thermal conductivity of twisted bilayer graphene. Nanoscale 2014, 6, 13402-13408.
[42]
N. R. Finney,; M. Yankowitz,; L. Muraleetharan,; K. Watanabe,; T. Taniguchi,; C. R. Dean,; J. Hone, Tunable crystal symmetry in graphene-boron nitride heterostructures with coexisting moiré superlattices. Nat. Nanotechnol. 2019, 14, 1029-1034.
[43]
G. R. Chen,; A. L. Sharpe,; P. Gallagher,; I. T. Rosen,; E. J. Fox,; L. L. Jiang,; B. Lyu,; H. Y. Li,; K. Watanabe,; T. Taniguchi, et al. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature 2019, 572, 215-219.
[44]
A. S. Aji,; P. Solís-Fernández,; H. G. Ji,; K. Fukuda,; H. Ago, High mobility WS2 transistors realized by multilayer graphene electrodes and application to high responsivity flexible photodetectors. Adv. Funct. Mater. 2017, 27, 1703448.
[45]
L. Yin,; F. Wang,; R. Q. Cheng,; Z. X. Wang,; J. W. Chu,; Y. Wen,; J. He, van der Waals heterostructure devices with dynamically controlled conduction polarity and multifunctionality. Adv. Funct. Mater. 2019, 29, 1804897.
[46]
X. Cui,; G. H. Lee,; Y. D. Kim,; G. Arefe,; P. Y. Huang,; C. H. Lee,; D. A. Chenet,; X. Zhang,; L. Wang,; F. Ye, et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 2015, 10, 534-540.
[47]
S. Boandoh,; F. O. T. Agyapong-Fordjour,; S. H. Choi,; J. S. Lee,; J. H. Park,; H. Ko,; G. Han,; S. J. Yun,; S. Park,; Y. M. Kim, et al. Wafer-scale van der waals heterostructures with ultraclean interfaces via the aid of viscoelastic polymer. ACS Appl. Mater. Interfaces 2019, 11, 1579-1586.
[48]
S. W. Cao,; Y. H. Xing,; J. Han,; X. Luo,; W. X. Lv,; W. M. Lv,; B. S. Zhang,; Z. M. Zeng, Ultrahigh-photoresponsive UV photodetector based on a BP/ReS2 heterostructure p-n diode. Nanoscale 2018, 10, 16805-16811.
[49]
Q. H. Zhao,; W. Q. Jie,; T. Wang,; A. Castellanos-Gomez,; R. Frisenda, InSe schottky diodes based on van der Waals contacts. Adv. Funct. Mater. 2020, 30, 2001307.
[50]
A. A. Murthy,; T. K. Stanev,; J. D. Cain,; S. Q. Hao,; T. LaMountain,; S. Kim,; N. Speiser,; K. Watanabe,; T. Taniguchi,; C. Wolverton, et al. Intrinsic transport in 2D heterostructures mediated through h-BN tunneling contacts. Nano Lett. 2018, 18, 2990-2998.
[51]
H. W. Liu,; X. L. Zhu,; X. X. Sun,; C. G. Zhu,; W. Huang,; X. H. Zhang,; B. Y. Zheng,; Z. X. Zou,; Z. Y. Luo,; X. Wang, et al. Self-powered broad-band photodetectors based on vertically stacked WSe2/Bi2Te3 p-n heterojunctions. ACS Nano 2019, 13, 13573-13580.
[52]
Y. C. Lin,; S. S. Li,; H. P. Komsa,; L. J. Chang,; A. V. Krasheninnikov,; G. Eda,; K. Suenaga, Revealing the atomic defects of WS2 governing its distinct optical emissions. Adv. Funct. Mater. 2018, 28, 1704210.
[53]
A. Y. Gao,; Z. Y. Zhang,; L. F. Li,; B. J. Zheng,; C. Y. Wang,; Y. J. Wang,; T. J. Cao,; Y. Wang,; S. J. Liang,; F. Miao, et al. Robust impact-ionization field-effect transistor based on nanoscale vertical graphene/black phosphorus/indium selenide heterostructures. ACS Nano 2020, 14, 434-441.
[54]
J. Bullock,; M. Amani,; J. Cho,; Y. Z. Chen,; G. H. Ahn,; V. Adinolfi,; V. R. Shrestha,; Y. Gao,; K. B. Crozier,; Y. L. Chueh, et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nat. Photonics 2018, 12, 601-607.
[55]
S. Q. Hu,; Q. Zhang,; X. G. Luo,; X. T. Zhang,; T. Wang,; Y. C. Cheng,; W. Q. Jie,; J. L. Zhao,; T. Mei,; X. T. Gan, Au-InSe van der Waals Schottky junctions with ultralow reverse current and high photosensitivity. Nanoscale 2020, 12, 4094-4100.
[56]
W. T. Su,; N. Kumar,; A. Krayev,; M. Chaigneau, In situ topographical chemical and electrical imaging of carboxyl graphene oxide at the nanoscale. Nat. Commun. 2018, 9, 2891.
[57]
H. Li,; Q. Zhang,; C. C. R. Yap,; B. K. Tay,; T. H. T. Edwin,; A. Olivier,; D. Baillargeat, From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385-1390.
[58]
J. Stadler,; T. Schmid,; R. Zenobi, Nanoscale chemical imaging of single-layer graphene. ACS Nano 2011, 5, 8442-8448.
[59]
T. Verhagen,; V. L. P. Guerra,; G. Haider,; M. Kalbac,; J. Vejpravova, Towards the evaluation of defects in MoS2 using cryogenic photoluminescence spectroscopy. Nanoscale 2020, 12, 3019-3028.
[60]
M. R. Rosenberger,; H. J. Chuang,; M. Phillips,; V. P. Oleshko,; K. M. McCreary,; S. V. Sivaram,; C. S. Hellberg,; B. T. Jonker, Twist angle-dependent atomic reconstruction and moiré patterns in transition metal dichalcogenide heterostructures. ACS Nano 2020, 14, 4550-4558.
[61]
X. D. Wang,; P. Wang,; J. L. Wang,; W. D. Hu,; X. H. Zhou,; N. Guo,; H. Huang,; S. Sun,; H. Shen,; T. Lin, et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv. Mater. 2015, 27, 6575-6581.
[62]
F. Wu,; H. Xia,; H. D. Sun,; J. W. Zhang,; F. Gong,; Z. Wang,; L. Chen,; P. Wang,; M. S. Long,; X. Wu, et al. AsP/InSe van der Waals tunneling heterojunctions with ultrahigh reverse rectification ratio and high photosensitivity. Adv. Funct. Mater. 2019, 29, 1900314.
[63]
A. De Sanctis,; G. F. Jones,; D. J. Wehenkel,; F. Bezares,; F. H. L. Koppens,; M. F. Craciun,; S. Russo, Extraordinary linear dynamic range in laser-defined functionalized graphene photodetectors. Sci. Adv. 2017, 3, e1602617.
[64]
S. Y. Dai,; M. Tymchenko,; Z. Q. Xu,; T. T. Tran,; Y. F. Yang,; Q. Ma,; K. Watanabe,; T. Taniguchi,; P. Jarillo-Herrero,; I. Aharonovich, et al. Internal nanostructure diagnosis with hyperbolic phonon polaritons in hexagonal boron nitride. Nano Lett. 2018, 18, 5205-5210.
