AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Nonreciprocal coherent coupling of nanomagnets by exchange spin waves

Hanchen Wang1,§Jilei Chen1,§Tao Yu2,§Chuanpu Liu1,§Chenyang Guo3,§Song Liu4,§Ka Shen5,§Hao Jia4,§Tao Liu6Jianyu Zhang1Marco A. Cabero Z4,1Qiuming Song4Sa Tu1Mingzhong Wu6Xiufeng Han3Ke Xia4Dapeng Yu4Gerrit E. W. Bauer7,8,9Haiming Yu1( )
Fert Beijing Institute, School of Integrated Circuit Science and Engineering, Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing 100191, China
Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
Shenzhen Institute for Quantum Science and Engineering (SIQSE), and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
Department of Physics, Beijing Normal University, Beijing 100875, China
Department of Physics, Colorado State University, Fort Collins, Colorado 80523, USA
Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, The Netherlands
Institute for Materials Research, WPI-AIMR and CSNR, Tohoku University, Sendai 980-8577, Japan
Zernike Institute for Advanced Materials, University of Groningen, Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

§ Hanchen Wang, Jilei Chen, Tao Yu, Chuanpu Liu, Chenyang Guo, Song Liu, Ka Shen and Hao Jia contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Nanomagnets are widely used to store information in non-volatile spintronic devices. Spin waves can transfer information with low-power consumption as their propagations are independent of charge transport. However, to dynamically couple two distant nanomagnets via spin waves remains a major challenge for magnonics. Here we experimentally demonstrate coherent coupling of two distant Co nanowires by fast propagating spin waves in an yttrium iron garnet thin film with sub-50 nm wavelengths. Magnons in two nanomagnets are unidirectionally phase-locked with phase shifts controlled by magnon spin torque and spin-wave propagation. The coupled system is finally formulated by an analytical theory in terms of an effective non-Hermitian Hamiltonian. Our results are attractive for analog neuromorphic computing that requires unidirectional information transmission.

Electronic Supplementary Material

Download File(s)
12274_2020_3251_MOESM1_ESM.pdf (3.9 MB)

