AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Two-dimensional MoS2 for hydrogen evolution reaction catalysis: The electronic structure regulation

Shuwen Niu§Jinyan Cai§Gongming Wang( )
Hefei National Laboratory for Physical Science at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China

§ Shuwen Niu and Jinyan Cai contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Molybdenum disulfide (MoS2) has been recognized as one of the most promising candidates to replace precious Pt for hydrogen evolution reaction (HER) catalysis, due to the natural abundance, low cost, tunable electronic properties, and excellent chemical stability. Although notable processes have been achieved in the past decades, their performance is still far less than that of Pt. Searching effective strategies to boosting their HER performance is still the primary goal. In this review, the recent process of the electronic regulation of MoS2 for HER is summarized, including band structure engineering, electronic state modulation, orbital orientation regulation, interface engineering. Last, the key challenges and opportunities in the development of MoS2-based materials for electrochemical HER are also discussed.

References

[1]
X. X Zou,; Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148-5180.
[2]
V. R. Stamenkovic,; D. Strmcnik,; P. P. Lopes,; N. M. Markovic, Energy and fuels from electrochemical interfaces. Nat. Mater. 2017, 16, 57-69.
[3]
I. Roger,; M. A. Shipman,; M. D. Symes, Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 2017, 1, 0003.
[4]
J. D. Wu,; D. P Wang,; S. A. Wan,; H. L Liu,; C. Wang,; X. Wang, An efficient cobalt phosphide electrocatalyst derived from cobalt phosphonate complex for all-pH hydrogen evolution reaction and overall water splitting in alkaline solution. Small 2020, 16, 1900550.
[5]
R. Gao,; D. P. Yan, Recent development of Ni/Fe-based micro/ nanostructures toward photo/electrochemical water oxidation. Adv. Energy Mater. 2020, 10, 1900954.
[6]
L. X. Lin,; P. Sherrell,; Y. Q. Liu,; W. Lei,; S. W. Zhang,; H. J. Zhang,; G. G. Wallace,; J. Chen, Engineered 2D transition metal dichalcogenides— A vision of viable hydrogen evolution reaction catalysis. Adv. Energy Mater. 2020, 10, 1903870.
[7]
S. W Niu,; Y. Y. Fang,; J. B Zhou,; J. Y Cai,; Y. P. Zang,; Y. S. Wu,; J. Ye,; Y. F. Xie,; Y. Liu,; X. S. Zheng, et al. Manipulating the water dissociation kinetics of Ni3N nanosheets via in situ interfacial engineering. J. Mater. Chem. A 2019, 7, 10924-10929.
[8]
S. H. Ye,; F. Y. Luo,; Q. L. Zhang,; P. Y. Zhang,; T. T. Xu,; Q. Wang,; D. S. He,; L. C. Guo,; Y. Zhang,; C. X. He, et al. Highly stable single Pt atomic sites anchored on aniline-stacked graphene for hydrogen evolution reaction. Energy Environ. Sci. 2019, 12, 1000-1007.
[9]
X. F. Lu,; L. Yu,; J. T. Zhang,; X. W. Lou, Ultrafine dual-phased carbide nanocrystals confined in porous nitrogen-doped carbon dodecahedrons for efficient hydrogen evolution reaction. Adv. Mater. 2019, 31, 1900699.
[10]
S. Sultan,; J. N. Tiwari,; A. N. Singh,; S. Zhumagali,; M. R. Ha,; C. W. Myung,; P. Thangavel,; K. S. Kim, Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting. Adv. Energy Mater. 2019, 9, 1900624.