[65]
X. Hu,; K. P. Wong,; L. H. Zeng,; X. Y. Guo,; T. Liu,; L. Zhang,; Q. Chen,; X. F. Zhang,; Y. Zhu,; K. H. Fung, et al. Infrared nanoimaging of surface plasmons in type-II dirac semimetal PtTe2 nanoribbons. ACS Nano 2020, 14, 6276-6284.
[66]
A. Ali,; K. Shehzad,; H. W. Guo,; Z. Wang,; P. Wang,; A. Qadir,; W. D. Hu,; T. L. Ren,; B. Yu,; Y. Xu, High-performance, flexible graphene/ultra-thin silicon ultra-violet image sensor. In Proceedings of 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2017, pp 8.6.1-8.6.4.
[67]
N. Guo,; W. D. Hu,; T. Jiang,; F. Gong,; W. J. Luo,; W. C. Qiu,; P. Wang,; L. Liu,; S. W. Wu,; L. Liao, et al. High-quality infrared imaging with graphene photodetectors at room temperature. Nanoscale 2016, 8, 16065-16072.
[68]
M. Engel,; M. Steiner,; P. Avouris, Black phosphorus photodetector for multispectral, high-resolution imaging. Nano Lett. 2014, 14, 6414-6417.
[69]
P. Wang,; S. S. Liu,; W. J. Luo,; H. H. Fang,; F. Gong,; N. Guo,; Z. G. Chen,; J. Zou,; Y. Huang,; X. H. Zhou, et al. Arrayed van der Waals broadband detectors for dual-band detection. Adv. Mater. 2017, 29, 1604439.
[70]
J. B. Yin,; Z. J. Tan,; H. Hong,; J. X. Wu,; H. T. Yuan,; Y. J. Liu,; C. Chen,; C. W. Tan,; F. R. Yao,; T. R. Li, et al. Ultrafast and highly sensitive infrared photodetectors based on two-dimensional oxyselenide crystals. Nat. Commun. 2018, 9, 3311.
[71]
S. Goossens,; G. Navickaite,; C. Monasterio,; S. Gupta,; J. J. Piqueras,; R. Pérez,; G. Burwell,; I. Nikitskiy,; T. Lasanta,; T. Galán, et al. Broadband image sensor array based on graphene-CMOS integration. Nat. Photonics 2017, 11, 366-371.
[72]
D. Wu,; J. W. Guo,; J. Du,; C. X. Xia,; L. H. Zeng,; Y. Z. Tian,; Z. F. Shi,; Y. T. Tian,; X. J. Li,; Y. H. Tsang, et al. Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano 2019, 13, 9907-9917.
[73]
L. Tong,; X. Y. Huang,; P. Wang,; L. Ye,; M. Peng,; L. C. An,; Q. D. Sun,; Y. Zhang,; G. M. Yang,; Z. Li, et al. Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature. Nat. Commun. 2020, 11, 2308.
[74]
K. Y. Liu,; W. H. Wang,; Y. F. Yu,; X. Y. Hou,; Y. P. Liu,; W. Chen,; X. M. Wang,; J. P. Lu,; Z. H. Ni, Graphene-based infrared position- sensitive detector for precise measurements and high-speed trajectory tracking. Nano Lett. 2019, 19, 8132-8137.
[75]
W. Lee,; Y. Liu,; Y. Lee,; B. K. Sharma,; S. M. Shinde,; S. D. Kim,; K. Nan,; Z. Yan,; M. D. Han,; Y. G. Huang, et al. Two-dimensional materials in functional three-dimensional architectures with applications in photodetection and imaging. Nat. Commun. 2018, 9, 1417.
[76]
W. N. Xu,; T. F. Li,; Z. Qin,; Q. Huang,; H. Gao,; K. Kang,; J. Park,; M. J. Buehler,; J. B. Khurgin,; D. H. Gracias, Reversible MoS2 origami with spatially resolved and reconfigurable photosensitivity. Nano Lett. 2019, 19, 7941-7949.
[77]
C. Choi,; M. K. Choi,; S. Y. Liu,; M. S. Kim,; O. K. Park,; C. Im,; J. Kim,; X. L. Qin,; G. J. Lee,; K. W. Cho, et al. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat. Commun. 2017, 8, 1664.
[78]
M. B. Lien,; C. H. Liu,; I. Y. Chun,; S. Ravishankar,; H. Nien,; M. M. Zhou,; J. A. Fessler,; Z. H. Zhong,; T. B. Norris, Ranging and light field imaging with transparent photodetectors. Nat. Photonics 2020, 14, 143-148.
[79]
Y. Huang,; Y. H. Pan,; R. Yang,; L. H. Bao,; L. Meng,; H. L. Luo,; Y. Q. Cai,; G. D. Liu,; W. J. Zhao,; Z. Zhou, et al. Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 2020, 11, 2453.
[80]
T. Iwasaki,; K. Endo,; E. Watanabe,; D. Tsuya,; Y. Morita,; S. Nakaharai,; Y. Noguchi,; Y. Wakayama,; K. Watanabe,; T. Taniguchi, et al. Bubble-free transfer technique for high-quality graphene/hexagonal boron nitride van der Waals heterostructures. ACS Appl. Mater. Interfaces 2020, 12, 8533-8538.
[81]
Y. Wakafuji,; R. Moriya,; S. Masubuchi,; K. Watanabe,; T. Taniguchi,; T. Machida, 3D manipulation of 2D materials Using microdome polymer. Nano Lett. 2020, 20, 2486-2492.
[82]
K. Kim,; M. Yankowitz,; B. Fallahazad,; S. Kang,; H. C. P. Movva,; S. Q. Huang,; S. Larentis,; C. M. Corbet,; T. Taniguchi,; K. Watanabe, et al. van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 2016, 16, 1989-1995.
[83]
Z. X. Zou,; D. Li,; J. W. Liang,; X. H. Zhang,; H. W. Liu,; C. G. Zhu,; X. Yang,; L. H. Li,; B. Y. Zheng,; X. X. Sun, et al. Epitaxial synthesis of ultrathin β-In2Se3/MoS2 heterostructures with high visible/ near-infrared photoresponse. Nanoscale 2020, 12, 6480-6488.
[84]
Z. W. Zhang,; P. Chen,; X. D. Duan,; K. T. Zang,; J. Luo,; X. F. Duan, Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 2017, 357, 788-792.
[85]
P. K. Sahoo,; S. Memaran,; F. A. Nugera,; Y. Xin,; T. Díaz Márquez,; Z. G. Lu,; W. K. Zheng,; N. D. Zhigadlo,; D. Smirnov,; L. Balicas, et al. Bilayer lateral heterostructures of transition-metal dichalcogenides and their optoelectronic response. ACS Nano 2019, 13, 12372-12384.
[86]
T. He,; Z. Wang,; F. Zhong,; H. H. Fang,; P. Wang,; W. D. Hu, Etching techniques in 2D materials. Adv. Mater. Technol. 2019, 4, 1900064.
[87]
T. Das,; D. Seo,; J. E. Seo,; J. Chang, Tunable current transport in PdSe2 via layer-by-layer thickness modulation by mild plasma. Adv. Electron. Mater. 2020, 6, 2000008.