References

[1]
Wolf, S. A.; Awschalom, D. D.; Buhrman, R. A.; Daughton, J. M.; von Molnár, S.; Roukes, M. L.; Chtchelkanova, A. Y.; Treger, D. M. Spintronics: A spin-based electronics vision for the future. Science 2001, 294, 1488-1495.
[2]
Imre, A.; Csaba, G.; Ji, L.; Orlov, A.; Bernstein, G. H.; Porod, W. Majority logic gate for magnetic quantum-dot cellular automata. Science 2006, 311, 205-208.
[3]
Fert, A. Nobel lecture: Origin, development, and future of spintronics. Rev. Mod. Phys. 2008, 80, 1517-1530.
[4]
Cui, J. Z.; Huang, T. Y.; Luo, Z. C.; Testa, P.; Gu, H. R.; Chen, X. Z.; Nelson, B. J.; Heyderman, L. J. Nanomagnetic encoding of shape- morphing micromachines. Nature 2019, 578, 164-168.
[5]
Baibich, M. N.; Broto, J. M.; Fert, A.; Nguyen Van Dau, F.; Petroff, F.; Etienne, P.; Creuzet, G.; Friederich, A.; Chazelas J. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 1988, 61, 2472-2475.
[6]
Binasch, G.; Grünberg, P.; Saurenbach, F.; Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 1989, 39, 4828-4830.
[7]
Parkin, S. S. P.; More, N.; Roche, K. P. Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. Phys. Rev. Lett. 1990, 64, 2304-2307.
[8]
Moodera, J. S.; Kinder, L. R.; Wong, T. M.; Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 1995, 74, 3273-3276.
[9]
Wang, W. G.; Li, M. G.; Hageman, S.; Chien, C. L. Electric-field-assisted switching in magnetic tunnel junctions. Nat. Mater. 2012, 11, 64-68.
[10]
Borders, W. A.; Pervaiz, A. Z.; Fukami, S.; Camsari, K. Y.; Ohno, H.; Datta, S. Integer factorization using stochastic magnetic tunnel junctions. Nature 2019, 573, 390-393.
[11]
Luo, Z. C.; Dao, T. P.; Hrabec, A.; Vijayakumar, J.; Kleibert, A.; Baumgartner, M.; Kirk, E.; Cui, J. Z.; Savchenko, T.; Krishnaswamy, G. et al. Chirally coupled nanomagnets. Science 2019, 363, 1435-1439.
[12]
Tserkovnyak, Y.; Brataas, A.; Bauer, G. E. W.; Halperin, B. I. Nonlocal magnetization dynamics in ferromagnetic heterostructures. Rev. Mod. Phys. 2005, 77, 1375-1421.
[13]
Heinrich, B.; Tserkovnyak, Y.; Woltersdorf, G.; Brataas A.; Urban, R.; Bauer G. E. W. Dynamic exchange coupling in magnetic bilayers. Phys. Rev. Lett. 2003, 90, 187601.
[14]
Pigeau, B.; Hahn, C.; De Loubens, G.; Naletov, V. V.; Klein, O.; Mitsuzuka, K.; Lacour, D.; Hehn, M.; Andrieu, S.; Montaigne, F. Measurement of the dynamical dipolar coupling in a pair of magnetic nanodisks using a ferromagnetic resonance force microscope. Phys. Rev. Lett. 2012, 109, 247602.
[15]
Yu, T.; Bauer, G. E. W. Chiral coupling to magnetodipolar radiation. arXiv: 2001.06821, 2020.
[16]
Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 1996, 159, L1-L7.
[17]
Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 1996, 54, 9353-9358.
[18]
Kaka, S.; Pufall, M. R.; Rippard, W. H.; Silva, T. J.; Russek, S. E.; Katine, J. A. Mutual phase-locking of microwave spin torque nano-oscillators. Nature 2005, 437, 389-392.
[19]
Madami, M.; Bonetti, S.; Consolo, G.; Tacchi, S.; Carlotti, G.; Gubbiotti, G.; Mancoff, F. B.; Yar, M. A.; Åkerman, J. Direct observation of a propagating spin wave induced by spin-transfer torque. Nat. Nanotechnol. 2011, 6, 635-638.
[20]