[11]
S. Bai,; C. M Wang,; M. S. Deng,; M. Gong,; Y. Bai,; J. Jiang,; Y. J. Xiong, Surface polarization matters: Enhancing the hydrogen- evolution reaction by shrinking pt shells in Pt-Pd-graphene stack structures. Angew. Chem., Int. Ed. 2014, 53, 12120-12124.
[12]
E. Furimsky, Role of MoS2 and WS2 in hydrodesulfuritation. Catal. Rev. 1980, 22, 371-400.
[13]
P. H. Li,; Y. Yang,; S. Gong,; F. Lv,; W. Wang,; Y. J. Li,; M. C. Luo,; Y. Xing,; Q. Wang,; S. J. Guo, Co-doped 1T-MoS2 nanosheets embedded in N, S-doped carbon nanobowls for high-rate and ultra-stable sodium-ion batteries. Nano Res. 2019, 12, 2218-2223.
[14]
B. Hinnemann,; P. G. Moses,; J. Bonde,; K. P. Jørgensen,; J. H. Nielsen,; S. Horch,; I. Chorkendorff,; J. K. Nørskov, Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308-5309.
[15]
Y. G. Li,; H. L. Wang,; L. M. Xie,; Y. Y. Liang,; G. S. Hong,; H. J. Dai, MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296-7299.
[16]
D. S. Kong,; H. T. Wang,; J. J. Cha,; M. Pasta,; K. J. Koski,; J. Yao,; Y. Cui, Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 2013, 13, 1341-1347.
[17]
J. F. Xie,; H. Zhang,; S. Li,; R. X. Wang,; X. Sun,; M. Zhou,; J. F. Zhou,; X. W. Lou,; Y. Xie, Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807-5813.
[18]
D. Voiry,; M. Salehi,; R. Silva,; T. Fujita,; M. W. Chen,; T. Asefa,; V. B. Shenoy,; G. Eda,; M. Chhowalla, Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013, 13, 6222-6227.
[19]
J. Deng,; H. B. Li,; J. P. Xiao,; Y. C. Tu,; D. H. Deng,; H. X. Yang,; H. F. Tian,; J. Q. Li,; P. J. Ren,; X. H. Bao, Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 2015, 8, 1594-1601.
[20]
R. C. Li,; L. J. Yang,; T. L. Xiong,; Y. S. Wu,; L. D. Cao,; D. S. Yuan,; W. J. Zhou, Nitrogen doped MoS2 nanosheets synthesized via a low- temperature process as electrocatalysts with enhanced activity for hydrogen evolution reaction. J. Power Sources 2017, 356, 133-139.
[21]
X. Y. Meng,; C. Ma,; L. Z. Jiang,; R. Si,; X. G. Meng,; Y. C. Tu,; L. Yu,; X. H. Bao,; D. H. Deng, Distance synergy of MoS2-confined rhodium atoms for highly efficient hydrogen evolution. Angew. Chem. 2020, 132, 10588-10593.
[22]
Y. P. Zang,; S. W. Niu,; Y. S. Wu,; X. S. Zheng,; J. Y. Cai,; J. Ye,; Y. F. Xie,; Y. Liu,; J. B. Zhou,; J. F. Zhu, et al. Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability. Nat. Commun. 2019, 10, 1217.
[23]
D. Voiry,; J. Yang,; M. Chhowalla, Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction. Adv. Mater. 2016, 28, 6197-6206.
[24]
D. H. Deng,; K. S. Novoselov,; Q. Fu,; N. F. Zheng,; Z. Q. Tian,; X. H. Bao, Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218-230.
[25]
G. Zhang,; H. J. Liu,; J. H. Qu,; J. H. Li, Two-dimensional layered MoS2: Rational design, properties and electrochemical applications. Energy Environ. Sci. 2016, 9, 1190-1209.
[26]
C. G. Morales-Guio,; L. A. Stern,; X. L. Hu, Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 2014, 43, 6555-6569.
[27]
C. L. Tan,; H. Zhang, Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 2015, 44, 2713-2731.
[28]