[88]
J. Shim,; A. Oh,; D. H. Kang,; S. Oh,; S. K. Jang,; J. Jeon,; M. H. Jeon,; M. Kim,; C. Choi,; J. Lee, et al. High-performance 2D rhenium disulfide (ReS2) transistors and photodetectors by oxygen plasma treatment. Adv. Mater. 2016, 28, 6985-6992.
[89]
J. H. Lee,; E. K. Lee,; W. J. Joo,; Y. Jang,; B. S. Kim,; J. Y. Lim,; S. H. Choi,; S. J. Ahn,; J. R. Ahn,; M. H. Park, et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 2014, 344, 286-289.
[90]
X. Z. Xu,; Z. H. Zhang,; J. C. Dong,; D. Yi,; J. J. Niu,; M. H. Wu,; L. Lin,; R. K. Yin,; M. Q. Li,; J. Y. Zhou, et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull. 2017, 62, 1074-1080.
[91]
W. Ma,; M. L. Chen,; L. C. Yin,; Z. B. Liu,; H. Li,; C. Xu,; X. Xin,; D. M. Sun,; H. M. Cheng,; W. C. Ren, Interlayer epitaxy of wafer- scale high-quality uniform AB-stacked bilayer graphene films on liquid Pt3Si/solid Pt. Nat. Commun. 2019, 10, 2809.
[92]
T. A. Chen,; C. P. Chuu,; C. C. Tseng,; C. K. Wen,; H. S. P. Wong,; S. Y. Pan,; R. T. Li,; T. A. Chao,; W. C. Chueh,; Y. F. Zhang, et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111). Nature 2020, 579, 219-223.
[93]
A. R. Jang,; S. Hong,; C. Hyun,; S. I. Yoon,; G. Kim,; H. Y. Jeong,; T. J. Shin,; S. O. Park,; K. Wong,; S. K. Kwak, et al. Wafer-scale and wrinkle-free epitaxial growth of single-orientated multilayer hexagonal boron nitride on sapphire. Nano Lett. 2016, 16, 3360-3366.
[94]
S. Song,; Y. Sim,; S. Y. Kim,; J. H. Kim,; I. Oh,; W. Na,; D. H. Lee,; J. Wang,; S. L. Yan,; Y. A. Liu, et al. Wafer-scale production of patterned transition metal ditelluride layers for two-dimensional metal-semiconductor contacts at the Schottky-Mott limit. Nat. Electron. 2020, 3, 207-215.
[95]
J. Li,; X. D. Yang,; Y. Liu,; B. L. Huang,; R. X. Wu,; Z. W. Zhang,; B. Zhao,; H. F. Ma,; W. Q. Dang,; Z. Wei, et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 2020, 579, 368-374.
[96]
S. Das,; H. Y. Chen,; A. V. Penumatcha,; J. Appenzeller, High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100-105.
[97]
Y. Liu,; J. Guo,; E. B. Zhu,; L. Liao,; S. J. Lee,; M. N. Ding,; I. Shakir,; V. Gambin,; Y. Huang,; X. F. Duan, Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696-700.
[98]
J. F. Jiang,; F. Q. Meng,; Q. L. Cheng,; A. Z. Wang,; Y. K. Chen,; J. Qiao,; J. B. Pang,; W. D. Xu,; H. Ji,; Y. Zhang, et al. Low lattice mismatch InSe-Se vertical Van der Waals heterostructure for high-performance transistors via strong fermi-level depinning. Small Methods 2020, 4, 2000238.
[99]
Y. Wang,; J. C. Kim,; R. J. Wu,; J. Martinez,; X. J. Song,; J. Yang,; F. Zhao,; A. Mkhoyan,; H. Y. Jeong,; M. Chhowalla, van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 2019, 568, 70-74.
[100]
J. H. Na,; Y. Kim,; J. H. Smet,; M. Burghard,; K. Kern, Gate-tunable tunneling transistor based on a thin black phosphorus-SnSe2 heterostructure. ACS Appl. Mater. Interfaces 2019, 11, 20973-20978.
[101]
M. Chhowalla,; D. Jena,; H. Zhang, Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1, 16052.
[102]
A. Y. Gao,; J. W. Lai,; Y. J. Wang,; Z. Zhu,; J. W. Zeng,; G. L. Yu,; N. Z. Wang,; W. C. Chen,; T. J. Cao,; W. D. Hu, et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat. Nanotechnol. 2019, 14, 217-222.
[103]
Y. Wen,; P. He,; Y. Y. Yao,; Y. Zhang,; R. Q. Cheng,; L. Yin,; N. N. Li,; J. Li,; J. J. Wang,; Z. X. Wang, et al. Bridging the van der Waals interface for advanced optoelectronic devices. Adv. Mater. 2020, 32, 1906874.
[104]
G. Wang,; M. Zhang,; D. Chen,; Q. L. Guo,; X. F. Feng,; T. C. Niu,; X. S. Liu,; A. Li,; J. W. Lai,; D. Sun, et al. Seamless lateral graphene p-n junctions formed by selective in situ doping for high-performance photodetectors. Nat. Commun. 2018, 9, 5168.
[105]
D. Y. Liu,; J. H. Hong,; X. Wang,; X. B. Li,; Q. L. Feng,; C. W. Tan,; T. Y. Zhai,; F. Ding,; H. L. Peng,; H. Xu, Diverse atomically sharp interfaces and linear dichroism of 1T' ReS2-ReSe2 lateral p-n heterojunctions. Adv. Funct. Mater. 2018, 28, 1804696.
[106]
D. Y. Liu,; J. H. Hong,; X. B. Li,; X. Zhou,; B. Jin,; Q. N. Cui,; J. P. Chen,; Q. L. Feng,; C. X. Xu,; T. Y. Zhai, et al. Synthesis of 2H-1T’ WS2-ReS2 heterophase structures with atomically sharp interface via hydrogen-triggered one-pot growth. Adv. Funct. Mater. 2020, 30, 1910169.
[107]
F. Ullah,; Y. Sim,; C. T. Le,; M. J. Seong,; J. I. Jang,; S. H. Rhim,; B. C. Tran Khac,; K. H. Chung,; K. Park,; Y. J. Lee, et al. Growth and simultaneous valleys manipulation of two-dimensional MoSe2- WSe2 lateral heterostructure. ACS Nano 2017, 11, 8822-8829.
[108]
P. Gant,; P. Huang,; D. Pérez de Lara,; D. Guo,; R. Frisenda,; A. Castellanos-Gomez, A strain tunable single-layer MoS2 photodetector. Mater. Today 2019, 27, 8-13.
[109]
R. Maiti,; C. Patil,; M. A. S. R. Saadi,; T. Xie,; J. G. Azadani,; B. Uluutku,; R. Amin,; A. F. Briggs,; M. Miscuglio,; D. Van Thourhout, et al. Strain-engineered high-responsivity MoTe2 photodetector for silicon photonic integrated circuits. Nat. Photonics 2020, 14, 578-584.
[110]
X. S. Geng,; Y. Q. Yu,; X. L. Zhou,; C. D. Wang,; K. W. Xu,; Y. Zhang,; C. Y. Wu,; L. Wang,; Y. Jiang,; Q. Yang, Design and construction of ultra-thin MoSe2 nanosheet-based heterojunction for high-speed and low-noise photodetection. Nano Res. 2016, 9, 2641-2651.
[111]
N. Flöry,; P. Ma,; Y. Salamin,; A. Emboras,; T. Taniguchi,; K. Watanabe,; J. Leuthold,; L. Novotny, Waveguide-integrated van der Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity. Nat. Nanotechnol. 2020, 15, 118-124.