Demidov, V. E.; Urazhdin, S.; Ulrichs, H.; Tiberkevich, V.; Slavin, A.; Baither, D.; Schmitz, G.; Demokritov, S. O. Magnetic nano- oscillator driven by pure spin current. Nat. Mater. 2012, 11, 1028-1031.
[21]
Urazhdin, S.; Demidov, V. E.; Ulrichs, H.; Kendziorczyk, T.; Kuhn, T.; Leuthold, J.; Wilde, G.; Demokritov, S. O. Nanomagnonic devices based on the spin-transfer torque. Nat. Nanotechnol. 2014, 9, 509-513.
[22]
Kruglyak, V. V.; Demokritov, S. O.; Grundler, D. Magnonics. J. Phys. D Appl. Phys. 2010, 43, 264001.
[23]
Lenk, B.; Ulrichs, H.; Garbs, F.; Münzenberg, M. The building blocks of magnonics. Phys. Rep. 2011, 507, 107-136.
[24]
Chumak, A. V.; Vasyuchka, V. I.; Serga, A. A.; Hillebrands, B. Magnon spintronics. Nat. Phys. 2015, 11, 453-461.
[25]
Vlaminck, V.; Bailleul, M. Current-induced spin-wave Doppler shift. Science 2008, 322, 410-413.
[26]
Vogt, K.; Fradin, F. Y.; Pearson, J. E.; Sebastian, T.; Bader, S. D.; Hillebrands, B.; Hoffmann, A.; Schultheiss, H. Realization of a spin-wave multiplexer. Nat. Commun. 2014, 5, 3727.
[27]
Pal, S.; Saha, S.; Kamalakar, M. V.; Barman, A. Field-dependent spin waves in high-aspect-ratio single-crystal ferromagnetic nanowires. Nano Res. 2016, 9, 1426-1433.
[28]
Han, J. H.; Zhang, P. X.; Hou, J. T.; Siddiqui, S. A.; Liu, L. Q. Mutual control of coherent spin waves and magnetic domain walls in a magnonic device. Science 2019, 366, 1121-1125.
[29]
Wang, Y.; Zhu, D. P.; Yang, Y. M.; Lee, K.; Mishra, R.; Go, G.; Oh, S. H.; Kim, D. H.; Cai, K. M.; Liu, E. L. et al. Magnetization switching by magnon-mediated spin torque through an antiferromagnetic insulator. Science 2019, 366, 1121-1125.
[30]
Yu, W. C.; Lan, J.; Xiao, J. Magnetic logic gate based on polarized spin waves. Phys. Rev. Appl. 2020, 13, 024055.
[31]
Heinz, B.; Brächer, T.; Schneider, M.; Wang, Q.; Lägel, B.; Friedel, A. M.; Breitbach, D.; Steinert, S.; Meyer, T.; Kewenig, M. et al. Propagation of spin-wave packets in individual nanosized yttrium iron garnet magnonic conduits. Nano Lett. 2020, 20, 4220-4227.
[32]
Demokritov, S. O.; Demidov, V. E.; Dzyapko, O.; Melkov, G. A.; Serga, A. A.; Hillebrands, B.; Slavin, A. N. Bose-Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature 2006, 443, 430-433.
[33]
Schneider, M.; Brächer, T.; Breitbach, D.; Lauer, V.; Pirro, P.; Bozhko, D. A.; Musiienko-Shmarova, H. Y.; Heinz, B.; Wang, Q.; Meyer, T. et al. Bose-Einstein condensation of quasiparticles by rapid cooling. Nat. Nanotechnol. 2020, 15, 457-461.
[34]
Khitun, A.; Bao, M. Q.; Wang, K. L. Magnonic logic circuits. J. Phys. D Appl. Phys. 2010, 43, 264005.
[35]
Grundler, D. Spintronics: Nanomagnonics around the corner. Nat. Nanotechnol. 2016, 11, 407-408.
[36]
Wagner, K.; Kákay, A.; Schultheiss, K.; Henschke, A.; Sebastian, T.; Schultheiss, H. Magnetic domain walls as reconfigurable spin-wave nanochannels. Nat. Nanotechnol. 2016, 11, 432-436.
[37]
Haldar, A.; Kumar, D.; Adeyeye, A. O. A reconfigurable waveguide for energy-efficient transmission and local manipulation of information in a nanomagnetic device. Nat. Nanotechnol. 2016, 11, 437-443.
[38]
Csaba, G.; Porod, W. Coupled oscillators for computing: A review and perspective. Appl. Phys. Rev. 2020, 7, 011302.
[39]