J. M. Wei,; M. Zhou,; A. C. Long,; Y. M. Xue,; H. B. Liao,; C. Wei,; Z. J. Xu, Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions. Nano-Micro Lett. 2018, 10, 75.
[29]
Z. W. Seh,; J. Kibsgaard,; C. F. Dickens,; I. B. Chorkendorff,; J. K. Nørskov,; T. F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.
[30]
J. K. Nørskov,; T. Bligaard,; A. Logadottir,; J. R. Kitchin,; J. G. Chen,; S. Pandelov,; U. Stimming, Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23-J26.
[31]
Q. Fu,; J. C. Han,; X. J. Wang,; P. Xu,; T. Yao,; J. Zhong,; W. W. Zhong,; S. W. Liu,; T. L. Gao,; Z. H. Zhang, et al. 2D transition metal dichalcogenides: Design, modulation, and challenges in electrocatalysis. Adv. Mater., in press, .
[32]
G. B. Chen,; T. Wang,; J. Zhang,; P. Liu,; H. J. Sun,; X. D. Zhuang,; M. W. Chen,; X. L. Feng, Accelerated hydrogen evolution kinetics on NiFe-layered double hydroxide electrocatalysts by tailoring water dissociation active sites. Adv. Mater. 2018, 30, 1706279.
[33]
Y. F. Xie,; J. Y. Cai,; Y. S. Wu,; Y. P. Zang,; X. S. Zheng,; J. Ye,; P. X. Cui,; S. W. Niu,; Y. Liu,; J. F. Zhu, et al. Boosting water dissociation kinetics on Pt-Ni nanowires by N-induced orbital tuning. Adv. Mater. 2019, 31, 1807780.
[34]
P. T. Wang,; K. Z. Jiang,; G. M. Wang,; J. L. Yao,; X. Q. Huang, Phase and interface engineering of platinum-nickel nanowires for efficient electrochemical hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 12859-12863.
[35]
F. Z. Song,; W. Li,; J. Q. Yang,; G. Q. Han,; P. L. Liao,; Y. J. Sun, Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions. Nat. Commun. 2018, 9, 4531.
[36]
J. Zhang,; T. Wang,; P. Liu,; Z. Q. Liao,; S. H. Liu,; X. D. Zhuang,; M. W. Chen,; E. Zschech,; X. L. Feng, Efficient hydrogen production on moni4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 2017, 8, 15437.
[37]
H. T. Du,; R. M. Kong,; X. X. Guo,; F. L. Qu,; J. H. Li, Recent progress in transition metal phosphides with enhanced electrocatalysis for hydrogen evolution. Nanoscale 2018, 10, 21617-21624.
[38]
D. L. Li,; C. Batchelor-McAuley,; R. G. Compton, Some thoughts about reporting the electrocatalytic performance of nanomaterials. Appl. Mater. Today 2020, 18, 100404.
[39]
D. Q. Gao,; J. Y. Zhang,; T. T. Wang,; W. Xiao,; K. Tao,; D. S. Xue,; J. Ding, Metallic Ni3N nanosheets with exposed active surface sites for efficient hydrogen evolution. J. Mater. Chem. A 2016, 4, 17363-17369.
[40]
R. Zhang,; X. X. Wang,; S. J. Yu,; T. Wen,; X. W. Zhu,; F. X. Yang,; X. N. Sun,; X. K. Wang,; W. P. Hu, Ternary NiCo2Px nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction. Adv. Mater. 2017, 29, 1605502.
[41]
M. A. Quiroz,; Y. Meas,; E. Lamy-Pitara,; J. Barbier, Characterization of a ruthenium electrode by underpotential deposition of copper. J. Electroanal. Chem. Interfacial Electrochem. 1983, 157, 165-174.
[42]
C. L. Green,; A. Kucernak, Determination of the platinum and ruthenium surface areas in platinum-ruthenium alloy electrocatalysts by underpotential deposition of copper. I. Unsupported catalysts. J. Phys. Chem. B 2002, 106, 1036-1047.
[43]
H. Y. Li,; X. F. Jia,; Q. Zhang,; X. Wang, Metallic transition-metal dichalcogenide nanocatalysts for energy conversion. Chem 2018, 4, 1510-1537.