[112]
D. S. Schneider,; A. Grundmann,; A. Bablich,; V. Passi,; S. Kataria,; H. Kalisch,; M. Heuken,; A. Vescan,; D. Neumaier,; M. C. Lemme, Highly responsive flexible photodetectors based on MOVPE grown uniform few-layer MoS2. ACS Photonics 2020, 7, 1388-1395.
[113]
Z. J. Lu,; Y. Xu,; Y. Q. Yu,; K. W. Xu,; J. Mao,; G. B. Xu,; Y. M. Ma,; D. Wu,; J. S. Jie, Ultrahigh speed and broadband few-layer MoTe2/Si 2D-3D heterojunction-based photodiodes fabricated by pulsed laser deposition. Adv. Funct. Mater. 2020, 30, 1907951.
[114]
A. G. Milekhin,; M. Rahaman,; E. E. Rodyakina,; A. V. Latyshev,; V. M. Dzhagan,; D. R. T. Zahn, Giant gap-plasmon tip-enhanced Raman scattering of MoS2 monolayers on Au nanocluster arrays. Nanoscale 2018, 10, 2755-2763.
[115]
T. X. Huang,; X. Cong,; S. S. Wu,; K. Q. Lin,; X. Yao,; Y. H. He,; J. B. Wu,; Y. F. Bao,; S. C. Huang,; X. Wang, et al. Probing the edge-related properties of atomically thin MoS2 at nanoscale. Nat. Commun. 2019, 10, 5544.
[116]
C. Lee,; B. G. Jeong,; S. J. Yun,; Y. H. Lee,; S. M. Lee,; M. S. Jeong, Unveiling defect-related Raman mode of monolayer WS2 via tip-enhanced resonance Raman scattering. ACS Nano 2018, 12, 9982-9990.
[117]
J. Jiang,; C. Y. Ling,; T. Xu,; W. H. Wang,; X. H. Niu,; A. Zafar,; Z. Z. Yan,; X. M. Wang,; Y. M. You,; L. T. Sun, et al. Defect engineering for modulating the trap states in 2D photoconductors. Adv. Mater. 2018, 30, 1804332.
[118]
C. Li,; K. C. Xiong,; L. Li,; Q. S. Guo,; X. L. Chen,; A. Madjar,; K. Watanabe,; T. Taniguchi,; J. C. M. Hwang,; F. N. Xia, Black phosphorus high-frequency transistors with local contact bias. ACS Nano 2020, 14, 2118-2125.
[119]
F. N. Xia,; T. Mueller,; Y. M. Lin,; A. Valdes-Garcia,; P. Avouris, Ultrafast graphene photodetector. Nat. Nanotechnol. 2009, 4, 839-843.
[120]
D. Xiang,; T. Liu,; J. Y. Wang,; P. Wang,; L. Wang,; Y. Zheng,; Y. N. Wang,; J. Gao,; K. W. Ang,; G. Eda, et al. Anomalous broadband spectrum photodetection in 2D rhenium disulfide transistor. Adv. Opt. Mater. 2019, 7, 1901115.
[121]
Q. S. Guo,; A. Pospischil,; M. Bhuiyan,; H. Jiang,; H. Tian,; D. Farmer,; B. C. Deng,; C. Li,; S. J. Han,; H. Wang, et al. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 2016, 16, 4648-4655.
[122]
C. Li,; Y. Wu,; B. C. Deng,; Y. J. Xie,; Q. S. Guo,; S. F. Yuan,; X. L. Chen,; M. Bhuiyan,; Z. S. Wu,; K. Watanabe, et al. Synthesis of crystalline black phosphorus thin film on sapphire. Adv. Mater. 2018, 30, 1703748.
[123]
X. L. Chen,; C. Chen,; A. Levi,; L. Houben,; B. C. Deng,; S. F. Yuan,; C. Ma,; K. Watanabe,; T. Taniguchi,; D. Naveh, et al. Large-velocity saturation in thin-film black phosphorus transistors. ACS Nano 2018, 12, 5003-5010.
[124]
X. F. Li,; Z. Q. Yu,; X. Xiong,; T. Y. Li,; T. T. Gao,; R. S. Wang,; R. Huang,; Y. Q. Wu, High-speed black phosphorus field-effect transistors approaching ballistic limit. Sci. Adv. 2019, 5, eaau3194.
[125]
J. Guo,; Y. Liu,; Y. Ma,; E. B. Zhu,; S. Lee,; Z. X. Lu,; Z. P. Zhao,; C. H. Xu,; S. J. Lee,; H. Wu, et al. Few-layer GeAs field-effect transistors and infrared photodetectors. Adv. Mater. 2018, 30, 1705934.
[126]
L. K. Li,; Y. J. Yu,; G. J. Ye,; Q. Q. Ge,; X. D. Ou,; H. Wu,; D. L. Feng,; X. H. Chen,; Y. B. Zhang, Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372-377.
[127]
H. Liu,; A. T. Neal,; Z. Zhu,; Z. Luo,; X. F. Xu,; D. Tománek,; P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033-4041.
[128]
C. G. Lee,; H. G. Yan,; L. E. Brus,; T. F. Heinz,; J. Hone,; S. Ryu, Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695-2700.
[129]
R. He,; J. van Baren,; J. A. Yan,; X. X. Xi,; Z. P. Ye,; G. H. Ye,; I. H. Lu,; S. M. Leong,; C. H. Lui, Interlayer breathing and shear modes in NbSe2 atomic layers. 2D Mater. 2016, 3, 031008.
[130]
C. H. Lui,; Z. P. Ye,; C. Keiser,; X. Xiao,; R. He, Temperature- activated layer-breathing vibrations in few-layer graphene. Nano Lett. 2014, 14, 4615-4621.
[131]
Y. Sui,; J. Appenzeller, Screening and interlayer coupling in multilayer graphene field-effect transistors. Nano Lett. 2009, 9, 2973-2977.
[132]
Y. D. Zhao,; J. S. Qiao,; P. Yu,; Z. X. Hu,; Z. Y. Lin,; S. P. Lau,; Z. Liu,; W. Ji,; Y. Chai, Extraordinarily strong interlayer interaction in 2D layered PtS2. Adv. Mater. 2016, 28, 2399-2407.
[133]
H. Li,; J. B. Wu,; F. R. Ran,; M. L. Lin,; X. L. Liu,; Y. Y. Zhao,; X. Lu,; Q. H. Xiong,; J. Zhang,; W. Huang, et al. Interfacial interactions in van der Waals heterostructures of MoS2 and graphene. ACS Nano 2017, 11, 11714-11723.
[134]
X. Zhou,; X. Z. Hu,; S. S. Zhou,; H. Y. Song,; Q. Zhang,; L. J. Pi,; L. Li,; H. Q. Li,; J. T. Lü,; T. Y. Zhai, Tunneling diode based on WSe2/SnS2 heterostructure incorporating high detectivity and responsivity. Adv. Mater. 2018, 30, 1703286.
[135]
Y. Cao,; V. Fatemi,; S. A. Fang,; K. Watanabe,; T. Taniguchi,; E. Kaxiras,; P. Jarillo-Herrero, Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43-50.