Wu, H.; Huang, L.; Fang, C.; Yang, B. S.; Wan, C. H.; Yu, G. Q.; Feng, J. F.; Wei, H. X.; Han, X. F. Magnon valve effect between two magnetic insulators. Phys. Rev. Lett. 2018, 120, 097205.
[40]
Cramer, J.; Fuhrmann, F.; Ritzmann, U.; Gall, V.; Niizeki, T.; Ramos, R.; Qiu, Z. Y.; Hou, D. Z.; Kikkawa, T.; Sinova, J. et al. Magnon detection using a ferroic collinear multilayer spin valve. Nat. Commun. 2018, 9, 1089.
[41]
Cornelissen, L. J.; Liu, J.; Van Wees, B. J.; Duine, R. A. Spin-current-controlled modulation of the magnon spin conductance in a three-terminal magnon transistor. Phys. Rev. Lett. 2018, 120, 097702.
[42]
Khalili Amiri, P.; Rejaei, B.; Vroubel, M.; Zhuang, Y. Nonreciprocal spin wave spectroscopy of thin Ni-Fe stripes. Appl. Phys. Lett. 2007, 91, 062502.
[43]
Kwon, J. H.; Yoon, J.; Deorani, P.; Lee, J. M.; Sinha, J.; Lee, K. J.; Hayashi, M.; Yang, H. Giant nonreciprocal emission of spin waves in Ta/Py bilayers. Sci. Adv. 2016, 2, e1501892.
[44]
Brächer, T.; Boulle, O.; Gaudin, G.; Pirro, P. Creation of unidirectional spin-wave emitters by utilizing interfacial Dzyaloshinskii-Moriya interaction. Phys. Rev. B 2017, 95, 064429.
[45]
Henry, Y.; Stoeffle, D.; Kim, J. V.; Bailleul, M. Unidirectional spin-wave channeling along magnetic domain walls of Bloch type. Phys. Rev. B 2019, 100, 024416.
[46]
Sandweg, C. W.; Kajiwara, Y.; Chumak, A. V.; Serga, A. A.; Vasyuchka, V. I.; Jungfleisch, M. B.; Saitoh, E.; Hillebrands, B. Spin pumping by parametrically excited exchange magnons. Phys. Rev. Lett. 2011, 106, 216601.
[47]
Wintz, S.; Tiberkevich, V.; Weigand, M.; Raabe, J.; Lindner, J.; Erbe, A.; Slavin, A.; Fassbender, J. Magnetic vortex cores as tunable spin-wave emitters. Nat. Nanotechnol. 2016, 11, 948-953.
[48]
Hämäläinen, S. J.; Brandl, F.; Franke, K. J. A.; Grundler, D.; van Dijken, S. Tunable short-wavelength spin-wave emission and confinement in anisotropy-modulated multiferroic heterostructures. Phys. Rev. Appl. 2017, 8, 014020.
[49]
Brächer, T.; Fabre, M.; Meyer, T.; Fischer, T.; Auffret, S.; Boulle, O.; Ebels, U.; Pirro, P.; Gaudin, G. Detection of short-waved spin waves in individual microscopic spin-wave waveguides using the inverse spin Hall effect. Nano Lett. 2017, 17, 7234-7241.
[50]
Liu, C. P.; Chen, J. L.; Liu, T.; Heimbach, F.; Yu, H. M.; Xiao, Y.; Hu, J. F.; Liu, M. C.; Chang, H. C.; Stueckler, T. et al. Long-distance propagation of short-wavelength spin waves. Nat. Commun. 2018, 9, 738.
[51]
Dieterle, G.; Förster, J.; Stoll, H.; Semisalova, A. S.; Finizio, S.; Gangwar, A.; Weigand, M.; Noske, M.; Fähnle, M.; Bykova, I. et al. Coherent excitation of heterosymmetric spin waves with ultrashort wavelengths. Phys. Rev. Lett. 2019, 122, 117202.
[52]
Che, P.; Baumgaertl, K.; Kúkol’ová, A.; Dubs, C.; Grundler, D. Efficient wavelength conversion of exchange magnons below 100 nm by magnetic coplanar waveguides. Nat. Commun. 2020, 11, 1445.
[53]
Klingler, S.; Amin, V.; Geprägs, S.; Ganzhorn, K.; Maier-Flaig, H.; Althammer, M.; Huebl, H.; Gross, R.; McMichael, R. D.; Stiles, M. D. et al. Spin-torque excitation of perpendicular standing spin waves in coupled YIG/Co heterostructures. Phys. Rev. Lett. 2018, 120, 127201.
[54]