[44]
X. L. Sun,; Z. G. Wang,; Z. J. Li,; Y. Q. Fu, Origin of structural transformation in mono- and bi-layered molybdenum disulfide. Sci. Rep. 2016, 6, 26666.
[45]
B. Mahler,; V. Hoepfner,; K. Liao,; G. A. Ozin, Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: Applications for photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2014, 136, 14121-14127.
[46]
K. A. N. Duerloo,; Y. Li,; E. J. Reed, Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 2014, 5, 4214.
[47]
P. Johari,; V. B. Shenoy, Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. ACS Nano 2012, 6, 5449-5456.
[48]
D. Merki,; X. L. Hu, Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ. Sci. 2011, 4, 3878-3888.
[49]
T. F. Jaramillo,; K. P. Jørgensen,; J. Bonde,; J. H. Nielsen,; S. Horch,; I. Chorkendorff, Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100-102.
[50]
C. Tsai,; K. Chan,; F. Abild-Pedersen,; J. K. Nørskov, Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction: A density functional study. Phys. Chem. Chem. Phys. 2014, 16, 13156-13164.
[51]
C. Tsai,; K. Chan,; J. K. Nørskov,; F. Abild-Pedersen, Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides. Surf. Sci. 2015, 640, 133-140.
[52]
W. W. Xu,; Z. Y. Lu,; X. M. Sun,; L. Jiang,; X. Duan, Superwetting electrodes for gas-involving electrocatalysis. Acc. Chem. Res. 2018, 51, 1590-1598.
[53]
Z. Y. Lu,; W. Zhu,; X. Y. Yu,; H. C. Zhang,; Y. J. Li,; X. M. Sun,; X. W. Wang,; H. Wang,; J. M. Wang,; J. Luo, et al. Ultrahigh hydrogen evolution performance of under-water “superaerophobic” MoS2 nanostructured electrodes. Adv. Mater. 2014, 26, 2683-2687.
[54]
H. Y. Li,; S. M. Chen,; Y. Zhang,; Q. H. Zhang,; X. F. Jia,; Q. Zhang,; L. Gu,; X. M. Sun,; L. Song,; X. Wang, Systematic design of superaerophobic nanotube-array electrode comprised of transition- metal sulfides for overall water splitting. Nat. Commun. 2018, 9, 2452.
[55]
J. V. Lauritsen,; J. Kibsgaard,; S. Helveg,; H. Topsøe,; B. S. Clausen,; E. Laegsgaard,; F. Besenbacher, Size-dependent structure of MoS2 nanocrystals. Nat. Nanotechnol. 2007, 2, 53-58.
[56]
X. Kang,; J. C. Liu,; C. G. Tian,; D. X. Wang,; Y. R. Li,; H. Y. Zhang,; X. S. Cheng,; A. P. Wu,; H. G. Fu, Surface curvature-confined strategy to ultrasmall nickel-molybdenum sulfide nanoflakes for highly efficient deep hydrodesulfurization. Nano Res. 2020, 13, 882-890.
[57]
L. J. Zhu,; P. F. Yang,; Y. H. Huan,; S. Y. Pan,; Z. Q. Zhang,; F. F. Cui,; Y. P. Shi,; S. L. Jiang,; C. Y. Xie,; M. Hong, et al. Scalable salt- templated directed synthesis of high-quality MoS2 nanosheets powders towards energetic and environmental applications. Nano Res. 2020, 13, 3098-3104.
[58]
Y. F. Yu,; S. Y. Huang,; Y. P. Li,; S. N. Steinmann,; W. T. Yang,; L. Y. Cao, Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. Nano Lett. 2014, 14, 553-558.
[59]
S. J. Di,; P. Ding,; Y. Y. Wang,; Y. L. Wu,; J. Deng,; L. Jia,; Y. G. Li, Interlayer-expanded MoS2 assemblies for enhanced electrochemical storage of potassium ions. Nano Res. 2020, 13, 225-230.
[60]
M. R. Gao,; M. K. Y. Chan,; Y. G. Sun, Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production. Nat. Commun. 2015, 6, 7493.
[61]