[136]
G. H. Li,; A. Luican,; J. M. B. Lopes dos Santos,; A. H. Castro Neto,; A. Reina,; J. Kong,; E. Y. Andrei, Observation of Van Hove singularities in twisted graphene layers. Nat. Phys. 2010, 6, 109-113.
[137]
H. Yoo,; R. Engelke,; S. Carr,; S. A. Fang,; K. Zhang,; P. Cazeaux,; S. H. Sung,; R. Hovden,; A. W. Tsen,; T. Taniguchi, et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 2019, 18, 448-453.
[138]
F. Haddadi,; Q. S. Wu,; A. J. Kruchkov,; O. V. Yazyev, Moiré flat bands in twisted double bilayer graphene. Nano Lett. 2020, 20, 2410-2415.
[139]
B. C. Deng,; C. Ma,; Q. Y. Wang,; S. F. Yuan,; K. Watanabe,; T. Taniguchi,; F. Zhang,; F. N. Xia, Strong mid-infrared photoresponse in small-twist-angle bilayer graphene. Nat. Photonics 2020, 14, 549-553.
[140]
C. H. Lui,; L. M. Malard,; S. Kim,; G. Lantz,; F. E. Laverge,; R. Saito,; T. F. Heinz, Observation of layer-breathing mode vibrations in few-layer graphene through combination Raman scattering. Nano Lett. 2012, 12, 5539-5544.
[141]
V. Carozo,; C. M. Almeida,; B. Fragneaud,; P. M. Bedê,; M. V. O. Moutinho,; J. Ribeiro-Soares,; N. F. Andrade,; A. G. Souza Filho,; M. J. S. Matos,; B. Wang, et al. Resonance effects on the Raman spectra of graphene superlattices. Phys. Rev. B 2013, 88, 085401.
[142]
L. D. Xian,; D. M. Kennes,; N. Tancogne-Dejean,; M. Altarelli,; A. Rubio, Multiflat bands and strong correlations in twisted bilayer boron nitride: Doping-induced correlated insulator and superconductor. Nano Lett. 2019, 19, 4934-4940.
[143]
Y. J. Zhou,; N. Maity,; A. Rai,; R. Juneja,; X. H. Meng,; A. Roy,; Y. Y. Zhang,; X. C. Xu,; J. F. Lin,; S. K. Banerjee, et al. Stacking- order-driven optical properties and carrier dynamics in ReS2. Adv. Mater. 2020, 32, 1908311.
[144]
V. Carozo,; C. M. Almeida,; E. H. M. Ferreira,; L. G. Cançado,; C. A. Achete,; A. Jorio, Raman signature of graphene superlattices. Nano Lett. 2011, 11, 4527-4534.
[145]
G. S. N. Eliel,; M. V. O. Moutinho,; A. C. Gadelha,; A. Righi,; L. C. Campos,; H. B. Ribeiro,; P. W. Chiu,; K. Watanabe,; T. Taniguchi,; P. Puech, et al. Intralayer and interlayer electron-phonon interactions in twisted graphene heterostructures. Nat. Commun. 2018, 9, 1221.
[146]
J. B. Wu,; X. Zhang,; M. Ijäs,; W. P. Han,; X. F. Qiao,; X. L. Li,; D. S. Jiang,; A. C. Ferrari,; P. H. Tan, Resonant Raman spectroscopy of twisted multilayer graphene. Nat. Commun. 2014, 5, 5309.
[147]
J. Yang,; R. J. Xu,; J. J. Pei,; Y. W. Myint,; F. Wang,; Z. Wang,; S. Zhang,; Z. F. Yu,; Y. R. Lu, Optical tuning of exciton and trion emissions in monolayer phosphorene. Light Sci. Appl. 2015, 4, e312.
[148]
L. Ottaviano,; S. Palleschi,; F. Perrozzi,; G. D’Olimpio,; F. Priante,; M. Donarelli,; P. Benassi,; M. Nardone,; M. Gonchigsuren,; M. Gombosuren, et al. Mechanical exfoliation and layer number identification of MoS2 revisited. 2D Mater. 2017, 4, 045013 .
[149]
L. J. Du,; M. Z. Liao,; J. Tang,; Q. Zhang,; H. Yu,; R. Yang,; K. Watanabe,; T. Taniguchi,; D. X. Shi,; Q. M. Zhang, et al. Strongly enhanced exciton-phonon coupling in two-dimensional WSe2. Phys. Rev. B 2018, 97, 235145.
[150]
J. Pak,; Y. Jang,; J. Byun,; K. Cho,; T. Y. Kim,; J. K. Kim,; B. Y. Choi,; J. Shin,; Y. Hong,; S. Chung, et al. Two-dimensional thickness- dependent avalanche breakdown phenomena in MoS2 field-effect transistors under high electric fields. ACS Nano 2018, 12, 7109-7116.
[151]
C. Chen,; F. Chen,; X. L. Chen,; B. C. Deng,; B. Eng,; D. Jung,; Q. S. Guo,; S. F. Yuan,; K. Watanabe,; T. Taniguchi, et al. Bright mid-infrared photoluminescence from thin-film black phosphorus. Nano Lett. 2019, 19, 1488-1493.
[152]
Y. S. Zhang,; S. W. Wang,; S. L. Chen,; Q. L. Zhang,; X. Wang,; X. L. Zhu,; X. H. Zhang,; X. Xu,; T. F. Yang,; M. He, et al. Wavelength-tunable mid-infrared lasing from black phosphorus nanosheets. Adv. Mater. 2020, 32, 1808319.
[153]
C. Chen,; X. B. Lu,; B. C. Deng,; X. L. Chen,; Q. S. Guo,; C. Li,; C. Ma,; S. F. Yuan,; E. Sung,; K. Watanabe, et al. Widely tunable mid-infrared light emission in thin-film black phosphorus. Sci. Adv. 2020, 6, eaay6134.
[154]
X. L. Chen,; X. B. Lu,; B. C. Deng,; O. Sinai,; Y. C. Shao,; C. Li,; S. F. Yuan,; V. Tran,; K. Watanabe,; T. Taniguchi, et al. Widely tunable black phosphorus mid-infrared photodetector. Nat. Commun. 2017, 8, 1672.
[155]
A. M. Afzal,; G. Dastgeer,; M. Z. Iqbal,; P. Gautam,; M. M. Faisal, High-performance p-BP/n-PdSe2 near-infrared photodiodes with a fast and gate-tunable photoresponse. ACS Appl. Mater. Interfaces 2020, 12, 19625-19634.
[156]
H. Xue,; Y. D. Wang,; Y. Y. Dai,; W. Kim,; H. Jussila,; M. Qi,; J. Susoma,; Z. Y. Ren,; Q. Dai,; J. L. Zhao, et al. A MoSe2/WSe2 heterojunction-based photodetector at telecommunication wavelengths. Adv. Funct. Mater. 2018, 28, 1804388.
[157]
S. H. Jo,; H. W. Lee,; J. Shim,; K. Heo,; M. Kim,; Y. J. Song,; J. H. Park, Highly efficient infrared photodetection in a gate-controllable van der Waals heterojunction with staggered bandgap alignment. Adv. Sci. 2018, 5, 1700423.
[158]
T. Ye,; J. Z. Li,; D. H. Li, Charge-accumulation effect in transition metal dichalcogenide heterobilayers. Small 2019, 15, 1902424.