Chen, J. L.; Liu, C. P.; Liu, T.; Xiao, Y.; Xia, K.; Bauer, G. E. W.; Wu, M. Z.; Yu, H. M. Strong interlayer magnon-magnon coupling in magnetic metal-insulator hybrid nanostructures. Phys. Rev. Lett. 2018, 120, 217202.
[55]
Qin, H. J.; Hämäläinen, S. J.; van Dijken, S. Exchange-torque-induced excitation of perpendicular standing spin waves in nanometer-thick YIG films. Sci. Rep. 2018, 8, 5755.
[56]
Li, Y.; Cao, W.; Amin, V. P.; Zhang, Z. Z.; Gibbons, J.; Sklenar, J.; Pearson, J.; Haney, P. M.; Stiles, M. D.; Bailey, W. E. et al. Coherent spin pumping in a strongly coupled magnon-magnon hybrid system. Phys. Rev. Lett. 2020, 124, 117202.
[57]
Chen, J. L.; Yu, T.; Liu, C. P.; Liu, T.; Madami, M.; Shen, K.; Zhang, J. Y.; Tu, S.; Alam, S.; Xia, K. et al. Excitation of unidirectional exchange spin waves by a nanoscale magnetic grating. Phys. Rev. B 2019, 100, 104427.
[58]
Yu, T.; Blanter, Y. M.; Bauer, G. E. W. Chiral pumping of spin waves. Phys. Rev. Lett. 2019, 123, 247202.
[59]
Schneider, T.; Serga, A. A.; Neumann, T.; Hillebrands, B.; Kostylev, M. P. Phase reciprocity of spin-wave excitation by a microstrip antenna. Phys. Rev. B 2008, 77, 214411.
[60]
Demidov, V. E.; Kostylev, M. P.; Rott, K.; Krzysteczko, P.; Reiss, G.; Demokritov, S. O. Excitation of microwaveguide modes by a stripe antenna. Appl. Phys. Lett. 2009, 95, 112509.
[61]
Sekiguchi, K.; Yamada, K.; Seo, S. M.; Lee, K. J.; Chiba, D.; Kobayashi, K.; Ono, T. Nonreciprocal emission of spin-wave packet in FeNi film. Appl. Phys. Lett. 2010, 97, 022508.
[62]
El-Ganainy, R.; Makris, K. G.; Khajavikhan, M.; Musslimani, Z. H.; Rotter, S.; Christodoulides, D. N. Non-Hermitian physics and PT symmetry. Nat. Phys. 2018, 14, 11-19.
[63]
Miri, M. A.; Alù, A. Exceptional points in optics and photonics. Science 2019, 363, eaar7709.
[64]
Carlström, J.; Stålhammar, M.; Budich, J. C.; Bergholtz, E. J. Knotted non-Hermitian metals. Phys. Rev. B 2019, 99, 161115.
[65]
Grigoryan, V. L.; Shen, K.; Xia, K. Synchronized spin-photon coupling in a microwave cavity. Phys. Rev. B 2018, 98, 024406.
[66]
Harder, M.; Yang, Y.; Yao, B. M.; Yu, C. H.; Rao, J. W.; Gui, Y. S.; Stamps, R. L.; Hu, C. M. Level attraction due to dissipative magnon- photon coupling. Phys. Rev. Lett. 2018, 121, 137203.
[67]
Yu, W. C.; Wang, J. J.; Yuan, H. Y.; Xiao, J. Prediction of attractive level crossing via a dissipative mode. Phys. Rev. Lett. 2019, 113, 227201.
[68]
Chang, H. C.; Li, P.; Zhang, W.; Liu, T.; Hoffmann, A.; Deng, L. J.; Wu. M. Z. Nanometer-thick yttrium iron garnet films with extremely low damping. IEEE Magn. Lett. 2014, 5, 6700104.
[69]
Yu, H. M.; d'Allivy Kelly, O.; Cros, V.; Bernard, R.; Bortolotti, P.; Anane, A.; Brandl, F.; Huber, R.; Stasinopoulos, I.; Grundler, D. Magnetic thin-film insulator with ultra-low spin wave damping for coherent nanomagnonics. Sci. Rep. 2014, 4, 6848.
[70]
Ciubotaru, F.; Devolder, T.; Manfrini, M.; Adelmann, C.; Radu, I. P. All electrical propagating spin wave spectroscopy with broadband wavevector capability. Appl. Phys. Lett. 2016, 109, 012403.
[71]
Topp, J.; Heitmann, D.; Kostylev, M. P.; Grundler, D. Making a reconfigurable artificial crystal by ordering bistable magnetic nanowires. Phys. Rev. Lett. 2010, 104, 207205.