H. Li,; C. Tsai,; A. L. Koh,; L. L. Cai,; A. W. Contryman,; A. H. Fragapane,; J. H. Zhao,; H. S. Han,; H. C. Manoharan,; F. Abild- Pedersen, et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48-53.
[62]
Y. Shi,; Y. Zhou,; D. R. Yang,; W. X. Xu,; C. Wang,; F. B. Wang,; J. J. Xu,; X. H. Xia,; H. Y. Chen, Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction. J. Am. Chem. Soc. 2017, 139, 15479-15485.
[63]
H. B. Zhang,; L. Yu,; T. Chen,; W. Zhou,; X. W. Lou, Surface modulation of hierarchical MoS2 nanosheets by Ni single atoms for enhanced electrocatalytic hydrogen evolution. Adv. Funct. Mater. 2018, 28, 1807086.
[64]
L. Cai,; J. F. He,; Q. H. Liu,; T. Yao,; L. Chen,; W. S. Yan,; F. H. Hu,; Y. Jiang,; Y. D. Zhao,; T. D. Hu, et al. Vacancy-induced ferromagnetism of MoS2 nanosheets. J. Am. Chem. Soc. 2015, 137, 2622-2627.
[65]
J. Li,; W. T. Hong,; C. Y. Jian,; Q. Cai,; X. He,; W. Liu, High- performance hydrogen evolution at a MoSe2-Mo2C seamless heterojunction enabled by efficient charge transfer. J. Mater. Chem. A 2020, 8, 6692-6698.
[66]
T. Sun,; J. Wang,; X. Chi,; Y. X. Lin,; Z. X. Chen,; X. Ling,; C. T. Qiu,; Y. S. Xu,; L. Song,; W. Chen, et al. Engineering the electronic structure of MoS2 nanorods by N and Mn dopants for ultra-efficient hydrogen production. ACS Catal. 2018, 8, 7585-7592.
[67]
H. R. Yang,; Y. Liu,; C. S. Gao,; L. Meng,; Y. F. Liu,; X. S. Tang,; H. Y. Ye, Adsorption behavior of nucleobases on doped MoS2 monolayer: A DFT study. J. Phys. Chem. C 2019, 123, 30949-30957.
[68]
M. M. Yan,; Q. G. Jiang,; L. Yang,; H. Y. He,; H. J. Huang, Three- dimensional ternary hybrid architectures constructed from graphene, MoS2, and graphitic carbon nitride nanosheets as efficient electrocatalysts for hydrogen evolution. ACS Appl. Energy Mater. 2020, 3, 6880-6888.
[69]
X. Lei,; K. Yu,; H. L. Li,; Z. Tang,; Z. Q. Zhu, First-principle and experiment framework for charge distribution at the interface of the molybdenum dichalcogenide hybrid for enhanced electrochemical hydrogen generation. J. Phys. Chem. C 2016, 120, 15096-15104.
[70]
Y. P. Pan,; F. W. Zheng,; X. X. Wang,; H. Y. Qin,; E. Z. Liu,; J. W. Sha,; N. Q. Zhao,; P. Zhang,; L. Y. Ma, Enhanced electrochemical hydrogen evolution performance of WS2 nanosheets by Te doping. J. Catal. 2020, 382, 204-211.
[71]
K. Karthick,; T. K. Bijoy,; A. Sivakumaran,; A. B. M. Basha,; P. Murugan,; S. Kundu, Enhancing hydrogen evolution reaction activities of 2H-phase VS2 layers with palladium nanoparticles. Inorg. Chem. 2020, 59, 10197-10207.
[72]
L. Sharma,; T. Botari,; C. S. Tiwary,; A. Halder, Hydrogen evolution at the in situ MoO3/MoS2 heterojunctions created by nonthermal O2 plasma treatment. ACS Appl. Energy Mater. 2020, 3, 5333-5342.
[73]
T. T. Liang,; Y. D. Liu,; Y. Z. Cheng,; F. Ma,; Z. F. Dai, Scalable synthesis of a MoS2/black phosphorus heterostructure for pH- universal hydrogen evolution catalysis. ChemCatChem 2020, 12, 2840-2848.
[74]
M. H. Suliman,; A. Adam,; L. Li,; Z. Q. Tian,; M. N. Siddiqui,; Z. H. Yamani,; M. Qamar, FeP/MoS2 enriched with dense catalytic sites and high electrical conductivity for the hydrogen evolution reaction. ACS Sustainable Chem. Eng. 2019, 7, 17671-17681.