[159]
S. Tongay,; W. Fan,; J. Kang,; J. Park,; U. Koldemir,; J. Suh,; D. S. Narang,; K. Liu,; J. Ji,; J. B. Li, et al. Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. Nano Lett. 2014, 14, 3185-3190.
[160]
N. Ubrig,; E. Ponomarev,; J. Zultak,; D. Domaretskiy,; V. Zólyomi,; D. Terry,; J. Howarth,; I. Gutiérrez-Lezama,; A. Zhukov,; Z. R. Kudrynskyi, et al. Design of van der Waals interfaces for broad-spectrum optoelectronics. Nat. Mater. 2020, 19, 299-304.
[161]
A. Varghese,; D. Saha,; K. Thakar,; V. Jindal,; S. Ghosh,; N. V. Medhekar,; S. Ghosh,; S. Lodha, Near-direct bandgap WSe2/ReS2 type-II pn heterojunction for enhanced ultrafast photodetection and high-performance photovoltaics. Nano Lett. 2020, 20, 1707-1717.
[162]
F. Li,; T. Shen,; L. Xu,; C. S. Hu,; J. J. Qi, Strain improving the performance of a flexible monolayer MoS2 photodetector. Adv. Electron. Mater. 2019, 5, 1900803.
[163]
W. D. Ma,; J. F. Lu,; B. S. Wan,; D. F. Peng,; Q. Xu,; G. F. Hu,; Y. Y. Peng,; C. F. Pan,; Z. L. Wang, Piezoelectricity in multilayer black phosphorus for piezotronics and nanogenerators. Adv. Mater. 2020, 32, 1905795.
[164]
W. Z. Wu,; L. Wang,; R. M. Yu,; Y. Y. Liu,; S. H. Wei,; J. Hone,; Z. L. Wang, Piezophototronic effect in single-atomic-layer MoS2 for strain-gated flexible optoelectronics. Adv. Mater. 2016, 28, 8463-8468.
[165]
K. N. Zhang,; T. N. Zhang,; G. H. Cheng,; T. X. Li,; S. X. Wang,; W. Wei,; X. H. Zhou,; W. W. Yu,; Y. Sun,; P. Wang, et al. Interlayer transition and infrared photodetection in atomically thin type-II MoTe2/MoS2 van der Waals heterostructures. ACS Nano 2016, 10, 3852-3858.
[166]
J. T. Lu,; Z. Q. Zheng,; J. D. Yao,; W. Gao,; Y. Xiao,; M. L. Zhang,; J. B. Li, An asymmetric contact-induced self-powered 2D In2S3 photodetector towards high-sensitivity and fast-response. Nanoscale 2020, 12, 7196-7205.
[167]
T. X. Chen,; Y. W. Sheng,; Y. Q. Zhou,; R. J. Chang,; X. C. Wang,; H. F. Huang,; Q. Y. Zhang,; L. L. Hou,; J. H. Warner, High photoresponsivity in ultrathin 2D lateral graphene:WS2:graphene photodetectors using direct CVD growth. ACS Appl. Mater. Interfaces 2019, 11, 6421-6430.
[168]
C. X. Zheng,; Q. H. Zhang,; B. Weber,; H. Ilatikhameneh,; F. Chen,; H. Sahasrabudhe,; R. Rahman,; S. Q. Li,; Z. Chen,; J. Hellerstedt, et al. Direct observation of 2D electrostatics and ohmic contacts in template-grown graphene/WS2 heterostructures. ACS Nano 2017, 11, 2785-2793.
[169]
F. Wu,; Q. Li,; P. Wang,; H. Xia,; Z. Wang,; Y. Wang,; M. Luo,; L. Chen,; F. S. Chen,; J. S. Miao, et al. High efficiency and fast van der Waals hetero-photodiodes with a unilateral depletion region. Nat. Commun. 2019, 10, 4663.
[170]
N. T. Duong,; J. Lee,; S. Bang,; C. Park,; S. C. Lim,; M. S. Jeong, Modulating the functions of MoS2/MoTe2 van der Waals heterostructure via thickness variation. ACS Nano 2019, 13, 4478-4485.
[171]
P. K. Srivastava,; Y. Hassan,; Y. Gebredingle,; J. Jung,; B. Kang,; W. J. Yoo,; B. Singh,; C. Lee, Multifunctional van der Waals broken-gap heterojunction. Small 2019, 15, 1804885.
[172]
K. S. Kim,; Y. J. Ji,; K. H. Kim,; S. Choi,; D. H. Kang,; K. Heo,; S. Cho,; S. Yim,; S. Lee,; J. H. Park, et al. Ultrasensitive MoS2 photodetector by serial nano-bridge multi-heterojunction. Nat. Commun. 2019, 10, 4701.
[173]
Y. Liu,; T. X. Gong,; Y. N. Zheng,; X. W. Wang,; J. Xu,; Q. Q. Ai,; J. X. Guo,; W. Huang,; S. F. Zhou,; Z. W. Liu, et al. Ultra-sensitive and plasmon-tunable graphene photodetectors for micro-spectrometry. Nanoscale 2018, 10, 20013-20019.
[174]
P. Ma,; Y. Salamin,; B. Baeuerle,; A. Josten,; W. Heni,; A. Emboras,; J. Leuthold, Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size. ACS Photonics 2019, 6, 154-161.
[175]
Q. S. Guo,; R. W. Yu,; C. Li,; S. F. Yuan,; B. C. Deng,; F. J. García de Abajo,; F. N. Xia, Efficient electrical detection of mid-infrared graphene plasmons at room temperature. Nat. Mater. 2018, 17, 986-992.
[176]
A. L. Hsu,; P. K. Herring,; N. M. Gabor,; S. Ha,; Y. C. Shin,; Y. Song,; M. Chin,; M. Dubey,; A. P. Chandrakasan,; J. Kong, et al. Graphene-based thermopile for thermal imaging applications. Nano Lett. 2015, 15, 7211-7216.
[177]
C. H. Liu,; Y. C. Chang,; T. B. Norris,; Z. H. Zhong, Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol. 2014, 9, 273-278.
[178]
J. C. W. Song,; M. S. Rudner,; C. M. Marcus,; L. S. Levitov, Hot carrier transport and photocurrent response in graphene. Nano Lett. 2011, 11, 4688-4692.
[179]
X. D. Xu,; N. M. Gabor,; J. S. Alden,; A. M. van der Zande,; P. L. McEuen, Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 2010, 10, 562-566.
[180]
Y. W. Zhang,; H. M. Zheng,; Q. Y. Wang,; C. X. Cong,; L. G. Hu,; P. F. Tian,; R. Liu,; S. L. Zhang,; Z. J. Qiu, Competing mechanisms for photocurrent induced at the monolayer-multilayer graphene junction. Small 2018, 14, 1800691.
[181]
F. N. Xia,; T. Mueller,; R. Golizadeh-Mojarad,; M. Freitag,; Y. M. Lin,; J. Tsang,; V. Perebeinos,; P. Avouris, Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett. 2009, 9, 1039-1044.
[182]
Q. Ma,; C. H. Lui,; J. C. W. Song,; Y. X. Lin,; J. F. Kong,; Y. Cao,; T. H. Dinh,; N. L. Nair,; W. J. Fang,; K. Watanabe, et al. Giant intrinsic photoresponse in pristine graphene. Nat. Nanotechnol. 2019, 14, 145-150.