[72]
Ding, J.; Kostylev, M.; Adeyeye, A. O. Magnonic crystal as a medium with tunable disorder on a periodical lattice. Phys. Rev. Lett. 2011, 107, 047205.
[73]
Neusser, S.; Duerr, G.; Bauer, H. G.; Tacchi, S.; Madami, M.; Woltersdorf, G.; Gubbiotti, G.; Back, C. H.; Grundler, D. Anisotropic propagation and damping of spin waves in a nanopatterned antidot lattice. Phys. Rev. Lett. 2010, 105, 067208.
[74]
Sun, Y. Y.; Song, Y. Y.; Chang, H. C.; Kabatek, M.; Jantz, M.; Schneider, W.; Wu, M. Z.; Schultheiss, H.; Hoffmann, A. Growth and ferromagnetic resonance properties of nanometer-thick yttrium iron garnet films. Appl. Phys. Lett. 2012, 101, 152405.
[75]
Serga, A. A.; Chumak, A. V.; Hillebrands, B. YIG magnonics. J. Phys. D Appl. Phys. 2010, 43, 264002.
[76]
Kalinikos, B. A.; Slavin, A. N. Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions. J. Phys. C Solid State Phys. 1986, 19, 7013-7033.
[77]
Klingler, S.; Chumak, A. V.; Mewes, T.; Khodadadi, B.; Mewes, C.; Dubs, C.; Surzhenko, O.; Hillebrands, B.; Conca, A. Measurements of the exchange stiffness of YIG films using broadband ferromagnetic resonance techniques. J. Phys. D Appl. Phys. 2015, 48, 015001.
[78]
Gardiner, C. W.; Collett, M. J. Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. Phys. Rev. A 1985, 31, 3761-3774.
[79]
Clerk, A. A.; Devoret, M. H.; Girvin, S. M.; Marquardt, F.; Schoelkopf, R. J. Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 2010, 82, 1155-1208.
[80]
Yu, T.; Bauer, G. E. W. Noncontact spin pumping by microwave evanescent fields. Phys. Rev. Lett. 2020, 124, 236801.
[81]
Wong, K. L.; Bi, L.; Bao, M. Q.; Wen, Q. Y.; Chatelon, J. P.; Lin, Y. T.; Ross, C. A.; Zhang, H. W.; Wang, K. L. Unidirectional propagation of magnetostatic surface spin waves at a magnetic film surface. Appl. Phys. Lett. 2014, 105, 232403.
[82]
Yu, T.; Wang, H. C.; Sentef, M. A.; Yu, H. M.; Bauer, G. E. W. Magnon trap by chiral spin pumping. Phys. Rev. B 2020, 102, 054429.
[83]
Rustagi, A.; Bertelli, I.; van der Sar, T.; Upadhyaya, P. Sensing chiral magnetic noise via quantum impurity relaxometry. arXiv: 2009.05060, 2020.
[84]
Torrejon, J.; Riou, M.; Araujo, F. A.; Tsunegi, S.; Khalsa, G.; Querlioz, D.; Bortolotti, P.; Cros, V.; Yakushiji, Y.; Fukushima, A. et al. Neuromorphic computing with nanoscale spintronic oscillators. Nature 2017, 547, 428-431.
[85]
Zahedinejad, M.; Awad, A. A.; Muralidhar, S.; Khymyn, R.; Fulara, H.; Mazraati, H.; Dvornik, M.; Åkerman, J. Two-dimensional mutually synchronized spin Hall nano-oscillator arrays for neuromorphic computing. Nat. Nanotechnol. 2020, 15, 47-52.
[86]
Kandel, E. R.; Schwartz, J. H.; Jessell, T. M. Principles of Neural Science; 4th ed. McGraw-Hill: New York, 2000.
Nano Research
Pages 2133-2138
Cite this article:
Wang H, Chen J, Yu T, et al. Nonreciprocal coherent coupling of nanomagnets by exchange spin waves. Nano Research, 2021, 14(7): 2133-2138. https://doi.org/10.1007/s12274-020-3251-5
Topics:

815

Views

27

Crossref

0

Web of Science

26

Scopus

0

CSCD

Altmetrics

Received: 01 August 2020
Revised: 10 November 2020
Accepted: 16 November 2020
Published: 05 July 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return