[75]
S. He,; H. F. Du,; K. Wang,; Q. C. Liu,; J. M. Sun,; Y. H. Liu,; Z. Z. Du,; L. H. Xie,; W. Ai,; W. Huang, Low-temperature molten salt synthesis of MoS2@CoS2 heterostructures for efficient hydrogen evolution reaction. Chem. Commun. 2020, 56, 5548-5551.
[76]
Q. Jin,; N. Liu,; C. N. Dai,; R. N. Xu,; B. Wu,; G. Q. Yu,; B. H. Chen,; Y. Z. Du, H2-directing strategy on in situ synthesis of Co-MoS2 with highly expanded interlayer for elegant HER activity and its mechanism. Adv. Energy Mater. 2020, 10, 2000291.
[77]
W. J. Wu,; Y. F. Zhao,; S. H. Li,; B. Y. He,; H. Liu,; X. R. Zeng,; J. Q. Zhang,; G. X. Wang, P doped MoS2 nanoplates embedded in nitrogen doped carbon nanofibers as an efficient catalyst for hydrogen evolution reaction. J. Colloid Interface Sci. 2019, 547, 291-298.
[78]
J. F. Xie,; J. J. Zhang,; S. Li,; F. Grote,; X. D. Zhang,; H. Zhang,; R. X. Wang,; Y. Lei,; B. C. Pan,; Y. Xie, Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881-17888.
[79]
H. Wang,; X. Xiao,; S. Y. Liu,; C. L. Chiang,; X. X. Kuai,; C. K. Peng,; Y. C. Lin,; X. Meng,; J. Q. Zhao,; J. Choi, et al. Structural and electronic optimization of MoS2 edges for hydrogen evolution. J. Am. Chem. Soc. 2019, 141, 18578-18584.
[80]
X. Wang,; Y. W. Zhang,; H. N. Si,; Q. H. Zhang,; J. Wu,; L. Gao,; X. F. Wei,; Y. Sun,; Q. L. Liao,; Z. Zhang, et al. Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2. J. Am. Chem. Soc. 2020, 142, 4298-4308.
[81]
C. H. Chang,; X. F. Fan,; S. H. Lin,; J. L. Kuo, Orbital analysis of electronic structure and phonon dispersion in MoS2, MoSe2, WS2, and WSe2 monolayers under strain. Phys. Rev. B 2013, 88, 195420.
[82]
W. Qiao,; W. Xu,; X. Y. Xu,; L. Q. Wu,; S. M. Yan,; D. H. Wang, Construction of active orbital via single-atom cobalt anchoring on the surface of 1T-MoS2 basal plane toward efficient hydrogen evolution. ACS Appl. Energy Mater. 2020, 3, 2315-2322.
[83]
Y. S. Wu,; J. Y. Cai,; Y. F. Xie,; S. W. Niu,; Y. P. Zang,; S. Y. Wu,; Y. Liu,; Z. Lu,; Y. Y. Fang,; Y. Guan, et al. Regulating the interfacial electronic coupling of Fe2N via orbital steering for hydrogen evolution catalysis. Adv. Mater. 2020, 32, 1904346.
[84]
M. Chhowalla,; H. S. Shin,; G. Eda,; L. J. Li,; K. P. Loh,; H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263-275.
[85]
H. Y. Li,; X. Wang, Phase control in inorganic nanocrystals through finely tuned growth at an ultrathin scale. Acc. Chem. Res. 2019, 52, 780-790.
[86]
H. T. Wang,; Z. Y. Lu,; S. C. Xu,; D. S. Kong,; J. J. Cha,; G. Y. Zheng,; P. C. Hsu,; K. Yan,; D. Bradshaw,; F. B. Prinz, et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl. Acad. Sci. USA 2013, 110, 19701-19706.
[87]
S. Z. Yang,; Y. J. Gong,; P. Manchanda,; Y. Y. Zhang,; G. L. Ye,; S. M. Chen,; L. Song,; S. T. Pantelides,; P. M. Ajayan,; M. F. Chisholm, et al. Rhenium-doped and stabilized MoS2 atomic layers with basal-plane catalytic activity. Adv. Mater. 2018, 30, 1803477.
[88]
Z. Q. Liu,; X. Zhang,; Y. Gong,; Q. P. Lu,; Z. C. Zhang,; H. F. Cheng,; Q. L. Ma,; J. Z. Chen,; M. T. Zhao,; B. Chen, et al. Synthesis of MoX2 (X = Se or S) monolayers with high-concentration 1T’ phase on 4H/fcc-Au nanorods for hydrogen evolution. Nano Res. 2019, 12, 1301-1305.