[183]
J. B. Yin,; H. L. Peng, Asymmetry allows photocurrent in intrinsic graphene. Nat. Nanotechnol. 2019, 14, 105-106.
[184]
S. F. Yuan,; R. W. Yu,; C. Ma,; B. C. Deng,; Q. S. Guo,; X. L. Chen,; C. Li,; C. Chen,; K. Watanabe,; T. Taniguchi, et al. Room temperature graphene mid-infrared bolometer with a broad operational wavelength range. ACS Photonics 2020, 7, 1206-1215.
[185]
A. De Sanctis,; I. Amit,; S. P. Hepplestone,; M. F. Craciun,; S. Russo, Strain-engineered inverse charge-funnelling in layered semiconductors. Nat. Commun. 2018, 9, 1652.
[186]
S. W. Zhao,; J. C. Wu,; K. Jin,; H. Y. Ding,; T. S. Li,; C. Z. Wu,; N. Pan,; X. P. Wang, Highly polarized and fast photoresponse of black phosphorus-InSe vertical p-n heterojunctions. Adv. Funct. Mater. 2018, 28, 1802011.
[187]
J. Quereda,; P. San-Jose,; V. Parente,; L. Vaquero-Garzon,; A. J. Molina- Mendoza,; N. Agraït,; G. Rubio-Bollinger,; F. Guinea,; R. Roldán,; A. Castellanos-Gomez, Strong modulation of optical properties in black phosphorus through strain-engineered rippling. Nano Lett. 2016, 16, 2931-2937.
[188]
N. Guo,; L. Xiao,; F. Gong,; M. Luo,; F. Wang,; Y. Jia,; H. C. Chang,; J. K. Liu,; Q. Li,; Y. Wu, et al. Light-driven WSe2-ZnO junction field-effect transistors for high-performance photodetection. Adv. Sci. 2020, 7, 1901637.
[189]
A. Woessner,; P. Alonso-González,; M. B. Lundeberg,; Y. D. Gao,; J. E. Barrios-Vargas,; G. Navickaite,; Q. Ma,; D. Janner,; K. Watanabe,; A. W. Cummings, et al. Near-field photocurrent nanoscopy on bare and encapsulated graphene. Nat. Commun. 2016, 7, 10783.
[190]
S. S. Sunku,; A. S. McLeod,; T. Stauber,; H. Yoo,; D. Halbertal,; G. X. Ni,; A. Sternbach,; B. Y. Jiang,; T. Taniguchi,; K. Watanabe, et al. Nano-photocurrent mapping of local electronic structure in twisted bilayer graphene. Nano Lett. 2020, 20, 2958-2964.
[191]
Q. C. Weng,; V. Panchal,; K. T. Lin,; L. X. Sun,; Y. Kajihara,; A. Tzalenchuk,; S. Komiyama, Comparison of active and passive methods for the infrared scanning near-field microscopy. Appl. Phys. Lett. 2019, 114, 153101.
[192]
K. T. Lin,; Q. Weng,; H. Nema,; S. Kim,; K. Sugawara,; T. Otsuji,; S. Komiyama,; Y. Kajihara, Near-field nanoscopy of current-induced excess noise in graphene. In Proceedings of 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Cancun, Mexico, 2017, pp 1-2.
[193]
Q. C. Weng,; S. Komiyama,; L. Yang,; Z. H. An,; P. P. Chen,; S. A. Biehs,; Y. Kajihara,; W. Lu, Imaging of nonlocal hot-electron energy dissipation via shot noise. Science 2018, 360, 775-778.
[194]
I. H. Lee,; D. Yoo,; P. Avouris,; T. Low,; S. H. Oh, Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy. Nat. Nanotechnol. 2019, 14, 313-319.
[195]
X. H. Cai,; A. B. Sushkov,; M. M. Jadidi,; L. O. Nyakiti,; R. L. Myers- Ward,; D. K. Gaskill,; T. E. Murphy,; M. S. Fuhrer,; H. D. Drew, Plasmon-enhanced terahertz photodetection in graphene. Nano Lett. 2015, 15, 4295-4302.
[196]
Z. Fei,; G. X. Ni,; B. Y. Jiang,; M. M. Fogler,; D. N. Basov, Nanoplasmonic phenomena at electronic boundaries in graphene. ACS Photonics 2017, 4, 2971-2977.
[197]
A. Woessner,; M. B. Lundeberg,; Y. D. Gao,; A. Principi,; P. Alonso-González,; M. Carrega,; K. Watanabe,; T. Taniguchi,; G. Vignale,; M. Polini, et al. Highly confined low-loss plasmons in graphene-boron nitride heterostructures. Nat. Mater. 2015, 14, 421-425.
[198]
Y. C. Xu,; E. Tucker,; G. Boreman,; M. B. Raschke,; B. A. Lail, Optical nanoantenna input impedance. ACS Photonics 2016, 3, 881-885.
[199]
Z. Fei,; A. S. Rodin,; G. O. Andreev,; W. Bao,; A. S. McLeod,; M. Wagner,; L. M. Zhang,; Z. Zhao,; M. Thiemens,; G. Dominguez, et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 2012, 487, 82-85.
[200]
K. Zhang,; F. L. Yap,; K. Li,; C. T. Ng,; L. J. Li,; K. P. Loh, Large scale graphene/hexagonal boron nitride heterostructure for tunable plasmonics. Adv. Funct. Mater. 2014, 24, 731-738.
[201]
S. Dai,; Z. Fei,; Q. Ma,; A. S. Rodin,; M. Wagner,; A. S. McLeod,; M. K. Liu,; W. Gannett,; W. Regan,; K. Watanabe, et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 2014, 343, 1125-1129.
[202]
S. Dai,; Q. Ma,; M. K. Liu,; T. Andersen,; Z. Fei,; M. D. Goldflam,; M. Wagner,; K. Watanabe,; T. Taniguchi,; M. Thiemens, et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat. Nanotechnol. 2015, 10, 682-686.
[203]
J. Yang,; M. Mayyas,; J. B. Tang,; M. B. Ghasemian,; H. H. Yang,; K. Watanabe,; T. Taniguchi,; Q. D. Ou,; L. H. Li,; Q. L. Bao, et al. Boundary-induced auxiliary features in scattering-type near-field fourier transform infrared spectroscopy. ACS Nano 2020, 14, 1123-1132.
[204]
W. L. Ma,; P. Alonso-González,; S. J. Li,; A. Y. Nikitin,; J. Yuan,; J. Martín-Sánchez,; J. Taboada-Gutiérrez,; I. Amenabar,; P. N. Li,; S. Vélez, et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 2018, 562, 557-562.
[205]
G. W. Hu,; Q. D. Ou,; G. Y. Si,; Y. J. Wu,; J. Wu,; Z. G. Dai,; A. Krasnok,; Y. Mazor,; Q. Zhang,; Q. L. Bao, et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 2020, 582, 209-213.
[206]
K. Chaudhary,; M. Tamagnone,; M. Rezaee,; D. K. Bediako,; A. Ambrosio,; P. Kim,; F. Capasso, Engineering phonon polaritons in van der Waals heterostructures to enhance in-plane optical anisotropy. Sci. Adv. 2019, 5, eaau7171.