[89]
H. Y. Li,; S. M. Chen,; X. F. Jia,; B. Xu,; H. F. Lin,; H. Z. Yang,; L. Song,; X. Wang, Amorphous nickel-cobalt complexes hybridized with 1T-phase molybdenum disulfide via hydrazine-induced phase transformation for water splitting. Nat. Commun. 2017, 8, 15377.
[90]
C. Sun,; P. P. Wang,; H. Wang,; C. Xu,; J. T. Zhu,; Y. X. Liang,; Y. Su,; Y. N. Jiang,; W. Q. Wu,; E. G. Fu, et al. Defect engineering of molybdenum disulfide through ion irradiation to boost hydrogen evolution reaction performance. Nano Res. 2019, 12, 1613-1618.
[91]
B. Zhang,; J. Liu,; J. S. Wang,; Y. J. Ruan,; X. Ji,; K. Xu,; C. Chen,; H. Z. Wan,; L. Miao,; J. J. Jiang, Interface engineering: The Ni(OH)2/MoS2 heterostructure for highly efficient alkaline hydrogen evolution. Nano Energy 2017, 37, 74-80.
[92]
J. Hu,; C. X. Zhang,; L. Jiang,; H. Lin,; Y. M. An,; D. Zhou,; M. K. H. Leung,; S. H. Yang, Nanohybridization of MoS2 with layered double hydroxides efficiently synergizes the hydrogen evolution in alkaline media. Joule 2017, 1, 383-393.
[93]
Z. J. Zhu,; H. J. Yin,; C. T. He,; M. Al-Mamun,; P. R. Liu,; L. X. Jiang,; Y. Zhao,; Y. Wang,; H. G. Yang,; Z. Y. Tang, et al. Ultrathin transition metal dichalcogenide/3d metal hydroxide hybridized nanosheets to enhance hydrogen evolution activity. Adv. Mater. 2018, 30, 1801171.
[94]
S. Wang,; D. Zhang,; B. Li,; C. Zhang,; Z. G. Du,; H. M. Yin,; X. F. Bi,; S. B. Yang, Ultrastable in-plane 1T-2H MoS2 heterostructures for enhanced hydrogen evolution reaction. Adv. Energy Mater. 2018, 8, 1801345.
[95]
T. Zhang,; H. Y. Zhu,; C. Guo,; S. F. Cao,; C. M. L. Wu,; Z. J. Wang,; X. Q. Lu, Theoretical investigation on the hydrogen evolution reaction mechanism at MoS2 heterostructures: The essential role of the 1T/2H phase interface. Catal. Sci. Technol. 2020, 10, 458-465.
[96]
Q. Zhou,; G. Q. Zhao,; K. Rui,; Y. P. Chen,; X. Xu,; S. X. Dou,; W. P. Sun, Engineering additional edge sites on molybdenum dichalcogenides toward accelerated alkaline hydrogen evolution kinetics. Nanoscale 2019, 11, 717-724.
[97]
Q. Liu,; Q. Fang,; W. S. Chu,; Y. Y. Wan,; X. L. Li,; W. Y. Xu,; M. Habib,; S. Tao,; Y. Zhou,; D. B. Liu, et al. Electron-doped 1T-MoS2 via interface engineering for enhanced electrocatalytic hydrogen evolution. Chem. Mater 2017, 29, 4738-4744.
[98]
Z. Y. Luo,; H. Zhang,; Y. Q. Yang,; X. Wang,; Y. Li,; Z. Jin,; Z. Jiang,; C. P. Liu,; W. Xing,; J. J. Ge, Reactant friendly hydrogen evolution interface based on di-anionic MoS2 surface. Nat. Commun. 2020, 11, 1116.
[99]
M. A. Lukowski,; A. S. Daniel,; F. Meng,; A. Forticaux,; L. S. Li,; S. Jin, Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274-10277.
[100]
D. Voiry,; R. Fullon,; J. Yang,; C. De Carvalho Castro e Silva,; R. Kappera,; I. Bozkurt,; D. Kaplan,; M. J. Lagos,; P. E. Batson,; G. Gupta, et al. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nat. Mater. 2016, 15, 1003-1009.
[101]
J. Kibsgaard,; Z. B. Chen,; B. N. Reinecke,; T. F. Jaramillo, Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963-969.
[102]
Y. M. He,; P. Y. Tang,; Z. L. Hu,; Q. Y. He,; C. Zhu,; L. Q. Wang,; Q. S. Zeng,; P. Golani,; G. H. Gao,; W. Fu, et al. Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction. Nat. Commun. 2020, 11, 57.
[103]
J. Y. Cai,; Y. Song,; Y. P. Zang,; S. W. Niu,; Y. S. Wu,; Y. F. Xie,; X. S. Zheng,; Y. Liu,; Y. Lin,; X. J. Liu, et al. N-induced lattice contraction generally boosts the hydrogen evolution catalysis of P-rich metal phosphides. Sci. Adv. 2020, 6, eaaw8113.
[104]
Z. L. Zheng,; L. Yu,; M. Gao,; X. Y. Chen,; W. Zhou,; C. Ma,; L. H. Wu,; J. F. Zhu,; X. Y. Meng,; J. T. Hu, et al. Boosting hydrogen evolution on MoS2 via co-confining selenium in surface and cobalt in inner layer. Nat. Commun. 2020, 11, 3315.
[105]
Y. J. Li,; W. Pei,; J. T. He,; K. Liu,; W. H. Qi,; X. H. Gao,; S. Zhou,; H. P. Xie,; K. Yin,; Y. L. Gao, et al. Hybrids of PtRu nanoclusters and black phosphorus nanosheets for highly efficient alkaline hydrogen evolution reaction. ACS Catal. 2019, 9, 10870-10875.
[106]
B. Wu,; E. Kovalska,; J. Luxa,; P. Marvan,; S. Cintl,; Z. Sofer, Free-standing black phosphorus foils for energy storage and catalysis. Chem.—Eur. J. 2020, 26, 8162-8169.
[107]
J. Y. Li,; Z. Q. Zhao,; Y. Y. Ma,; Y. Q. Qu, Graphene and their hybrid electrocatalysts for water splitting. ChemCatChem 2017, 9, 1554-1568.
[108]
T. P. Nguyen,; D. M. T. Nguyen,; D. L. Tran,; H. K. Le,; D. V. N. Vo,; S. S. Lam,; R. S. Varma,; M. Shokouhimehr,; C. C. Nguyen,; Q. V. Le, MXenes: Applications in electrocatalytic, photocatalytic hydrogen evolution reaction and CO2 reduction. Mol. Catal. 2020, 486, 110850.
[109]
Y. Wei,; R. A. Soomro,; X. Q. Xie,; B. Xu, Design of efficient electrocatalysts for hydrogen evolution reaction based on 2D Mxenes. J. Energy Chem. 2021, 55, 244-255.
[110]
J. Q. Zhang,; Y. F. Zhao,; X. Guo,; C. Chen,; C. L. Dong,; R. S. Liu,; C. P. Han,; Y. D. Li,; Y. Gogotsi,; G. X. Wang, Single platinum atoms immobilized on an mxene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 2018, 1, 985-992.
[111]
K. Kunimatsu,; T. Senzaki,; G. Samjeské,; M. Tsushima,; M. Osawa, Hydrogen adsorption and hydrogen evolution reaction on a polycrystalline Pt electrode studied by surface-enhanced infrared absorption spectroscopy. Electrochim. Acta 2007, 52, 5715-5724.
[112]
Y. L. Li,; W. R. Cheng,; H. Su,; X. Zhao,; J. F. He,; Q. H. Liu, Operando infrared spectroscopic insights into the dynamic evolution of liquid-solid (photo)electrochemical interfaces. Nano Energy 2020, 77, 105121.
[113]
L. L. Cao,; Q. Q. Luo,; W. Liu,; Y. Lin,; X. K. Liu,; Y. J. Cao,; W. Zhang,; Y. E. Wu,; J. L. Yang,; T. Yao, et al. Identification of single- atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat. Catal. 2019, 2, 134-141.
Nano Research
Pages 1985-2002
Cite this article:
Niu S, Cai J, Wang G. Two-dimensional MoS2 for hydrogen evolution reaction catalysis: The electronic structure regulation. Nano Research, 2021, 14(6): 1985-2002. https://doi.org/10.1007/s12274-020-3249-z
Topics:
Part of a topical collection:

1241

Views

114

Crossref

N/A

Web of Science

114

Scopus

11

CSCD

Altmetrics

Received: 04 October 2020
Revised: 10 November 2020
Accepted: 16 November 2020
Published: 04 December 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return