[207]
C. H. Gong,; J. W. Chu,; S. F. Qian,; C. J. Yin,; X. Z. Hu,; H. B. Wang,; Y. Wang,; X. Ding,; S. C. Jiang,; A. L. Li, et al. Large-scale ultrathin 2D wide-bandgap BiOBr nanoflakes for gate-controlled deep-ultraviolet phototransistors. Adv. Mater. 2020, 32, 1908242.
[208]
C. L. Tan,; M. Amani,; C. S. Zhao,; M. Hettick,; X. H. Song,; D. H. Lien,; H. Li,; M. Yeh,; V. R. Shrestha,; K. B. Crozier, et al. Evaporated SexTe1-x thin films with tunable bandgaps for short-wave infrared photodetectors. Adv. Mater. 2020, 32, 2001329.
[209]
J. C. Sun,; Y. Y. Wang,; S. Q. Guo,; B. S. Wan,; L. Q. Dong,; Y. D. Gu,; C. Song,; C. F. Pan,; Q. H. Zhang,; L. Gu, et al. Lateral 2D WSe2 p-n homojunction formed by efficient charge-carrier-type modulation for high-performance optoelectronics. Adv. Mater. 2020, 32, 1906499.
[210]
L. Lv,; F. W. Zhuge,; F. J. Xie,; X. J. Xiong,; Q. F. Zhang,; N. Zhang,; Y. Huang,; T. Y. Zhai, Reconfigurable two-dimensional optoelectronic devices enabled by local ferroelectric polarization. Nat. Commun. 2019, 10, 3331.
[211]
G. J. Wu,; X. D. Wang,; Y. Chen,; S. Q. Wu,; B. M. Wu,; Y. Y. Jiang,; H. Shen,; T. Lin,; Q. Liu,; X. R. Wang, et al. MoTe2 p-n homojunctions defined by ferroelectric polarization. Adv. Mater. 2020, 32, 1907937.
[212]
X. D. Wang,; H. Shen,; Y. Chen,; G. J. Wu,; P. Wang,; H. Xia,; T. Lin,; P. Zhou,; W. D. Hu,; X. J. Meng, et al. Multimechanism synergistic photodetectors with ultrabroad spectrum response from 375 nm to 10 µm. Adv. Sci. 2019, 6, 1901050.
[213]
L. H. Zeng,; D. Wu,; S. H. Lin,; C. Xie,; H. Y. Yuan,; W. Lu,; S. P. Lau,; Y. Chai,; L. B. Luo,; Z. J. Li, et al. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater. 2019, 29, 1806878.
[214]
T. L. Qi,; Y. P. Gong,; A. L. Li,; X. M. Ma,; P. P. Wang,; R. Huang,; C. Liu,; R. Sakidja,; J. Z. Wu,; R. Chen, et al. Interlayer transition in a VdW heterostructure toward ultrahigh detectivity shortwave infrared photodetectors. Adv. Funct. Mater. 2020, 30, 1905687.
[215]
M. Amani,; C. L. Tan,; G. Zhang,; C. S. Zhao,; J. Bullock,; X. H. Song,; H. Kim,; V. R. Shrestha,; Y. Gao,; K. B. Crozier, et al. Solution- synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS Nano 2018, 12, 7253-7263.
[216]
W. C. Tan,; L. Huang,; R. J. Ng,; L. Wang,; D. M. N. Hasan,; T. J. Duffin,; K. S. Kumar,; C. A. Nijhuis,; C. K. Lee,; K. W. Ang, A black phosphorus carbide infrared phototransistor. Adv. Mater. 2018, 30, 1705039.
[217]
L. Huang,; B. W. Dong,; X. Guo,; Y. H. Chang,; N. Chen,; X. Huang,; W. G. Liao,; C. X. Zhu,; H. Wang,; C. Lee, et al. Waveguide- integrated black phosphorus photodetector for mid-infrared applications. ACS Nano 2019, 13, 913-921.
[218]
S. Lukman,; L. Ding,; L. Xu,; Y. Tao,; A. C. Riis-Jensen,; G. Zhang,; Q. Y. S. Wu,; M. Yang,; S. Luo,; C. Hsu, et al. High oscillator strength interlayer excitons in two-dimensional heterostructures for mid-infrared photodetection. Nat. Nanotechnol. 2020, 15, 675-682.
[219]
X. C. Yu,; P. Yu,; D. Wu,; B. Singh,; Q. S. Zeng,; H. Lin,; W. Zhou,; J. H. Lin,; K. Suenaga,; Z. Liu, et al. Atomically thin noble metal dichalcogenide: A broadband mid-infrared semiconductor. Nat. Commun. 2018, 9, 1545.
[220]
X. C. Yu,; Y. Y. Li,; X. N. Hu,; D. L. Zhang,; Y. Tao,; Z. X. Liu,; Y. M. He,; A. Haque,; Z. Liu,; T. Wu, et al. Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection. Nat. Commun. 2018, 9, 4299.
[221]
J. L. He,; P. Wang,; Q. Li,; F. Wang,; Y. Gu,; C. Shen,; L. Chen,; P. Martyniuk,; A. Rogalski,; X. S. Chen, et al. Enhanced performance of HgCdTe long-wavelength infrared photodetectors with nBn design. IEEE Trans. Electron Devices 2020, 67, 2001-2007.
[222]
Q. Li,; J. L. He,; W. D. Hu,; L. Chen,; X. S. Chen,; W. Lu, Influencing sources for dark current transport and avalanche mechanisms in planar and mesa HgCdTe p-i-n electron-avalanche photodiodes. IEEE Trans. Electron Devices 2018, 65, 572-576.
[223]
J. S. Miao,; B. Song,; Q. Li,; L. Cai,; S. M. Zhang,; W. D. Hu,; L. X. Dong,; C. Wang, Photothermal effect induced negative photoconductivity and high responsivity in flexible black phosphorus transistors. ACS Nano 2017, 11, 6048-6056.
[224]
J. S. Miao,; Z. H. Xu,; Q. Li,; A. Bowman,; S. M. Zhang,; W. D. Hu,; Z. X. Zhou,; C. Wang, Vertically stacked and self-encapsulated van der Waals heterojunction diodes using two-dimensional layered semiconductors. ACS Nano 2017, 11, 10472-10479.
[225]
G. Gramse,; A. Kölker,; T. Škereň,; T. J. Z. Stock,; G. Aeppli,; F. Kienberger,; A. Fuhrer,; N. J. Curson, Nanoscale imaging of mobile carriers and trapped charges in delta doped silicon p-n junctions. Nat. Electron. 2020, 3, 531-538.
[226]
K. T. Lin,; H. Nema,; Q. C. Weng,; S. Kim,; K. Sugawara,; T. Otsuji,; S. Komiyama,; Y. Kajihara, Nanoscale probing of thermally excited evanescent fields in an electrically biased graphene by near- field optical microscopy. Appl. Phys. Express 2020, 13, 096501.
Nano Research
Pages 1840-1862
Cite this article:
Zhong F, Wang H, Wang Z, et al. Recent progress and challenges on two-dimensional material photodetectors from the perspective of advanced characterization technologies. Nano Research, 2021, 14(6): 1840-1862. https://doi.org/10.1007/s12274-020-3247-1
Topics:
Part of a topical collection:

1049

Views

43

Crossref

N/A

Web of Science

46

Scopus

1

CSCD

Altmetrics

Received: 04 October 2020
Revised: 10 November 2020
Accepted: 16 November 2020
Published: 08 December 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return